RNA sequencing

Michael Inouye Baker Heart and Diabetes Institute Univ of Melbourne / Monash Univ

Summer Institute in Statistical Genetics 2017 Integrative Genomics Module Seattle

> **@minouye271** www.inouyelab.org

This lecture

- Intro to high-throughput sequencing
- Basic sequencing informatics
- Technical variation vs biological variation
- Normalisation
- Methods to test for DE
- Example: EdgeR

Sequencing experiments

High-throughput sequencing experiments

High-throughput sequencing

Adaptor ligation

Fix adaptors to surface & amplify

 Add bases in cycles

 Cycle 1
 Cycle 2
 Cycle 3

 Image: Control of the system
 Image: Cycle 3
 Image: Cycle 3

 Image: Control of the system
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

 Image: Cycle 3
 Image: Cycle 3
 Image: Cycle 3

Shendure, Nat Biotech, 2008

Watch this space

- Many new technologies emerging all the time
- Single cell
- Some day: Long read (1 read -> 1 transcript)
- Review of the latest sequencing technologies

- Goodwin S et al, Nat Rev Genetics 2016. 17:333-351.

fastq format

@HWI-ST226 0154:5:1101:1452:2196#CTTGTA/1 +HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1 @HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1 TACGATAACTCACTGGTTTCTAATGCGTTTGGTTTTTTACGTCTGCCAATGAACTTCCAGCCGTATGACAGCGATGCCGACTGGGTGATCACTGGCGTAC +HWI-ST226 0154:5:1101:1383:2197#CTTGTA/1 @HWI-ST226 0154:5:1101:1355:2220#CTTGTA/1 GACCGCTACCCACCAACACCCGATCCTTACGGTAACGTCATTGCCCAGGGCGGCAGTTTGTCGCTACAGGAGTACACCGGCGATCCGAAGAGCCCGCTG +HWI-ST226 0154:5:1101:1355:2220#CTTGTA/1 @HWI-ST226 0154:5:1101:1262:2242#CTTGTA/1 ATGTTTTACGAAACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGA +HWI-ST226 0154:5:1101:1262:2242#CTTGTA/1

fastq format

read identifiers

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

1 +HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

@HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1

 ${\tt TACGATAACTCACTGGTTTCTAATGCGTTTGGTTTTTTACGTCTGCCAATGAACTTCCAGCCGTATGACAGCGATGCCGACTGGGTGATCACTGGCGTAC$

2 +HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1

@HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1

 ${\tt Gaccgctacccaccaccgatccttacggtaacgtcattgcccagggcggcagtttgtcgctacaggagtacaccggcgatccgaagagcccgctg}$

3 +HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1

@HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1

ATGTTTTACGAAACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGA

4 +HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1

fastq format

read sequences – strings of DNA bases

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

1 +HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

@HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1

 ${\tt TACGATAACTCACTGGTTTCTAATGCGTTTGGTTTTTTACGTCTGCCAATGAACTTCCAGCCGTATGACAGCGATGCCGACTGGGTGATCACTGGCGTAC$

2 +HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1

@HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1

 ${\tt GACCGCTACCCACCAACACCCGATCCTTACGGTAACGTCATTGCCCAGGGCGGCAGTTTGTCGCTACAGGAGTACACCGGCGATCCGAAGAGCCCGCTG$

3 +HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1

ATGTTTTACGAAACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGA

4 +HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1

fastq format

quality score for each DNA base

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

1 +HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

@HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1

 ${\tt TACGATAACTCACTGGTTTCTAATGCGTTTGGTTTTTTACGTCTGCCAATGAACTTCCAGCCGTATGACAGCGATGCCGACTGGGTGATCACTGGCGTAC$

2 +HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1

@HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1

 ${\tt GACCGCTACCCACCAACACCCGATCCTTACGGTAACGTCATTGCCCAGGGCGGCAGTTTGTCGCTACAGGAGTACACCGGCGATCCGAAGAGCCCGCTG$

3 +HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1

@HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1

ATGTTTTACGAAACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGA

4 +HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1

Phred score:	$Q = -10 \log_{10} P$	Quality score	Prob. error	Accuracy
		10	1 in 10	90%
		20	1 in 100	99%
where <i>P</i> = pro	bability of an error	30	1 in 1000	99.9%

Phred vs read base position

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Properties of sequence data to keep in mind

- Data = Strings of bases + quality scores
- Read length
 - Fixed or variable?
 - Short (e.g. 35bp SOLiD) or long (e.g. 500+ bp 454)
- Errors
 - Error rate: how frequent are errors? Phred score distribution?
 - Error profile: what kind of errors are most common?
- Number of reads
 - Millions? Hundreds of millions?
 - How much total sequence? How does that compare to genome size?

