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The HCHS/SOL
The Hispanic Community Health Study/Study of Latinos

I A longitudinal, community-based study
I Individuals from four study sites:

I Chicago, Bronx, Miami, San Diego.

I Hispanics/Latinos were sampled via a two-stage study design
I First, block units were sampled,
I Then, households,
I Finally, all or some of household members.

I So that results from association analyses apply to the general
population, be protected from confounding bias due to
sampling, and have correct standard errors despite correlations
between individuals

I HCHS/SOL analyses use sampling weights;
I are adjusted to study center;
I are fit via mixed models or GEEs.
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Hispanics/Latinos and genetic ancestry

I Hispanics/Latinos are admixed, with three ancestral
populations: European, Amerindian, and African.

I The proportion of genotypes due to each ancestry differ
between people and groups.

Figure taken from: Conomos, Matthew P., et al. “Genetic diversity and
association studies in US Hispanic/Latino populations: applications in the
Hispanic Community Health Study/Study of Latinos.” The American
Journal of Human Genetics 98.1 (2016): 165-184.
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Hispanics/Latinos and genetic ancestry

The diversity of the HCHS/SOL
participants and the population
structure could also be gleaned
from the Principal Components
(PCs) figure:
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Genetic Analysis Groups
I HCHS/SOL individuals self-identified as Mexican, Central

American, South American (Mainland), Cuban, Dominican, or
Puerto Rican (Caribbean).

I The HCHS/SOL GAC later defined the Genetic Analysis
Groups based on these, and high-dimensional presentation of
the genetic data.

I The genetic analysis group is now a factor variable that is used
in association analyses in various ways. (How? - later!)
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Local ancestry
Due to genetic recombination of chromosomes during Meiosis,
genotypes are inherited from parents in intervals.

I Therefore, each chromosome is composed of intervals that were
inherited from ancestors.

I The intervals from more ancient ancestors are smaller.
I Intervals and their ancestries could be inferred using reference

panels and an appropriate software.
I For the HCHS/SOL, Browning et al. (2016) performed such

inference
I For each person, we have counts of intervals inherited from

each of the parental ancestries.

Browning, Sharon R., et al. “Local Ancestry Inference in a Large
US-Based Hispanic/Latino Study: Hispanic Community Health
Study/Study of Latinos (HCHS/SOL).” G3: Genes| Genomes|
Genetics 6.6 (2016): 1525-1534.

6 / 30



The simulated dataset

I Due to privacy restrictions, we cannot use the HCHS/SOL
dataset.

I So we generated a simulated dataset that have similar, yet
simpler, characteristics.

I We will describe the dataset, and then use R packages to study
it.
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The (simple) simulated dataset

I Using the Hapgen software, simulated genotype data from two
populations: CEU and MEX.

I These are not the same ancestral populations of HCHS/SOL
participants.

I (HCHS/SOL participants have 3 ancestral populations:
European, African, Amerindian).

I Assumed that each individual had two parents
I Of the two chromosome pairs of each parent, one was entirely

CEU and one was entirely MEX.
I We randomly assigned intervals inherited from each parent to

be those from the first or the second chromosome.
I The probability of CEU ancestry was either 0.8 for the “UW

genetic analysis group” or 0.5 for the “UNC genetic analysis
group”.
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The (simple) simulated dataset
I The study individuals have genotypes from both ancestries on

each chromosomes.

9 / 30



The simulated data set

I In the remainder of this session, we will look at the simulated
data.

I We will get to know a few useful softwares.
I And understand (to some extent) file formats.
I We will not perform any association analysis or testing yet!
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Files
I These are the files that we will use.

dir <- paste0("/home/postdoc/tsofer/SISG/",
"Preparing_simulated_data_2")

list.files(dir)

## [1] "20170303_prepare_data.R"
## [2] "20170620_hh_mat.R"
## [3] "20170705_prepare_gen_data.R"
## [4] "datasets.zip"
## [5] "dscvr_diabetes_res.csv"
## [6] "for_SUGEN"
## [7] "SISG_genotype.vcf"
## [8] "SISG_houshold_matrix_2.RData"
## [9] "SISG_houshold_matrix.RData"
## [10] "SISG_local_ancestry_2.gds"
## [11] "SISG_local_ancestry_snpAnnot.RData"
## [12] "SISG_local_ancestry.gds"
## [13] "SISG_phenotypes.RData"
## [14] "SISG_relatedness_matrix.RData"
## [15] "SISG_snp_dosages_snpAnnot.RData"
## [16] "SISG_snp_dosages.gds"
## [17] "sol_diabetes_res.csv"
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The GWASTools R package

If you haven’t installed the GWASTools package yet, do so now:

source("https://bioconductor.org/biocLite.R")
biocLite("GWASTools")
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The GWASTools R package

After the package is installed, load it:

library("GWASTools", quietly=TRUE)

. . . and it may be useful to open the manual

https://www.bioconductor.org/packages/devel/bioc/
manuals/GWASTools/man/GWASTools.pdf
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The GWASTools R package

I GWASTools works with (among the rest) GDS files, which we
will use.

