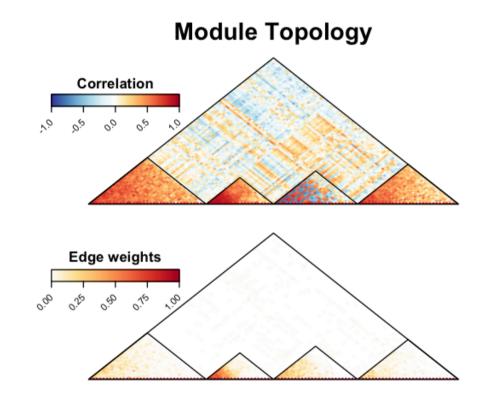
Applications of weighted gene coexpression analysis


Michael Inouye Baker Heart and Diabetes Institute Univ of Melbourne / Monash Univ

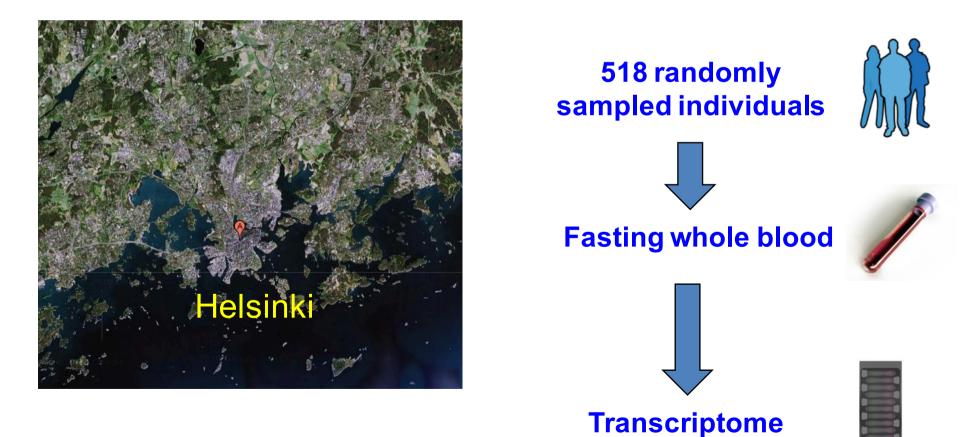
Summer Institute in Statistical Genetics 2017 Integrative Genomics Module Seattle

> **@minouye271** www.inouyelab.org

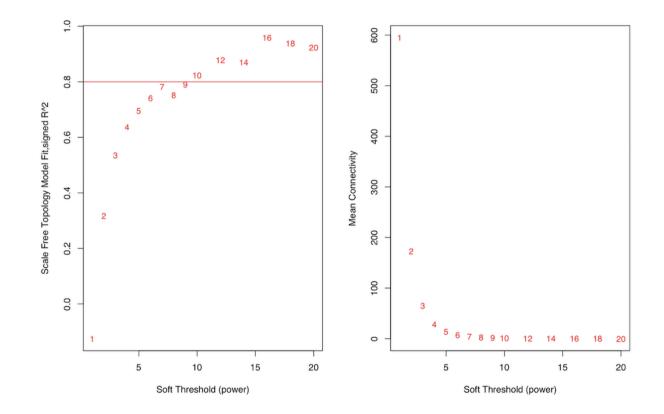
Gene co-expression networks

- Weighted, undirected complete gene network
 - Nodes: genes/probes
 - Edges: |cor(node_i, node_j)|*
 - Scale-free assumption and [0,1]
- Identify subnets (modules/clusters)
 - Typically subnets represent known biological pathways
 - Various methods and tools for clustering

Strategies for testing association of a subnet with a phenotype


- Univariate
 - For each subnet gene, perform a test
- Eigenvector
 - Calculate 1st principal component
 - With vector of PC1 sample loadings, perform a test
- Multivariate
 - Simultaneously test for association of phenotype with all genes
 - Example: Canonical correlation analysis (CCA)
- Considerations
 - Multiple testing burden
 - Sensitivity and specificity

