The simulated data set, and how it was inspired by the HCHS/SOL

Tamar Sofer

July 2017

The HCHS/SOL

The Hispanic Community Health Study/Study of Latinos

- A longitudinal, community-based study
- Individuals from four study sites:
 - Chicago, Bronx, Miami, San Diego.
- Hispanics/Latinos were sampled via a two-stage study design
 - First, block units were sampled,
 - Then, households,
 - Finally, all or some of household members.
- So that results from association analyses apply to the general population, be protected from confounding bias due to sampling, and have correct standard errors despite correlations between individuals
 - HCHS/SOL analyses use sampling weights;
 - are adjusted to study center;
 - are fit via mixed models or GEEs.

Hispanics/Latinos and genetic ancestry

- Hispanics/Latinos are admixed, with three ancestral populations: European, Amerindian, and African.
- The proportion of genotypes due to each ancestry differ between people and groups.

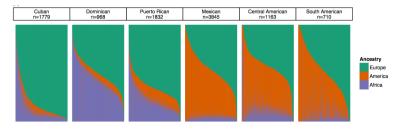
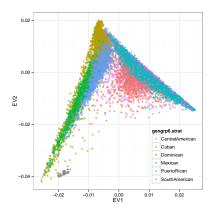


Figure taken from: Conomos, Matthew P., et al. "Genetic diversity and association studies in US Hispanic/Latino populations: applications in the Hispanic Community Health Study/Study of Latinos." The American Journal of Human Genetics 98.1 (2016): 165-184.

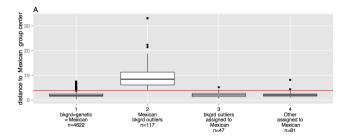
Hispanics/Latinos and genetic ancestry

The diversity of the HCHS/SOL participants and the population structure could also be gleaned from the Principal Components (PCs) figure:



Genetic Analysis Groups

- HCHS/SOL individuals self-identified as Mexican, Central American, South American (Mainland), Cuban, Dominican, or Puerto Rican (Caribbean).
- The HCHS/SOL GAC later defined the Genetic Analysis Groups based on these, and high-dimensional presentation of the genetic data.



The genetic analysis group is now a factor variable that is used in association analyses in various ways. (How? - later!)

Local ancestry

Due to genetic recombination of chromosomes during Meiosis, genotypes are inherited from parents in intervals.

- Therefore, each chromosome is composed of intervals that were inherited from ancestors.
 - The intervals from more ancient ancestors are smaller.
- Intervals and their ancestries could be inferred using reference panels and an appropriate software.
- ► For the HCHS/SOL, Browning et al. (2016) performed such inference
 - ► For each person, we have counts of intervals inherited from each of the parental ancestries.

Browning, Sharon R., et al. "Local Ancestry Inference in a Large US-Based Hispanic/Latino Study: Hispanic Community Health Study/Study of Latinos (HCHS/SOL)." G3: Genes| Genomes| Genetics 6.6 (2016): 1525-1534.

The simulated dataset

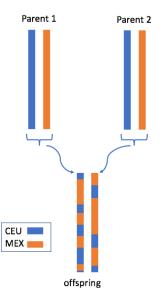
- Due to privacy restrictions, we cannot use the HCHS/SOL dataset.
- So we generated a simulated dataset that have similar, yet simpler, characteristics.
- We will describe the dataset, and then use R packages to study it.

The (simple) simulated dataset

- Using the Hapgen software, simulated genotype data from two populations: CEU and MEX.
 - These are not the same ancestral populations of HCHS/SOL participants.
 - (HCHS/SOL participants have 3 ancestral populations: European, African, Amerindian).
- Assumed that each individual had two parents
 - Of the two chromosome pairs of each parent, one was entirely CEU and one was entirely MEX.
- We randomly assigned intervals inherited from each parent to be those from the first or the second chromosome.
- The probability of CEU ancestry was either 0.8 for the "UW genetic analysis group" or 0.5 for the "UNC genetic analysis group".

The (simple) simulated dataset

 The study individuals have genotypes from both ancestries on each chromosomes.



The simulated data set

- In the remainder of this session, we will look at the simulated data.
- We will get to know a few useful softwares.
- And understand (to some extent) file formats.
- We will not perform any association analysis or testing yet!

