

	Significance thresholds
	Bonferroni for <i>cis</i> -linkages: 0.05 / (20,000 genes x 250 SNPs) = 1 x 10 ⁻⁸
•	Permutation for <i>cis</i> -linkages: Random sets of n SNPs from distribtion of 2Mb windows
	Bonferroni for <i>trans</i> -linkages: 0.05 / (20,000 genes x 500,000 SNPs) = 5 x 10 ⁻¹²
	Permutation for <i>trans</i> -linkages: Randomize complete genotype and transcript matrices
¢	DR adopt FDR criteria, although power not generally an issue AND consider step-wise regression to adjust for LD

Table 3	eSNP Analyse	5				
	Pearson Correlation				Spearman Rank Correlation	
Normalization	Total (NLP 8)	Cis (NLP 5)	Cis (NLP 8)	Probes (NLP 8)	Cis (NLP 8)	Probes (NLP 8)
RAW	552	1183	411	39	324	36
MEA	1082	2009	743	77	703	71
dr3	627	1362	455	44	407	46
DRM	959	2150	761	87	747	77
IQR	935	1708	603	71	565	73
LMN	484	1281	439	44	394	44
QNM	1211	2288	842	88	791	81
SNM	969	2084	825	86	821	81
PCA	602	1563	585	73	505	74

Some other software						
http://omictools.com/eqtl-mapping-c1260-p1.html						
PLINK:	The basic tool for GWAS http://pngu.mgh.harvard.edu/~purcell/plink/tutorial.shtml					
Matrix eQTL:	Ultra-fast eQTL analysis http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/					
GEMMA:	Genome-wide Efficient Mixed Model Association (GEMMA) http://stephenslab.uchicago.edu/software.html#gemma					
FMeQTL:	Bayesian Joint mapping https://github.com/xqwen/fmeqtl					
DAP:	Deterministic Approcimation of Posteriors (Fast Bayesian) https://github.com/xqwen/dap					
CAVIAR:	Bayesian Fine Mapping http://genetics.cs.ucla.edu/caviar/					
Ventham et al (2016) Nature Communications 7: 13507						

Greg Gibson

