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This	lecture
• Intro	to	high-throughput	sequencing

• Basic	sequencing	informatics

• Technical	variation	vs biological	variation

• Normalisation

• Methods	to	test	for	DE

• Example:	EdgeR



Sequencing	experiments
DNA	fragments

Sequencer

Sequence	reads

AGCCATCAGCTA

AGCCATCAGCTA

CGACTCGACAGT
(Paired	end	sequencing)



High-throughput	sequencing	
experiments

DNA	samples Sequencer

Analysis:
Align	to	a	reference
Assemble	without	a	reference
Annotate	sequence	function
Test	hypotheseswith	statistics

Applications:
Genome sequencing
RNA sequencing
ChIP sequencing
Metagenomic	sequencing

Sequence	reads



High-throughput	sequencing

DNA	fragmentation Adaptor	ligation

Fix	adaptors	to	surface	&	amplify Add	bases	in	cycles

Shendure,	Nat	Biotech,	2008



@lexnederbragt

~Oxford	
Nanopore



Watch	this	space

• Many	new	technologies	emerging	all	the	time

• Single	cell

• Some	day:	Long	read	(1	read	->	1	transcript)

• Review	of	the	latest	sequencing	technologies
– Goodwin	S	et	al,	Nat	Rev	Genetics	2016.	17:333-351.



Sequencing	read-out

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
GGCGGCGAGAAAGCGCGCCTGGTACTGGCGCTGATCGTCTGGCAGCGTCCAAATCTGCTGTTGCTCGATGAACCGACCAACCACCTGGATCTCGACATGC

+HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
gggggggggeggeefggggggggcgfefdfdggbegggggdae`^^db_ddcedebbZYb[c^[`XZY]]_d]c^bac^ccfbaf[_cTM_VR\]`^[^^

@HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
TACGATAACTCACTGGTTTCTAATGCGTTTGGTTTTTTACGTCTGCCAATGAACTTCCAGCCGTATGACAGCGATGCCGACTGGGTGATCACTGGCGTAC

+HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
ggggggggggggggggggggggggggggggggegggggfdgaggedgegaY[b``eceaUcec_cea_eeedcaXVacY``_`bbYdBBBBBBBBBBBBB

@HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
GACCGCTACCCACCAACACACCGATCCTTACGGTAACGTCATTGCCCAGGGCGGCAGTTTGTCGCTACAGGAGTACACCGGCGATCCGAAGAGCCCGCTG

+HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
gggggggggggggggggeggegfgegggggggfdggggeggggbggdbdeeedec[c_ddedeggbdbaecSYG\]^P\Wc]aO^_`]\]]JWF_^BBBB

@HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
ATGTTTTACGAAACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGA

+HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
gggggggggggggggggggggggggggggggeggeggggggggggggegggggbggad^edebSfb^eb`bdccfca[\Y\`_b_]]\Y^T`]Ya^[c^B

fastq format



Sequencing	read-out

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
GGCGGCGAGAAAGCGCGCCTGGTACTGGCGCTGATCGTCTGGCAGCGTCCAAATCTGCTGTTGCTCGATGAACCGACCAACCACCTGGATCTCGACATGC

+HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
gggggggggeggeefggggggggcgfefdfdggbegggggdae`^^db_ddcedebbZYb[c^[`XZY]]_d]c^bac^ccfbaf[_cTM_VR\]`^[^^

@HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
TACGATAACTCACTGGTTTCTAATGCGTTTGGTTTTTTACGTCTGCCAATGAACTTCCAGCCGTATGACAGCGATGCCGACTGGGTGATCACTGGCGTAC

+HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
ggggggggggggggggggggggggggggggggegggggfdgaggedgegaY[b``eceaUcec_cea_eeedcaXVacY``_`bbYdBBBBBBBBBBBBB

@HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
GACCGCTACCCACCAACACACCGATCCTTACGGTAACGTCATTGCCCAGGGCGGCAGTTTGTCGCTACAGGAGTACACCGGCGATCCGAAGAGCCCGCTG

+HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
gggggggggggggggggeggegfgegggggggfdggggeggggbggdbdeeedec[c_ddedeggbdbaecSYG\]^P\Wc]aO^_`]\]]JWF_^BBBB

@HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
ATGTTTTACGAAACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGA

+HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
gggggggggggggggggggggggggggggggeggeggggggggggggegggggbggad^edebSfb^eb`bdccfca[\Y\`_b_]]\Y^T`]Ya^[c^B

fastq format

1

2

3

4

read	identifiers



Sequencing	read-out

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
GGCGGCGAGAAAGCGCGCCTGGTACTGGCGCTGATCGTCTGGCAGCGTCCAAATCTGCTGTTGCTCGATGAACCGACCAACCACCTGGATCTCGACATGC

+HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
gggggggggeggeefggggggggcgfefdfdggbegggggdae`^^db_ddcedebbZYb[c^[`XZY]]_d]c^bac^ccfbaf[_cTM_VR\]`^[^^

@HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
TACGATAACTCACTGGTTTCTAATGCGTTTGGTTTTTTACGTCTGCCAATGAACTTCCAGCCGTATGACAGCGATGCCGACTGGGTGATCACTGGCGTAC

+HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
ggggggggggggggggggggggggggggggggegggggfdgaggedgegaY[b``eceaUcec_cea_eeedcaXVacY``_`bbYdBBBBBBBBBBBBB

@HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
GACCGCTACCCACCAACACACCGATCCTTACGGTAACGTCATTGCCCAGGGCGGCAGTTTGTCGCTACAGGAGTACACCGGCGATCCGAAGAGCCCGCTG

+HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
gggggggggggggggggeggegfgegggggggfdggggeggggbggdbdeeedec[c_ddedeggbdbaecSYG\]^P\Wc]aO^_`]\]]JWF_^BBBB

@HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
ATGTTTTACGAAACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGA

+HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
gggggggggggggggggggggggggggggggeggeggggggggggggegggggbggad^edebSfb^eb`bdccfca[\Y\`_b_]]\Y^T`]Ya^[c^B

fastq format

1

2

3

4

read	sequences	– strings	of	DNA	bases



Sequencing	read-out

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
GGCGGCGAGAAAGCGCGCCTGGTACTGGCGCTGATCGTCTGGCAGCGTCCAAATCTGCTGTTGCTCGATGAACCGACCAACCACCTGGATCTCGACATGC

+HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
gggggggggeggeefggggggggcgfefdfdggbegggggdae`^^db_ddcedebbZYb[c^[`XZY]]_d]c^bac^ccfbaf[_cTM_VR\]`^[^^

@HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
TACGATAACTCACTGGTTTCTAATGCGTTTGGTTTTTTACGTCTGCCAATGAACTTCCAGCCGTATGACAGCGATGCCGACTGGGTGATCACTGGCGTAC

+HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
ggggggggggggggggggggggggggggggggegggggfdgaggedgegaY[b``eceaUcec_cea_eeedcaXVacY``_`bbYdBBBBBBBBBBBBB

@HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
GACCGCTACCCACCAACACACCGATCCTTACGGTAACGTCATTGCCCAGGGCGGCAGTTTGTCGCTACAGGAGTACACCGGCGATCCGAAGAGCCCGCTG

+HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
gggggggggggggggggeggegfgegggggggfdggggeggggbggdbdeeedec[c_ddedeggbdbaecSYG\]^P\Wc]aO^_`]\]]JWF_^BBBB

@HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
ATGTTTTACGAAACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGA

+HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
gggggggggggggggggggggggggggggggeggeggggggggggggegggggbggad^edebSfb^eb`bdccfca[\Y\`_b_]]\Y^T`]Ya^[c^B

fastq format

1

2

3

4

quality	score	for	each	DNA	base

Phred score:	 Q =	-10	log10P

where	P =	probability	of	an	error

Quality	score Prob.	error Accuracy
10 1	in	10 90%
20 1	in	100 99%
30 1	in	1000 99.9%



Phred vs read	base	position



Properties	of	sequence	data
to	keep	in	mind

• Data	=	Strings	of	bases	+	quality	scores

• Read	length
– Fixed	or	variable?
– Short	(e.g.	35bp	SOLiD)	or	long	(e.g.	500+	bp	454)

• Errors
– Error	rate:	how	frequent	are	errors?	Phred score	distribution?
– Error	profile:	what	kind	of	errors	are	most	common?

• Number	of	reads
– Millions?	Hundreds	of	millions?
– How	much	total	sequence?	How	does	that	compare	to	genome	size?



Read	alignment

Reference	sequence,	similar	to	our	DNA	sample

Outputs:
•	what	reference	sequences	are	present	(e.g.	genome	variation,	RNA-seq,	ChIP-seq)
•	how	many	copies	are	there?



Read	assembly
Reference-free,	use	the	new	reads	alone	(de	novo)
to	reconstruct	what	original	DNA	sample	looked	like

reads

contigs

 gap

c

a

c

c
c

c
c
C

consensus

Genome	sequencing:	aim	to	assemble	each	chromosome
Metagenomics:	aim	to	assemble	DNA	fragments	from	each	member	of	the	
community
RNA-seq:	aim	to	assemble	each	mRNA	transcript



RNA sequencing	(RNAseq)

Input:	
cDNA reverse	transcribed	

from	mRNA

Represents:
all	the	messenger	RNA	

transcripts	present	in	a	
set	of	cells	

(i.e.	what	is	being	expressed)

Image:	Rgocs (Wikimedia	Commons)



Differential	expression	(DE)

• Are	observed	differences	in	read	counts	
between	groups	due	to	chance	or	not?