Interpretation of subnets


- Pathway analysis and gene set statistics
- If subnet is small enough, manual interpretation is possible (with proper literature support)
- Correlation vs Causation
 - Confounding, causality and reactivity
 - It is more useful (and more difficult) to know the underlying structure of relationships b/n genes than *clusters* of co-regulation
 - How can causality be tested?
 - Perturbation techniques
 - Mendelian randomisation (genetic variation has a special role in determining causality)

An Immune Response Network Associated with Blood Lipid Levels

Michael Inouye^{1,2¤}*, Kaisa Silander³, Eija Hamalainen¹, Veikko Salomaa⁴, Kennet Harald⁴, Pekka Jousilahti⁴, Satu Männistö⁴, Johan G. Eriksson^{4,5,6,7,8}, Janna Saarela^{3,9}, Samuli Ripatti³, Markus Perola³, Gert-Jan B. van Ommen², Marja-Riitta Taskinen¹⁰, Aarno Palotie^{1,3,11,12}, Emmanouil T. Dermitzakis^{1,13}, Leena Peltonen^{1,3,11†}

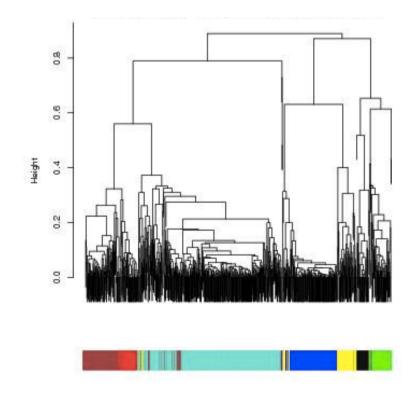
Selection of soft power threshold for adjacency matrix

Better differentiate strong vs weak correlations

Approximate scale-free network topology (signed $R^2 > 0.80$) but maximize connectivity

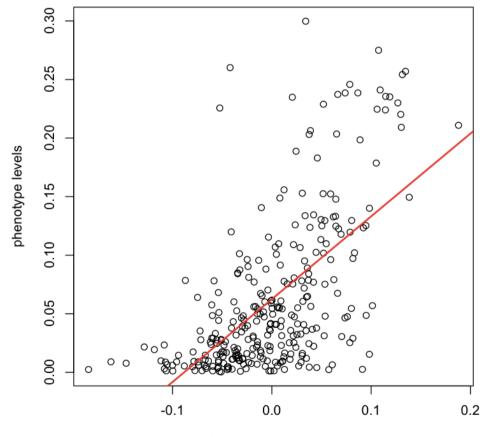
Detect gene modules

- Goal: Get the most coherent gene subnetworks as possible
- Instead of using the correlation-based edges, WGCNA is calculating a distance measure called topological similarity (TOM):

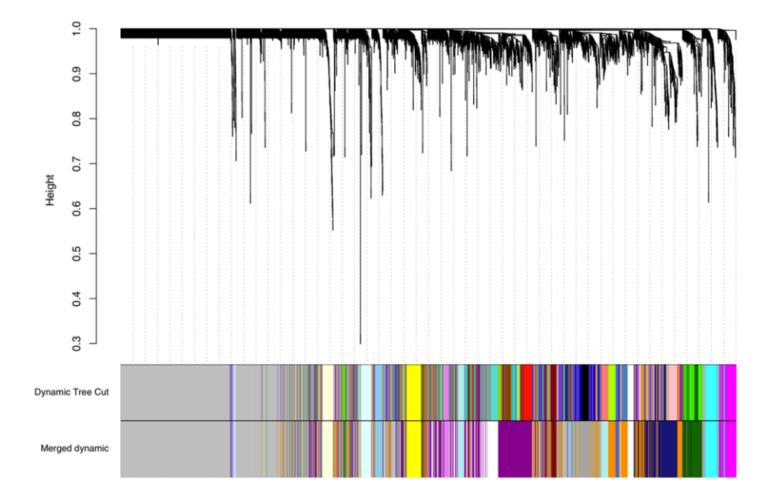

$$t_{ij} = \begin{cases} \frac{|N_1(i) \cap N_1(j)| + a_{ij}}{\min\{|N_1(i)|, |N_1(j)|\} + 1 - a_{ij}} & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$
(1)