Files

These are the files that we will use.

```
dir <- paste0("/home/postdoc/tsofer/SISG/",
    "Preparing_simulated_data_2")
list.files(dir)
```

- ## [1] "20170303_prepare_data.R"
- ## [2] "20170620_hh_mat.R"
- ## [3] "20170705_prepare_gen_data.R"
- ## [4] "datasets.zip"
- ## [5] "dscvr_diabetes_res.csv"
- ## [6] "for_SUGEN"
- ## [7] "SISG_genotype.vcf"
- ## [8] "SISG_houshold_matrix_2.RData"
- ## [9] "SISG_houshold_matrix.RData"
- ## [10] "SISG_local_ancestry_2.gds"
- ## [11] "SISG_local_ancestry_snpAnnot.RData"
- ## [12] "SISG_local_ancestry.gds"

The GWASTools R package

If you haven't installed the GWASTools package yet, do so now:

source("https://bioconductor.org/biocLite.R")
biocLite("GWASTools")

After the package is installed, load it:

library("GWASTools", quietly=TRUE)

...and it may be useful to open the manual
https://www.bioconductor.org/packages/devel/bioc/
manuals/GWASTools/man/GWASTools.pdf

The GWASTools R package

- GWASTools works with (among the rest) GDS files, which we will use.
- Often, a GDS file will have an "attached" variant annotation file.
- When working with genotype data
 - ▶ We first define a genotype reader object [GdsGenotypeReader]
 - Then a genotype data object [GenotypeData]
 - The latter could be associated with the SNP annotation.

Let's see!

File: /home/postdoc/tsofer/SISG/Preparing_simulated_data
+ []
|--+ genotype { Bit2 500x7463, 911.0K }
|--+ sample.id { VStr8 500, 2.3K }
|--+ snp.id { Int32 7463, 29.2K }
|--+ snp.chromosome { Float64 7463, 58.3K }
\--+ snp.position { Int32 7463, 29.2K }

head(getChromosome(gds))

```
## [1] 1 1 1 1 1 1
```

the sample IDs of the first 5 individuals
getScanID(gds)[1:5]

head(getSnpID(gds))

[1] 1 2 3 4 5 6

head(getPosition(gds))

[1] 558390 711153 713682 713754 719811 740098

the sample IDs of the first 5 individuals
getScanID(gds)[1:5]

[1] "p1" "p2" "p3" "p4" "p5"

Let's connect it to the SNP annotation object via a geotypeData object:

```
snpAnnot <- getobj(file.path(dir,
                "SISG_snp_dosages_snpAnnot.RData"))
dim(pData(snpAnnot))
```

[1] 7463 9

head(pData(snpAnnot)[,c(1:5)])

##		rsID	position	snpID	alleleA	alleleB
##	1	rs11497407	558390	1	А	C
##	2	rs12565286	711153	2	G	C
##	3	rs11804171	713682	3	С	Т
##	4	rs2977670	713754	4	А	C
##	5	rs2977656	719811	5	А	Т
##	6	rs12138618	740098	6	G	А

Using the GWASTools R package to look at our data Let's connect it to the SNP annotation object via a geotypeData object:

head(pData(snpAnnot)[,c(6:9)])

##		${\tt chromosome}$	info	type	oevar
##	1	1	1.0000000	2	1.0000000
##	2	1	1.0000000	3	1.0000000
##	3	1	0.8598037	0	0.8992697
##	4	1	0.8786222	0	0.8875563
##	5	1	0.9048905	0	0.9042507
##	6	1	1.0000000	3	1.0000000

- "info" and "oevar" are two imputation quality metrics.
- "type" refers to imputation status. type= 0 is imputed. Otherwise genotyped. (2/3 distinction not important).

```
varMetadata(snpAnnot)
```

##							
##	rsID						
##	position						
##	snpID						
##	alleleA						
##	alleleB						
##	chromosome						
##	info						
##	type						
##	oevar	The	oevar	imputation	quality	measure,	defined

Connecting the genotype reader object it to the snpAnnot object to create a geotypeData object:

genoData <- GenotypeData(gds, snpAnnot=snpAnnot)</pre>

getAlleleA(genoData)[1:5]