• How	is	HTS	different	to	arrays?
– Data	is	inherently	counts
– Dynamic	range	is	theoretically	unbounded
– Splicing	variation	can	be	assessed
– Analyse at	the	gene,	transcript,	exon	level?
– Different	technology	means	different	sources	of	
confounding	effects	and	bias



What	are	sources	of	technical	
variation	between	samples?

• Sequencing	depth
• RNA	composition	 (are	some	genes	very	highly	
expressed	in	one	group	and	not	another?)

• GC	content	(b/n	genes)
• Gene	length	(b/n	genes)
• Classic	sources	from	microarrays



Do	you	have	replicates	or	not?

• If	no	replicates,	then…
– It	may	not	be	advisable	to	estimate	significance	of	
differences,	calculate	a	rank	of	fold	changes

– Fisher’s	exact	test	or	a	chi-squared	test	for	2-by-2	
contingency	table

– Do	some	replicates?

• If	there	are	replicates,	then…
– Inter-library	 variation	can	be	estimated
– There	are	more	relatively	sophisticated	options



Aligners	for	RNAseq

• There	are	loads… for	example
– Tophat,	tophat2
– Bowtie,	bowtie2
– SOAP,	SOAP2
– GSNAP
– Subread
– Novoalign
– STAR



Nature	Methods	2017

Base	level Exon	junction	level
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Nature	Methods	2017

Importance	of	tuning	alignment	parameters	(Human	T3	dataset)



Different	methods	for	quantifying	
differential	expression

• Examples
– EdgeR (Robinson	and	Smyth)
– Cuffdiff(2) (Trapnell et	al)
– DESeq(2) (Anders	&	Huber)
– SAMseq (Li	&	Tibshirani)
– Voom (Law	&	Smyth)

• Many	others,	more	being	published	regularly



How	does	one	choose	a	method?

Modified	from	Soneson&	Delorenzi,	BMC	Bioinf 2013

N	=	2 N	=	5 N	=	10

625	up/down-reg



How	does	one	choose	a	method?

Modified	from	Soneson&	Delorenzi,	BMC	Bioinf 2013

1,250	(10%)	up-reg

N	=	2 N	=	5 N	=	10

625	up/down-reg

N	=	2 N	=	5 N	=	10

625	up/down-reg 625	up/down-reg1	outlier	sample
10%	x	random	factor

5%	across	all	samples
x	random	factor



More	recently

SchurchNJ	et	al,	RNA	2016
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SchurchNJ	et	al,	RNA	2016



Similarity	of	DE	gene	lists

SchurchNJ	et	al,	RNA	2016



Example:	EdgeR

• What	are	the	inputs?
– A	table	of	counts	(matrix)
• Rows	as	‘genes’
• Columns	as	samples	(libraries)

– A	list	of	group	assignments	for	each	sample	
(vector)



Normalisation

• Explicit	scaling	by	library	size
– TMM	normalisation

• Other	normalisation factors	can	be	included	
in	model



Normalisation:	Trimmed	Mean	of	M-
values	(TMM)

• A	highly	expressed	gene(s)	can	make	other	genes	appear	falsely	down-
regulated	when	comparing	across	libraries

Modified	from	Robinson	&	Oshlack,	Genome	Biology	2010

Set	of	highly	of
expressed	genes

M
	(l
og
	ra

tio
)

A (log	abundance)

housekeeping



Normalisation:	TMM

• How	can	we	correct	for	this	effect?
– Find	set	of	scaling	factors	for	libraries	that	minimize	the	log-fold	

changes	between	samples	for	most	genes
– Estimate	the	ratio	of	RNA	production	of	2	samples	(called	1	&	2)

M _ gene = log( count _ gene1/ total _ reads1
count _ gene2 / total _ reads2

)

A_ gene = 1
2
log(count _ gene1

total _ reads1
x count _ gene2
total _ reads2

)

Log	expression	ratio

Log	absolute	expression



Normalisation:	TMM
• Trimmed	Mean	of	the	M	values	(TMM)	is	weighted	average	after	removing	

the	upper/lower	N%	of	the	data	(typically	25%	for	M,	5%	for	A)
• Weight	of	a	gene	is	the	inverse	of	its	estimated	variance
• After	trimming,	calculate	the	scaling	factor	for	library	1	(compared	to	

library	2)	as

log(TMM ) =
(weight _ gene_ i)(M _ gene_ i)

gene_ i∈G*
∑

weight _ gene_ i
gene_ i∈G*
∑

If	there’s	no	RNA	composition	effect,	then	TMM	=	1

The	effective library	size	(TMM	x	library_size)	is	
then	used	in	all	downstream	analysis