where $N_1(i)$ denotes the set of direct neighbors of *i* excluding *i* itself and $|\cdot|$ denotes the number of elements (cardinality) in its argument. The quantity $|N_1(i) \cap N_1(j)|$ measures the number of common neighbors that nodes *i* and *j* share whereas $|N_1(i)|$ gives the number of neighbors of *i*. The topological overlap t_{ij} assumes a minimal value of 0 if there is no direct linkage between the two nodes and if they share no common direct neighbors. It assumes a maximum value of 1 if there is a direct link between the two nodes and if one set of direct neighbors is a subset of the other. The fact that t_{ij} is bounded between 0 and 1 is used in the definition of the topological overlap based dissimilarity measure (see Eq. 4).

Yip & Horvath, BMC Bioinf 2007


Detect gene modules

- Hierarchical clustering of TOM matrix
- Move through the dendrogram with a dynamic cutting algorithm


Yip & Horvath, BMC Bioinf 2007

Phenotype association analysis

module summary expression

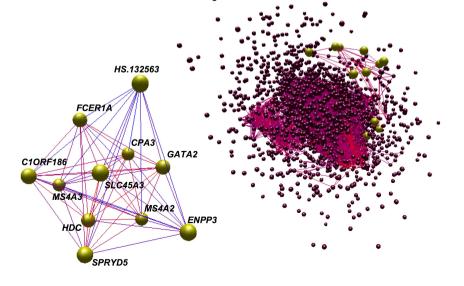
Detect gene modules – Real data

Lipid phenotypes

А		0.32	0.0074	0.2	0.12	0.067	0.18	0.0011	1		
В		0.02	0.62	0.28	0.12	0.33	0.023	0.1		1.0	
C		0.0032	0.38	0.28	0.0072	0.33	4.1e-06	0.48			
D		0.0032	0.012	0.13	0.049	0.098	0.084	0.06			
E		0.3	0.58	0.63	0.98	0.39	0.29	1.4e-05			
F					0.98						
•		0.32	0.31	0.68		0.4	0.5	0.00044		- 0.5	S
G	_	0.001	0.59	0.15	0.017	0.59	0.044	0.00029		0.0	g
H I J K		0.18	0.81	0.78	0.6	0.58	0.42	0.56			Spearman
5 I	_	0.02	0.82	0.4	0.43	0.22	0.42	0.15			F
J		0.11	0.86	0.78	1	0.28	0.6	0.19			Ľ
		0.045	5.6e-07	0.16	3.1e-06	0.013	2.4e-29	0.23			ar
L		0.35	0.99	0.15	0.29	0.7	0.63	8.5e-05		- 0.0	
M		0.14	0.009	0.96	0.9	0.081	0.037	0.046			ö
		0.057	0.012	0.062	0.044	0.011	0.16	0.37			r
0		0.15	0.67	0.032	0.0012	0.7	0.0018	0.17			correlation
P		0.4	0.033	0.99	0.58	0.23	0.1	0.59			at
Q		0.17	0.002	0.85	0.1	0.14	0.15	0.38		0.5	ö
R		0.79	0.0029	0.48	0.0043	0.35	0.00068	0.25			Ĕ
S		0.0018	0.48	0.16	0.075	0.15	0.02	0.76			
т		0.067	0.81	0.81	0.71	0.43	0.6	0.28			
U		0.044	0.19	0.79	0.96	0.2	0.83	0.11			
v	_	0.0021	0.94	0.16	0.097	0.42	0.088	0.62		L _1.0	
w		0.015	0.0034	0.0099	0.00015	0.2	5.3e-06	0.00017		1.0	
		~ ^C	HOL	Jr.	APOB	APOA	1 ⁰	44P	-		