Read alignment

Reference sequence, *similar* to our DNA sample

Outputs:

- what reference sequences are present (e.g. genome variation, RNA-seq, ChIP-seq)
- how many copies are there?

Read assembly

Reference-free, use the new reads alone (*de novo*) to reconstruct what original DNA sample looked like

Genome sequencing: aim to assemble each chromosome

Metagenomics: aim to assemble DNA fragments from each member of the community

RNA-seq: aim to assemble each mRNA transcript

RNA sequencing (RNAseq)

Input:

cDNA reverse transcribed from mRNA

Represents:

- all the messenger RNA transcripts present in a set of cells
- (i.e. what is being expressed)

Differential expression (DE)

• Are observed differences in read counts between groups due to chance or not?

• How is HTS different to arrays?

- Data is inherently counts
- Dynamic range is theoretically unbounded
- Splicing variation can be assessed
- Analyse at the gene, transcript, exon level?
- Different technology means different sources of confounding effects and bias

What are sources of technical variation between samples?

- Sequencing depth
- RNA composition (are some genes very highly expressed in one group and not another?)
- GC content (b/n genes)
- Gene length (b/n genes)
- Classic sources from microarrays

Do you have replicates or not?

• If no replicates, then...

- It may not be advisable to estimate significance of differences, calculate a rank of fold changes
- Fisher's exact test or a chi-squared test for 2-by-2 contingency table
- Do some replicates?

• If there are replicates, then...

- Inter-library variation can be estimated
- There are more relatively sophisticated options

Aligners for RNAseq

- There are loads... for example
 - Tophat, tophat2
 - Bowtie, bowtie2
 - SOAP, SOAP2
 - GSNAP
 - Subread
 - Novoalign
 - STAR

Simulation-based comprehensive benchmarking of RNA-seq aligners

Giacomo Baruzzo^{1,5}, Katharina E Hayer^{2,5}, Eun Ji Kim², Barbara Di Camillo¹, Garret A FitzGerald^{2,3} & Gregory R Grant^{2,4} Nature Methods 2017

Algorithm

 \bigcirc CLC △ ContextMap2 + CRAC × GSNAP \diamondsuit HISAT \bigtriangledown HISAT2 \boxtimes MapSplice2 * Novoalign ↔ OLego ⊕ RUM \boxtimes SOAPsplice ⊞ STAR \boxtimes Subread \boxtimes TopHat2

Base level

Exon junction level

Simulation-based comprehensive benchmarking of RNA-seq aligners

Giacomo Baruzzo^{1,5}, Katharina E Hayer^{2,5}, Eun Ji Kim², Barbara Di Camillo¹, Garret A FitzGerald^{2,3} & Gregory R Grant^{2,4} Nature Methods 2017

For malaria data at the base level, CLC consistently has the best recall, while Novoalign and GSNAP also do well. For human data, Novoalign, GSNAP, Mapsplice2, and STAR are the best. Despite its popularity, TopHat2 is consistently among the worst performers on both human and malaria T2 and T3 libraries. intron boundaries. The most consistently accurate performers are CLC, STAR, and NOVOALIGN (Fig. 2). As before, a much greater separation is seen with regards to the recall. CLC is the top performer in all data sets except human T1 and T2, two of the least complex data sets.

Importance of tuning alignment parameters (Human T3 dataset)

Different methods for quantifying differential expression

• Examples

- EdgeR (Robinson and Smyth)
- Cuffdiff(2) (Trapnell et al)
- DESeq(2) (Anders & Huber)
- SAMseq (Li & Tibshirani)
- Voom (Law & Smyth)
- Many others, more being published regularly

How does one choose a method?

