Admixture mapping

Tamar Sofer

July 2017

What is admixture mapping?

- Admixture mapping is a type of association analysis that can be performed only in admixed populations.
- In the history of mankind, sub-populations were formed, that have distinct genomic features.
 - Different frequencies of genetic variants, or population-specific genetic variants.
- Hispanics/Latinos are admixed.
 - ► A Hispanic/Latino individual likely have ancestors from three ancestral populations: European, African, Amerindian.
- Since chromosomes are inherited from parents in a process of recombination, for each person, segments of the chromosome were inherited from a specific ancestry (and ancestor).

What is admixture mapping?

What is admixture mapping?

- There are softwares that can delineate intervals along the chromosomes in a data set, and for each person, "say" which ancestry this interval was inherited from.
 - Software name: RFMix
 - It uses a "reference panel": genetic sequences from people in relevant ancestral populations.
 - Underlying local ancestry intervals (LAIs) are likely not exactly the same for all people, but they are defined the same way by the software.
- ► Local ancestry inference was performed in the HCHS/SOL by Browning et al. (2016, G3), and the results are available.

Let's look at a file with local ancestry information.

• This is from the simulated data.

dim(admixAnnot)

##	snps	variables
##	75	6

head(pData(admixAnnot))

##		snpID	pos.start	pos.end	position	chromosome	nmarkers
##	1	1	558390	1177226	867808	1	35
##	2	2	1177227	1805338	1491282	1	19
##	3	3	1805339	2108309	1956824	1	25
##	4	4	2108310	2272806	2190558	1	14
##	5	5	2272807	2412100	2342454	1	69
##	6	6	2412101	2737608	2574854	1	11

- We need to use different functions (from before) to read the data
- Because now we have genotype dosages/count per ancestry!

```
## File: /home/postdoc/tsofer/SISG/Preparing_simulated_data
## + [ ]
## |--+ CEU_dosage { Bit2 75x500, 9.2K }
## |--+ MEX_dosage { Bit2 75x500, 9.2K }
## |--+ sample.id { Str8 500, 2.3K }
## |--+ snp.id { Int32 75, 300B }
## |--+ snp.chromosome { Float64 75, 600B }
## \--+ snp.position { Int32 75, 300B }
```

```
ancestries <- c("CEU", "MEX")
genoDataList <- vector(mode = "list", length = 2)
names(genoDataList) <- ancestries
for (ancestry in ancestries){
   gds.reader <- GdsGenotypeReader(gds,
        genotypeVar=paste0(ancestry, "_dosage"))
   genoDataList[[ancestry]] <- GenotypeData(gds.reader,</pre>
```

```
scanAnnot=scanAnnot)
```

- Now we have a list with genotype readers.
- We can apply functions presented before on each of the list components.

```
genoDataList[["CEU"]]
```

```
## An object of class GenotypeData
## | data:
## File: /home/postdoc/tsofer/SISG/Preparing_simulated_data
## + []
## |--+ CEU_dosage { Bit2 75x500, 9.2K }
## |--+ MEX_dosage { Bit2 75x500, 9.2K }
## |--+ sample.id { Str8 500, 2.3K }
## |--+ snp.id { Int32 75, 300B }
## |--+ snp.chromosome { Float64 75, 600B }
## \--+ snp.position { Int32 75, 300B }
## | SNP Annotation:
## NULL.
                                                     9/36
```

Now we have a list with genotype readers. We can apply the same function as before on each of the list components.

getGenotype(genoDataList\$CEU)[1:4,1:4]

##		[,1]	[,2]	[,3]	[,4]
##	[1,]	2	2	1	1
##	[2,]	1	2	2	1
##	[3,]	2	2	2	1
##	[4,]	1	0	2	1

getScanID(genoDataList\$MEX)[1:4]

[1] "p1" "p2" "p3" "p4"

Use one list slot to close the connection to file-

```
close(genoDataList[[1]])
```

Admixture mapping - how does it work?