Network modules

Lipid association analysis – Real data

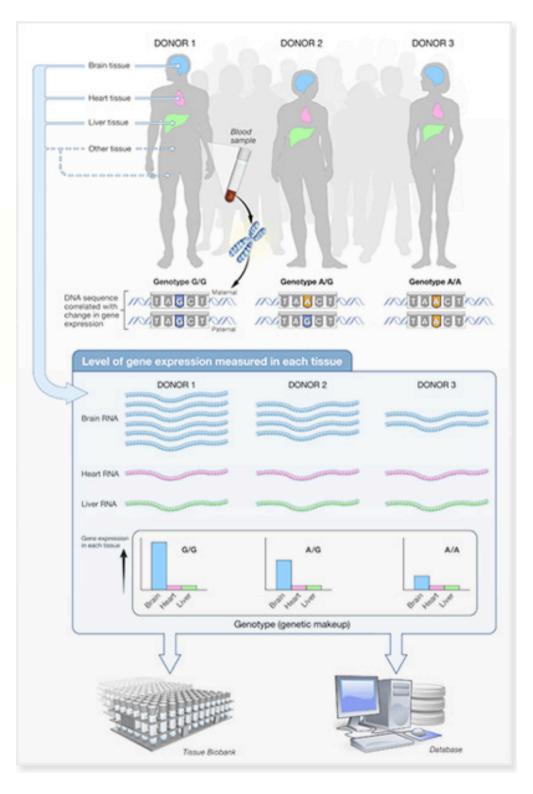

Module appears to be involved in immune response

Genes

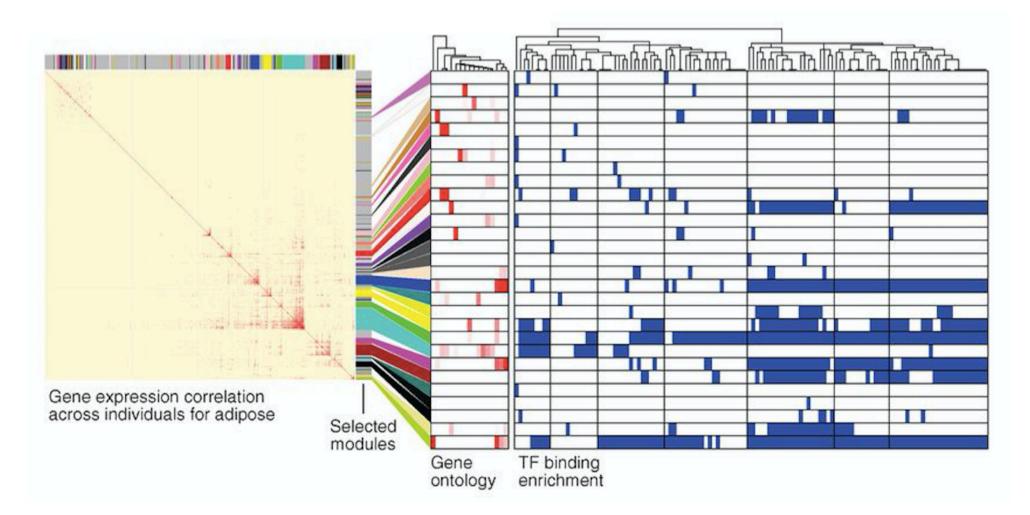
- **FCER1A** high affinity IgE receptor
- **MS4A2** high affinity IgE receptor
- *HDC* enzyme for histamine synthesis
- CPA3 mast cell secreted peptidase
- GATA2 TF crucial for mast cell dev
- **SLC45A3**-?
- SPRYD5-?
- **MS4A3**-?
- **ENPP3**-?
- **C10RF186**-?
- HS.132563 ?