Modified from Soneson & Delorenzi, BMC Bioinf 2013

How does one choose a method?

Modified from Soneson & Delorenzi, BMC Bioinf 2013

More recently

Name	Assumed distribution	Normalization	Description	Version	Citations ^d	Reference
t-test	Normal	DEseq ^a	Two-sample t-test for equal variances	-	-	_
log <i>t</i> -test	Log-normal	DEseq ^a	Log-ratio t-test	-	-	-
Mann-Whitney	None	DEseq ^a	Mann-Whitney test	-	-	Mann and Whitney (1947)
Permutation	None	DEseq ^a	Permutation test	-	-	Efron and Tibshirani (1993a)
Bootstrap	Normal	DEseq ^a	Bootstrap test	-	-	Efron and Tibshirani (1993a)
baySeq ^c	Negative binomial	Internal	Empirical Bayesian estimate of posterior likelihood	2.2.0	159	Hardcastle and Kelly (2010)
Cuffdiff	Negative binomial	Internal	Unknown	2.1.1	918	Trapnell et al. (2012)
DEGseq ^c	Binomial	None	Random sampling model using Fisher's exact test and the likelihood ratio test	1.22.0	325	Wang et al. (2010)
DESeq ^c	Negative binomial	DEseq ^a	Shrinkage variance	1.20.0	1889	Anders and Huber (2010)
DESeq2 ^c	Negative binomial	DEseq ^a	Shrinkage variance with variance based and Cook's distance pre-filtering	1.8.2	197	Love et al. (2014)
EBSeq ^c	Negative binomial	DEseq ^a (median)	Empirical Bayesian estimate of posterior likelihood	1.8.0	80	Leng et al. (2013)
edgeR ^c	Negative binomial	ТММ ^ь	Empirical Bayes estimation and either an exact test analogous to Fisher's exact test but adapted to over-dispersed data or a generalized linear model	3.10.5	1483	Robinson et al. (2010)
Limma ^c	Log-normal	TMM ^b	Generalized linear model	3.24.15	97	Law et al. (2014)
NOISeq ^c	None	RPKM	Nonparametric test based on signal-to- noise ratio	2.14.0	177	Tarazona et al. (2011)
PoissonSeq ^c	Poisson log- linear model	Internal	Score statistic	1.1.2	37	Li et al. (2012)
<i>SAMSeq</i> ^c	None	Internal	Mann-Whitney test with Poisson resampling	2.0	54	Li and Tibshirani (2013)

Schurch NJ et al, RNA 2016

logFC threshold

Software / approach

Similarity of DE gene lists

Schurch NJ et al, RNA 2016

Example: EdgeR

- What are the inputs?
 - A table of counts (matrix)
 - Rows as 'genes'
 - Columns as samples (libraries)
 - A list of group assignments for each sample (vector)

Normalisation

- Explicit scaling by library size
 - TMM normalisation
- Other normalisation factors can be included in model

Normalisation: Trimmed Mean of Mvalues (TMM)

• A highly expressed gene(s) can make other genes appear falsely downregulated when comparing across libraries

Modified from Robinson & Oshlack, Genome Biology 2010

Normalisation: TMM

• How can we correct for this effect?

- Find set of scaling factors for libraries that minimize the log-fold changes between samples *for most genes*
- Estimate the ratio of RNA production of 2 samples (called 1 & 2)

Log expression ratio

$$M_gene = \log(\frac{count_gene1/total_reads1}{count_gene2/total_reads2})$$

Log absolute expression

$$A_gene = \frac{1}{2} \log(\frac{count_gene1}{total_reads1} x \frac{count_gene2}{total_reads2})$$

Normalisation: TMM

- Trimmed Mean of the M values (TMM) is weighted average after removing the upper/lower N% of the data (typically 25% for M, 5% for A)
- Weight of a gene is the inverse of its estimated variance
- After trimming, calculate the scaling factor for library 1 (compared to library 2) as

$$log(TMM) = \frac{\sum_{gene_i \in G^*} (weight_gene_i)(M_gene_i)}{\sum_{gene_i \in G^*} weight_gene_i}$$

If there's no RNA composition effect, then TMM = 1

The *effective* library size (TMM x library_size) is then used in all downstream analysis

EdgeR model

- We're interested in read counts for a gene across replicates
- Variation in relative gene abundance is due to biological causes + technical causes
- Because the data is counts, we'll usually think it's Poisson distributed, and

Total CV^2 = Technical CV^2 + Biological CV^2

• What is a Poisson distribution?