I Often, a GDS file will have an “attached” variant annotation
file.

I When working with genotype data
I We first define a genotype reader object [GdsGenotypeReader]
I Then a genotype data object [GenotypeData]
I The latter could be associated with the SNP annotation.

Let’s see!
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Using the GWASTools R package to look at our data
gds <- GdsGenotypeReader(file.path(dir,

"SISG_snp_dosages.gds"))
gds

## File: /home/postdoc/tsofer/SISG/Preparing_simulated_data_2/SISG_snp_dosages.gds (1.0M)
## + [ ]
## |--+ genotype { Bit2 500x7463, 911.0K }
## |--+ sample.id { VStr8 500, 2.3K }
## |--+ snp.id { Int32 7463, 29.2K }
## |--+ snp.chromosome { Float64 7463, 58.3K }
## \--+ snp.position { Int32 7463, 29.2K }

head(getChromosome(gds))

## [1] 1 1 1 1 1 1

### the sample IDs of the first 5 individuals
getScanID(gds)[1:5]

## [1] "p1" "p2" "p3" "p4" "p5"
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Using the GWASTools R package to look at our data

head(getSnpID(gds))

## [1] 1 2 3 4 5 6

head(getPosition(gds))

## [1] 558390 711153 713682 713754 719811 740098

### the sample IDs of the first 5 individuals
getScanID(gds)[1:5]

## [1] "p1" "p2" "p3" "p4" "p5"
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Using the GWASTools R package to look at our data
Let’s connect it to the SNP annotation object via a geotypeData
object:

snpAnnot <- getobj(file.path(dir,
"SISG_snp_dosages_snpAnnot.RData"))

dim(pData(snpAnnot))

## [1] 7463 9

head(pData(snpAnnot)[,c(1:5)])

## rsID position snpID alleleA alleleB
## 1 rs11497407 558390 1 A C
## 2 rs12565286 711153 2 G C
## 3 rs11804171 713682 3 C T
## 4 rs2977670 713754 4 A C
## 5 rs2977656 719811 5 A T
## 6 rs12138618 740098 6 G A
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Using the GWASTools R package to look at our data
Let’s connect it to the SNP annotation object via a geotypeData
object:

head(pData(snpAnnot)[,c(6:9)])

## chromosome info type oevar
## 1 1 1.0000000 2 1.0000000
## 2 1 1.0000000 3 1.0000000
## 3 1 0.8598037 0 0.8992697
## 4 1 0.8786222 0 0.8875563
## 5 1 0.9048905 0 0.9042507
## 6 1 1.0000000 3 1.0000000

I “info” and “oevar” are two imputation quality metrics.
I “type” refers to imputation status. type= 0 is imputed.

Otherwise genotyped. (2/3 distinction not important).
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Using the GWASTools R package to look at our data

varMetadata(snpAnnot)

## labelDescription
## rsID <NA>
## position Variant position in genome build 37
## snpID unique integer ID
## alleleA The effet (tested) allele in the additive genetic model
## alleleB The other (non-tested, reference) allele
## chromosome <NA>
## info The info imputation quality measure
## type Imputation type: 0 = imputed, 2 and 3: imputed (different platforms)
## oevar The oevar imputation quality measure, defined as the ration between the observed and the expected dosage variance
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Using the GWASTools R package to look at our data

Connecting the genotype reader object it to the snpAnnot object to
create a geotypeData object:

genoData <- GenotypeData(gds, snpAnnot=snpAnnot)

getAlleleA(genoData)[1:5]

## [1] "A" "G" "C" "A" "A"

rsIDs <- getSnpVariable(genoData, "rsID")
rsIDs[1:5]

## [1] "rs11497407" "rs12565286" "rs11804171" "rs2977670" "rs2977656"
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Using the GWASTools R package to look at our data

getGenotypeSelection(genoData, snp = (rsIDs
== "rs2977656"), scan = 1:10)