- The local ancestry "genotypes" are not actually counts of genotypes.
- They are counts of ancestry!
- So if person p1 have count of 2 for its CEU dosage in interval 3, it means that
 - Interval 3 in the p1's two chromosomes 1 was inherited from a CEU ancestor.
- ► In admixture mapping, we test the local ancestry counts.

Admixture mapping - how does it work?

- ► In admixture mapping, we test the local ancestry counts.
- Why is it meaningful? intuition:
 - Because if a genotype is more frequent in one population (pop1);
 - And it is also associated with a trait;
 - People with more of the intervals spanning the genotypes inherited from pop1, are more likely to have the trait.
- Mathematically, it can be shown that
 - If there are two ancestral populations;
 - There is a single causal variant in an interval;
 - \blacktriangleright The genotype effect size β is the same in the two populations;
 - The allele frequency in the two ancestral populations are f_1 and f_2 ;
 - Then the effect size estimated by testing the LAI counts is $\beta(f_1 f_2)$.

Admixture mapping - how does it work?

- The effect size estimated by testing the LAI counts is $\beta(f_1 f_2)$.
 - This is lower than the effect size of the genotype β .
 - ► If f₁ == f₂, this "effect" equals zero, and so admixture mapping is not useful.
 - If $f_1 = 0$ or $f_2 = 0$, it'll equal $f_2\beta$ or $f_1\beta$.
 - Regular association mapping may actually give something smaller.

- ▶ Suppose we had a specific variant g genotyped on all peopled.
- And we had the local ancestry counts in the interval spanning g.
- Then, testing the genotype association will be more powerful than testing the local ancestry.

However...

- Sometimes we don't have g genotyped, but we do have ancestry counts for an interval spanning g.
- There are many less local ancestry intervals than genotypes
 - Reducing the *p*-value required for significance of LAI associations.
- The causal g may be rare, making genotype associations unstable, even if the genotype is in the data.
 - While LAI associations do not suffer from this instability.

Admixture mapping is useful in these cases.

- Consider the case where we do have the causal genotype.
- Its effect β = 0.06, and the frequency of the local ancestry from pop1 is 0.5.
- ► Significance of association results: 5 × 10⁻⁸, of admixture mapping results: 5.7 × 10⁻⁵.
- See figure for difference in power comparing association to admixture mapping as a function of ancestry-specific frequencies.

- Causal genotype effect β = 0.06, and the frequency of the local ancestry from pop1 is lower, 0.2.
- Significance of association results: 5 × 10⁻⁸, of admixture mapping results: 5.7 × 10⁻⁶
- Comparing the previous figure to the next, shows less advantage for admixture mapping in this case.

Additional settings in which admixture mapping is useful:

- The effect sizes is different between ancestries (even if the allele frequencies are the same across ancestries!).
- Multiple causal variants in the LAI.

Take-home message: admixture mapping can sometimes detect association regions that association mapping cannot.

- First, let's open again the connection to file
- And create genotypeReaders.

Prepare for analysis...

- Fit the null mixed model as before,
- and test using the GENESIS function admixMapMM.(MM: mixed model)

Running analysis with 500 Samples and 75 SNPs

Beginning Calculations...

```
## Plack 1 of 1 Completed = 0.04695 acco
```

close(genoDataList[[1]])
head(assoc.admix)

##		snpID	chr	n	CEU.freq	CEU.Est	CEU.SE	MEX.freq	MEX.I
##	1	1	1	500	0.691	NA	NA	0.309	
##	2	2	1	500	0.686	3.500	54862950	0.314	4.5
##	3	3	1	500	0.677	NA	NA	0.323	
##	4	4	1	500	0.707	NA	NA	0.293	
##	5	5	1	500	0.703	1.625	47546887	0.297	1.3
##	6	6	1	500	0.721	NA	NA	0.279	
##		Joint.	Stat	t Joi	int.pval				
##	1		N	A	NA				
##	2	0.9355	51254	10.	6264062				
##	3		N	A	NA				
##	4		N	A	NA				
##	5	0.0548	39418	30.	9729262				
##	6		N	A	NA				

Let's also perform the usual association testing.