Expected value = mean (λ) = variance

EdgeR model: Why not use a Poisson?

Assumption that mean = variance is strong

- In RNAseq, observed variation is typically greater than the mean
 - That is, the data is 'overdispersed'
- How can we handle overdispersion?

Alternative: Negative binomial (gamma-Poisson)

- Assume true expression level of a gene is a continuous variable with a gamma distribution across replicates
 - Implies that the read counts follow a negative binomial distribution (a discrete analogue of gamma)
- NB is parameterised by mean and r (dispersion parameter)
 - Note the extra parameter (compared to Poisson) which handles variance independent of the mean
 - Biological CV is sqrt(r)

EdgeR model: Estimating the dispersion parameter

• Why is this important?

- Overestimation likely means a conservative DE test
- Underestimation likely means a liberal DE test

Many methods

- Maximum-likelihood (ML)
- Pseudo-likelihood
- Quasi-likelihood
- Conditional ML (if libraries are equal size)
- Quantile adjusted conditional ML (qCML)

• Bottom line is a big simulation study was performed

- HTS data: many genes, means, variances, library sizes
- qCML was most accurate across all scenarios
- Robinson & Smyth *Biostatistics* 2008

EdgeR model

 Genes have different mean-variance relationships, so dispersion isn't same across genes

- Initially edgeR estimates 'common' dispersion across all genes then applies an empirical Bayes approach to shrink genespecific dispersions toward the 'common'
- Why do we care?
 - Allows us to make weaker assumptions about mean-variance and thus makes model more robust to outlier genes

Differential expression between 2 groups

• 'Exact' test

- NULL: mean_A = mean_B (post normalisation pseudo exact)
- Adjust distributions of counts for different library sizes so they are identical
- Given the sum of iid NB random variables is NB, the probability of observing counts equal to or more extreme than that observed can be calculated (using NB)
- For experiments with >2 groups, a generalized linear model (GLM) is used and DE is tested using a GLM likelihood ratio test
 - Bullard et al *BMC Bioinformatics* 2010

Multiple testing

- Each locus is tested independently
 - If 20,000 tests are performed and alpha is set to P<0.05, then we expect at least 1,000 DE loci by chance (0.05 * 20,000)
 - Balance power and false positives

• Control FDR

- Benjamini-Hochberg algorithm
- Adjust Pvalues accordingly

Bonferroni correction

What output are we interested in?

	Length	logFC	logCPM	PValue	FDR
ENSG00000151503	5605	5.82	9.71	0.00e+00	0.00e+00
ENSG0000096060	4093	5.00	9.94	0.00e+00	0.00e+00
ENSG00000166451	1556	4.66	8.83	1.15e-228	6.31e-225
ENSG00000127954	3919	8.17	7.20	1.00e-209	4.14e-206
ENSG00000162772	1377	3.32	9.74	2.09e-182	6.91e-179
ENSG00000113594	10078	4.08	8.03	5.07e-153	1.39e-149
ENSG00000116133	4286	3.26	8.78	6.33e-148	1.49e-144
ENSG00000115648	2920	2.63	11.47	2.82e-139	5.81e-136
ENSG00000123983	4305	3.59	8.58	8.38e-138	1.54e-134
ENSG00000116285	3076	4.22	7.35	1.05e-135	1.73e-132

CPM – Counts per million (not formally used in edgeR DE)

FPKM (cufflinks) – Fragments Per Kb of transcript per Million mapped reads *inferred using a statistical model*

Smear plot

What haven't I covered?

- Splicing variation/diversity and how to test for differences
- Tools for alignment and assembly
- Novel designs for RNAseq experiments
- Data visualization
- Variant calling and genotyping from RNAseq
- Gene function/ontologies for RNAseq
- Computational limitations