## p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
## 2 2 2 1 0 1 0 1 2 1
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Using the GWASTools R package to look at our data
We can also connect the genotype data with sample annotations:

scanAnnot <- getobj(file.path(dir,
"SISG_phenotypes.RData"))

scanAnnot

## An object of class 'ScanAnnotationDataFrame'
## scans: 1 2 ... 500 (500 total)
## varLabels: scanID EV1 ... group (8 total)
## varMetadata: labelDescription

genoData <- GenotypeData(gds,
snpAnnot=snpAnnot, scanAnnot = scanAnnot)

varLabels(scanAnnot)[1:4]

## [1] "scanID" "EV1" "EV2" "sex"
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Now we can calculate allele frequencies:
I Only now, because we need to have sex annotation for that!
I . . . the sex column in scanAnnot must be called “sex“. Males

have to be denoted by M and females by F.

varLabels(scanAnnot)[5:length(varLabels(scanAnnot))]

## [1] "age" "trait" "disease" "group"

Afreqs <- alleleFrequency(genoData)

## reading scan 100 of 500

## reading scan 200 of 500

## reading scan 300 of 500

## reading scan 400 of 500
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Using the GWASTools R package to look at our data

head(Afreqs)

## M F all n.M n.F n MAF
## 1 0.00000000 0.000000000 0.000 228 272 500 0.000
## 2 0.00000000 0.001838235 0.001 228 272 500 0.001
## 3 0.01315789 0.003676471 0.008 228 272 500 0.008
## 4 0.00000000 0.000000000 0.000 228 272 500 0.000
## 5 0.80482456 0.779411765 0.791 228 272 500 0.209
## 6 0.84429825 0.810661765 0.826 228 272 500 0.174
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Using the GWASTools R package to look at our data

## close the GDS file:
require(gdsfmt)
showfile.gds(close = TRUE)

## FileName
## 1 /home/postdoc/tsofer/SISG/Preparing_simulated_data_2/SISG_snp_dosages.gds
## ReadOnly State
## 1 TRUE closed

or we can also use close(gds).
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Other aspects of the data

I Recall that study individuals were sampled from block units,
and households.

I These induce correlations between traits of certain individuals
I E.g. people who live in the same house may eat similar food

(similar environment).

I Individuals are also genetically related.
I Similar to the HCHS/SOL, our simulated data set have

household and genetic relatedness matrices.
I The matrices were constructed based on the real data (by

sampling from the real matrices).
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Other aspects of the data

HH.mat <- getobj(file.path(dir,
"SISG_houshold_matrix.RData"))

kin.mat <- getobj(file.path(dir,
"SISG_relatedness_matrix.RData"))

kin.mat[1:5,1:5]

## p1 p2 p3 p4 p5
## p1 0.994917413 0.0123160048 -0.0031369458 0.0029970526 -0.0040635308
## p2 0.012316005 0.9962207088 0.0001299051 0.0074585380 0.0019388646
## p3 -0.003136946 0.0001299051 0.9919895296 -0.0020126658 -0.0037603344
## p4 0.002997053 0.0074585380 -0.0020126658 0.9990199189 0.0006761824
## p5 -0.004063531 0.0019388646 -0.0037603344 0.0006761824 1.0011102847
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Other aspects of the data
I The household matrix have 1 in the i , j entry, if the i , j

individuals live in the same household.

HH.mat[1:5,1:5]

## p1 p2 p3 p4 p5
## p1 1 0 0 0 0
## p2 0 1 0 0 0
## p3 0 0 1 0 0
## p4 0 0 0 1 0
## p5 0 0 0 0 1

sum(rowSums(HH.mat) > 1)

## [1] 19
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Other aspects of the data

I According to this household matrix, only 19 individuals live in
the same house as other people in the study.

I There are negative kinship values, and diagonal values are not
exactly 1. This is okay.
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Exercises

Use the GWASTools manual, your R knowledge, and the commands
we learned to perform the following tasks and answer the questions:

1. Compare the variance of the trait “trait” between the UW and
the UNC groups.

2. Plot a graph comparing the effect allele frequencies between
the groups.

3. What is the genomic position of the SNP with the largest EAF
difference between the UW and the UNC groups?

4. What is the proportion of diseased individuals in males and
females? and in the UW and UNC groups?

5. Extract the genotypes of rs12033927 and rs17390062. What is
the LD between them in the combined sample? in the UW
group? in the UNC group?
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