Immune markers

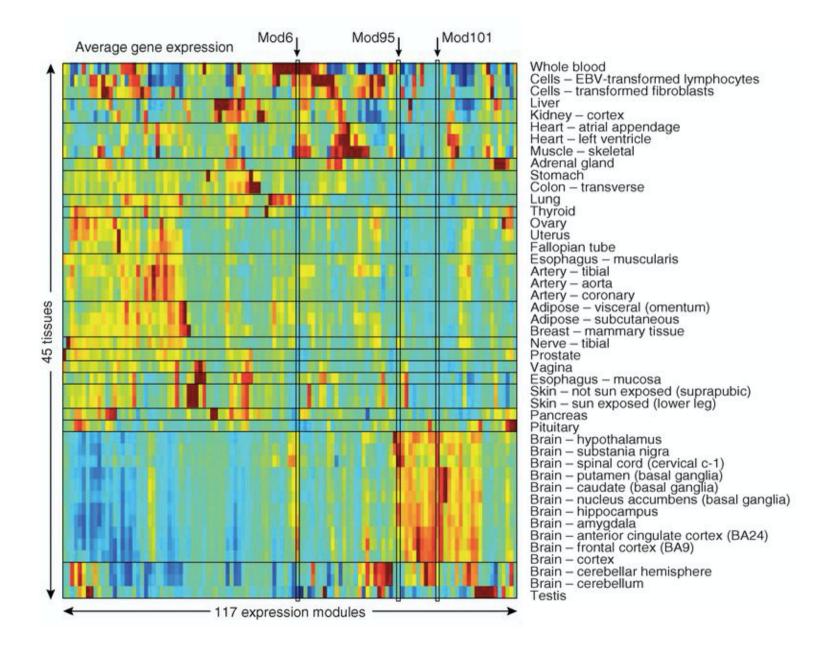
- IL-1ra (*P*=3.1x10⁻⁶)
- C-reactive protein (*P*=2.6x10⁻⁴)
- HMW adiponectin (*P*=1.6x10⁻⁵)
- Total IgE (*P*>0.05)


HUMAN GENOMICS

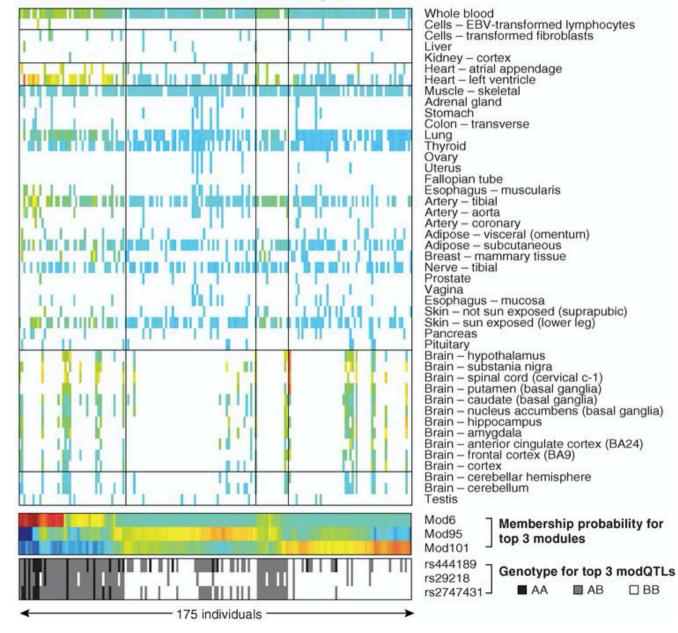
The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans


The GTEx Consortium*†

Science 8 MAY


8 MAY 2015 • VOL 348 ISSUE 6235

Adipose tissue: Differential pathway enrichment and TF binding profiles



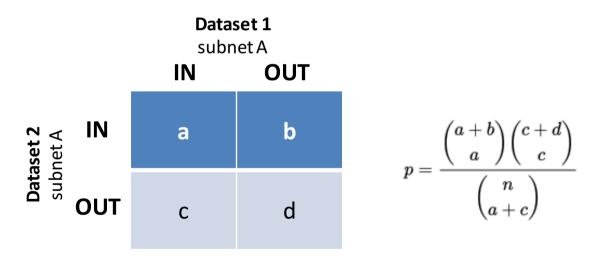
Expression levels of modules across tissues

Expression of a gene (ZPF57) between tissues/genotypes

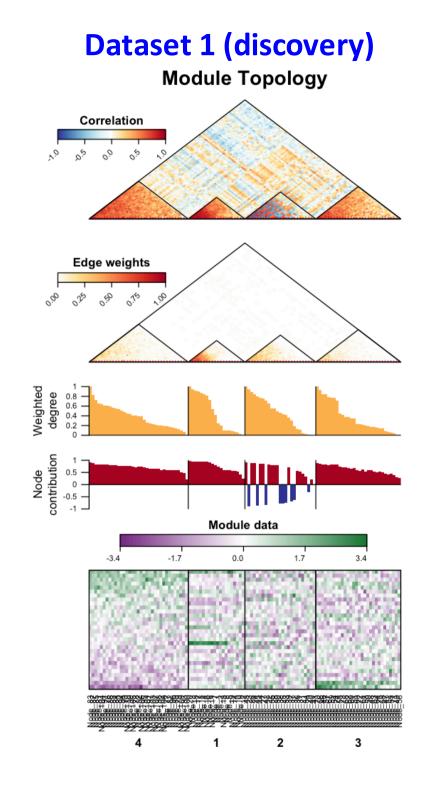
Expression across 175 individuals for the ZPF57 gene

Preservation of subnets

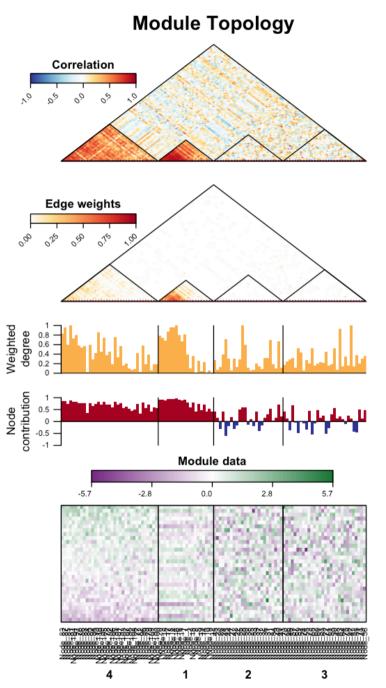
• Given a subnet (nodes, edges), is to preserved in a separate dataset?

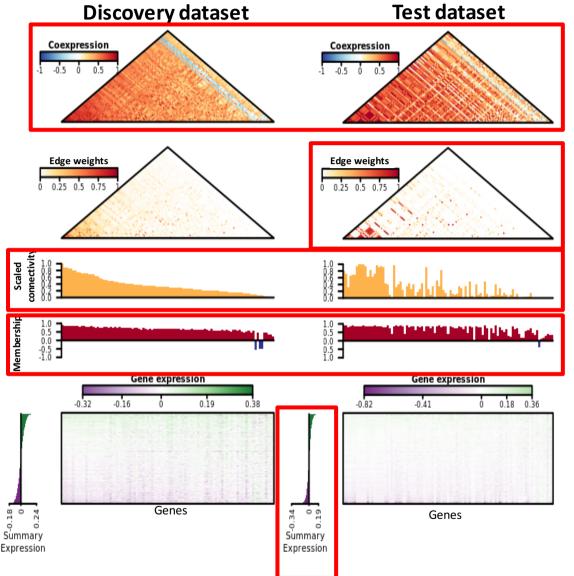

• Examples

- Replication
 - Given N datasets generated under identical/similar settings, does a subnet 'replicate'?
- Cross-tissue gene network preservation
 - Is a subnet derived from liver data preserved in adipose data?
- Microbial communities between body sites
 - Is an operational taxonomic unit (OTU) subnet preserved between skin and upper airway samples?