EdgeR model
• We’re	interested	in	read	counts	for	a	gene	across	replicates

• Variation	in	relative	gene	abundance	is	due	to	biological	causes	+	
technical	causes

• Because	the	data	is	counts,	we’ll	usually	think	it’s	Poisson	distributed,	and

Total	CV2 =	Technical	CV2 +	Biological	CV2

• What	is	a	Poisson	distribution?

Wikipedia

Expected	value	=	mean	(λ)	=	variance



EdgeRmodel:	Why	not	use	a	Poisson?

• Assumption	that	mean	=	variance	is	strong

• In	RNAseq,	observed	variation	is	typically	greater	than	the	
mean
– That	is,	the	data	is	‘overdispersed’

• How	can	we	handle	overdispersion?

2	replicates
42	replicates



Alternative:	Negative	binomial	
(gamma-Poisson)

• Assume	true	expression	level	of	a	gene	is	a	
continuous	variable	with	a	gamma	distribution	
across	replicates
– Implies	that	the	read	counts	follow	a	negative	binomial	
distribution	(a	discrete	analogue	of	gamma)

• NB	is	parameterised by	mean	and	r	(dispersion	
parameter)
– Note	the	extra	parameter	(compared	to	Poisson)	which	
handles	variance	independent	of	the	mean

– Biological	CV	is	sqrt(r)



EdgeRmodel:	Estimating	the	
dispersion	parameter

• Why	is	this	important?
– Overestimation	likely	means	a	conservative	DE	test
– Underestimation	likely	means	a	liberal	DE	test

• Many	methods
– Maximum-likelihood	(ML)
– Pseudo-likelihood
– Quasi-likelihood
– Conditional	ML	(if	libraries	are	equal	size)
– Quantile adjusted	conditional	ML	(qCML)

• Bottom	line	is	a	big	simulation	study	was	performed
– HTS	data:	many	genes,	means,	variances,	library	sizes
– qCML was	most	accurate	across	all	scenarios
– Robinson	&	Smyth	Biostatistics	2008



EdgeR model
• Genes	have	different	

mean-variance	relationships,	so	
dispersion	isn’t	same	across	genes

• Initially	edgeR estimates	‘common’	dispersion	across	all	genes	
then	applies	an	empirical	Bayes	approach	to	shrink	gene-
specific	dispersions	toward	the	‘common’

• Why	do	we	care?	
– Allows	us	to	make	weaker	assumptions	about	mean-variance	and	thus	

makes	model	more	robust	to	outlier	genes

Subramaniam&	Hsiao,	Nat	Imm2012

2	replicates
42	replicates



Differential	expression	between	2	groups

• ‘Exact’	test
– NULL:	mean_A =	mean_B (post	normalisation – pseudo	exact)

– Adjust	distributions	of	counts	for	different	library	sizes	so	
they	are	identical

– Given	the	sum	of	iid NB	random	variables	is	NB,	the	
probability	of	observing	counts	equal	to	or	more	extreme	
than	that	observed	can	be	calculated	(using	NB)

• For	experiments	with	>2	groups,	a	generalized	linear	model	(GLM)	is	
used	and	DE	is	tested	using	a	GLM	likelihood	ratio	test
– Bullard	et	al	BMC	Bioinformatics	2010



Multiple	testing
• Each	locus	is	tested	independently

– If	20,000	tests	are	performed	and	alpha	is	set	to	P<0.05,	
then	we	expect	at	least	1,000	DE	loci	by	chance	(0.05	*	
20,000)

– Balance	power	and	false	positives	

• Control	FDR
– Benjamini-Hochberg	algorithm
– Adjust	Pvalues accordingly

• Bonferroni correction



What	output	are	we	interested	in?

CPM	– Counts	per	million	(not	formally	used	in	edgeR DE)

FPKM	(cufflinks)	– Fragments	Per	Kb	of	transcript	per	Million	mapped	reads
*inferred	using	a	statistical	model*



Smear	plot



What	haven’t	I	covered?
• Splicing	variation/diversity	and	how	to	test	for	differences

• Tools	for	alignment	and	assembly

• Novel	designs	for	RNAseq experiments

• Data	visualization

• Variant	calling	and	genotyping	from	RNAseq

• Gene	function/ontologies	for	RNAseq

• Computational	limitations