[1] "A" "G" "C" "A" "A"

rsIDs <- getSnpVariable(genoData, "rsID")
rsIDs[1:5]</pre>

[1] "rs11497407" "rs12565286" "rs11804171" "rs2977670"

getGenotypeSelection(genoData, snp = (rsIDs
 == "rs2977656"), scan = 1:10)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 ## 2 2 2 1 0 1 0 1 2 1

We can also connect the genotype data with sample annotations:

```
## An object of class 'ScanAnnotationDataFrame'
## scans: 1 2 ... 500 (500 total)
```

- ## varLabels: scanID EV1 ... group (8 total)
- ## varMetadata: labelDescription

[1] "scanID" "EV1" "EV2" "sex"

Now we can calculate allele frequencies:

- Only now, because we need to have sex annotation for that!
- ... the sex column in scanAnnot must be called "sex". Males have to be denoted by M and females by F.

varLabels(scanAnnot)[5:length(varLabels(scanAnnot))]

[1] "age" "trait" "disease" "group"

Afreqs <- alleleFrequency(genoData)</pre>

reading scan 100 of 500

reading scan 200 of 500

reading scan 300 of 500

reading scan 400 of 500

reading scan 500 of 500

head(Afreqs)

М F all n.M n.F MAF n 1 0.0000000 0.0000000 0.000 228 272 500 0.000 ## 2 0.0000000 0.001838235 0.001 228 272 500 0.001 ## ## 3 0.01315789 0.003676471 0.008 228 272 500 0.008 4 0.0000000 0.0000000 0.000 228 272 500 0.000 ## 5 0.80482456 0.779411765 0.791 228 272 500 0.209 ## 6 0.84429825 0.810661765 0.826 228 272 500 0.174

```
## close the GDS file:
require(gdsfmt)
showfile.gds(close = TRUE)
```

##

- ## 1 /home/postdoc/tsofer/SISG/Preparing_simulated_data_2/S
- ## ReadOnly State
- ## 1 TRUE closed

or we can also use close(gds).

- Recall that study individuals were sampled from block units, and households.
- These induce correlations between traits of certain individuals
 - E.g. people who live in the same house may eat similar food (similar environment).
- Individuals are also genetically related.
- Similar to the HCHS/SOL, our simulated data set have household and genetic relatedness matrices.
 - The matrices were constructed based on the real data (by sampling from the real matrices).

```
HH.mat <- getobj(file.path(dir,
    "SISG_houshold_matrix.RData"))
kin.mat <- getobj(file.path(dir,
    "SISG_relatedness_matrix.RData"))
kin.mat[1:5,1:5]
```

##		p1	p2	рЗ	P4
##	p1	0.994917413	0.0123160048	-0.0031369458	0.0029970526
##	p2	0.012316005	0.9962207088	0.0001299051	0.0074585380
##	рЗ	-0.003136946	0.0001299051	0.9919895296	-0.0020126658
##	p4	0.002997053	0.0074585380	-0.0020126658	0.9990199189
##	p5	-0.004063531	0.0019388646	-0.0037603344	0.0006761824

The household matrix have 1 in the i, j entry, if the i, j individuals live in the same household.

HH.mat[1:5,1:5]

##		p1	p2	рЗ	p4	p5
##	p1	1	0	0	0	0
##	p2	0	1	0	0	0
##	рЗ	0	0	1	0	0
##	p4	0	0	0	1	0
##	p5	0	0	0	0	1

sum(rowSums(HH.mat) > 1)

[1] 19

- According to this household matrix, only 19 individuals live in the same house as other people in the study.
- There are negative kinship values, and diagonal values are not exactly 1. This is okay.

Exercises

Use the GWASTools manual, your R knowledge, and the commands we learned to perform the following tasks and answer the questions:

- 1. Compare the variance of the trait "trait" between the UW and the UNC groups.
- 2. Plot a graph comparing the effect allele frequencies between the groups.
- 3. What is the genomic position of the SNP with the largest EAF difference between the UW and the UNC groups?
- 4. What is the proportion of diseased individuals in males and females? and in the UW and UNC groups?
- Extract the genotypes of rs12033927 and rs17390062. What is the LD between them in the combined sample? in the UW group? in the UNC group?