Running analysis with 500 Samples and 7463 SNPs

Beginning Calculations...

Block 1 of 2 Completed - 1.562 secs

Block 2 of 2 Completed - 0.5801 secs

- We performed admixture mapping of blood pressure traits (under review).
- Analysis of MAP. Here is the Manhattan plot from the MAP analysis, testing counts of LAI from Amerindian ancestry (baseline is either European or African).

- Here's a figure with the significant admixture mapping region on chromosome 6.
- With the usual association analysis results (from GWAS that tested SNP allele dosages).
- Question: why do we use symbols when testing SNPs, lines when testing LAIs?

- Our end goal is to find genetic variants driving the association.
- How can we find them?

Recall: admixture mapping associations are detected when there is a difference in allele frequencies between ancestries. Also, when there is a difference in ancestry-specific effect sizes.

Candidate variants explaining the admixture mapping are likely:

- Somewhat significant in usual association testing.
- Have different frequencies between ancestry.
 - Or different effect sizes.

But we don't have ancestry-specific frequencies, nor effect sizes!

- Proxy: different genetic analysis groups have different ancestry proportions.
- difference in ancestry-specific frequencies, likely lead to differences in allele frequencies between genetic analysis groups!

- We identified a set of SNP candidate that were
 - Somewhat significant in association testing
 - Had difference in allele frequencies between the Mexican (high Amerindian ancestry proportion) and Cuban (low) genetic analysis group.
- And LD pruned them, to get four SNPs.

A1 freq	A1 freq	Effect	SE	p-value
Mexican	Cuban			
0.80	0.68	-0.72	0.18	5.40E-05
0.99	0.99	-3.19	0.72	8.53E-06
0.68	0.94	0.82	0.20	4.39E-05
0.81	0.98	1.00	0.25	4.62E-05
0.00	0.00		0.05	0.0077.08

- Next: check whether these SNPs drive the admixture mapping association.
- Perform conditional analysis the same linear mixed model, with these SNPs as covariates.

Finally, we can also use the package ASAFE to calculate ancestry-specific allele frequencies of the four SNPs.

Exercises

- 1. Which is the LAI with the most significant p-value in the admixture mapping?
 - How many genotyped/imputed variants are in this LAI?
 - What is the most significant SNP in this LAI?
 - ► Can you use the formula β(f₁ f₂) to guestimate an effect size for the potential causal SNP in the LAI? if yes, what is it? if not, why not?
- 2. Find the genotype with the largest MAF difference between the UW and UNC groups
- 3. Use this genotype in simulating a new trait with the code in the next slide, and run a new admixture mapping analysis.

Code for simulations

 First we find a SNP with large MAF differences between the UNC and UW groups.

```
gds.geno <- GdsGenotypeReader(file.path(dir,
                           "SISG snp dosages.gds"))
genoData <- GenotypeData(gds.geno,
              snpAnnot=snpAnnot, scanAnnot = scanAnnot)
Afreqs.unc <- alleleFrequency(genoData, scan.exclude =
                  scanAnnot$scanID[
                      which(scanAnnot$group == "uw")],
                  verbose = FALSE)
Afreqs.uw <- alleleFrequency(genoData, scan.exclude =
                  scanAnnot$scanID[
                      which(scanAnnot$group == "unc")],
                  verbose = FALSE)
```

Code for simulations

Extract the genotypes

[1] 0.33

Afreqs.unc[select.genotype.ind, "MAF"]

[1] 0.2233333

```
close(gds.geno)
```

Code for simulations

Use the genotype in simulations

- Now run admixture mapping with the outcome "new.trait"!
- Run also association analysis, and create a figure with the results on top of each other.