Approaches to subnet preservation

• Tabulation


 Make a table of features in a given subnet and those not. Test for deviation from null (e.g. Fisher Exact Test).



- Topological properties
 - Edge patterns (for simplicity, assume no missing nodes)

Dataset 2 (replication)

Null Hypothesis:

Indistinguishable from comparisons to random gene sets in test dataset.

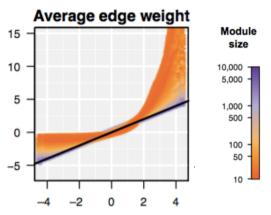
Module preservation statistics

How distinguishable is the module?

- Density / average edge weight
- Proportion of variance explained How similar is the module topology?
- Similarity of correlation structure
- Correlation of connectivity / degree
- Correlation of membership / contribution Combination:
- Mean correlation structure
- Average membership / contribution

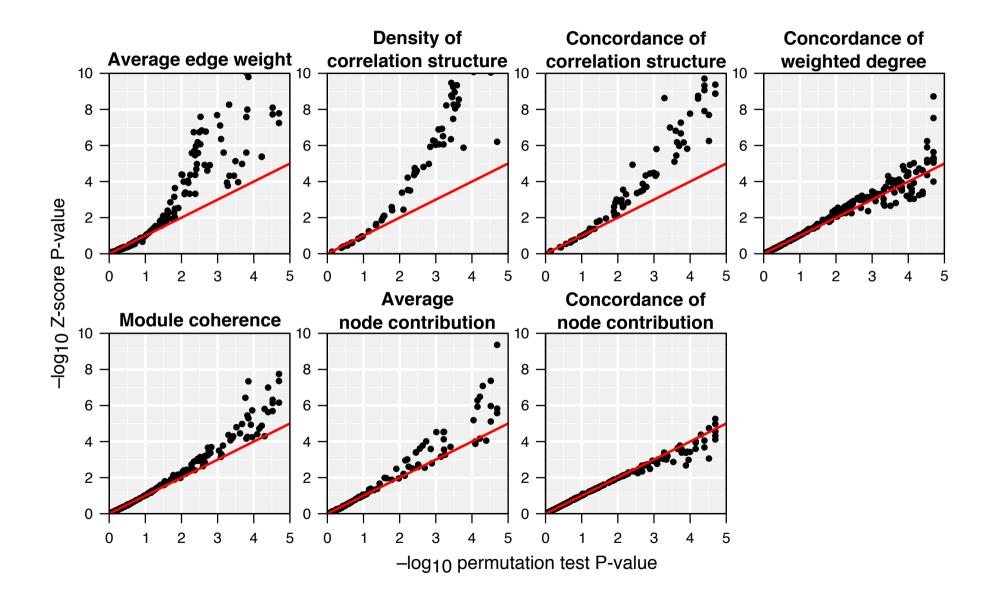
Preservation of topology

- Langfelder & Horvath, PLOS Comp Bio 2011
- Ritchie et al, Cell Systems 2016


	test statistic	WGCNA	Calculation
(1)	Module coherence	Proportion of variance explained	$mean\left(\left(cor(g_i^{[t](w)}, Eig_1^{[t](w)})\right)^2\right)$
(2)	Average node contribution	Mean sign-aware module membership	$mean\left(sign\left(cor(g_i^{[d](w)}, Eig_1^{[d](w)})\right) \cdot cor(g_i^{[t](w)}, Eig_1^{[t](w)})\right)$
(3)	Concordance of node contributions	Correlation of module membership	$cor(cor(g_i^{[d](w)}, Eig_1^{[d](w)}), cor(g_i^{[t](w)}, Eig_1^{[t](w)}))$
(4)	Density of correlation structure	Mean sign-aware coexpression	$mean(sign(C^{[d](w)}) \cdot C^{[t](w)})$
(5)	Concordance of correlation structure	Correlation of coexpression	$cor_{i\neq j}(\mathcal{C}^{[d](w)}, \mathcal{C}^{[t](w)})$
(6)	Average edge weight	Mean adjacency	$mean_{i \neq j}(a_{ij}^{[t](w)})$
(7)	Concordance of weighted degree	Correlation of intramodular connectivities	$cor\left(\left(\sum_{i\neq j}^{j}a_{i}\right)^{[d](w)},\left(\sum_{i\neq j}^{j}a_{i}\right)^{[t](w)}\right)$

General name of

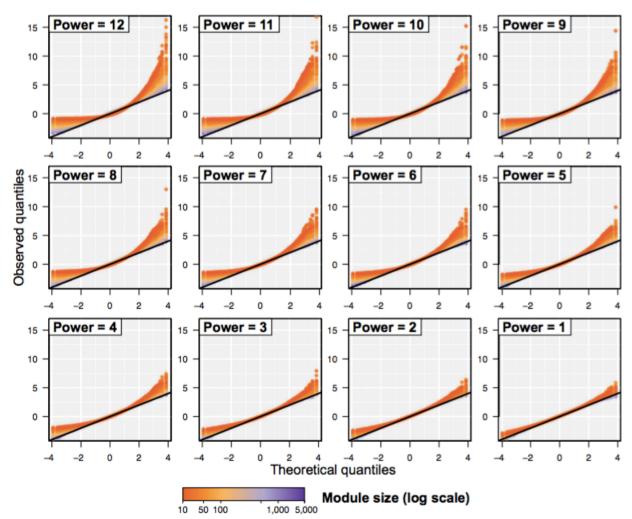
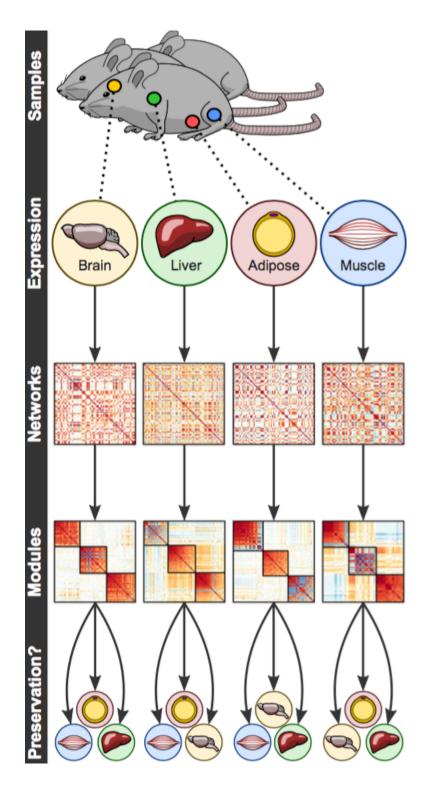
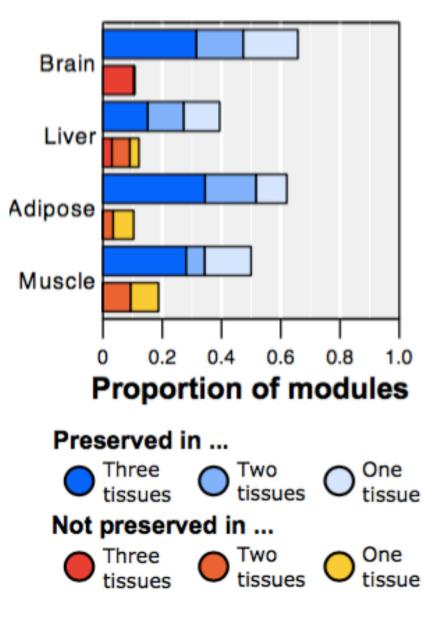
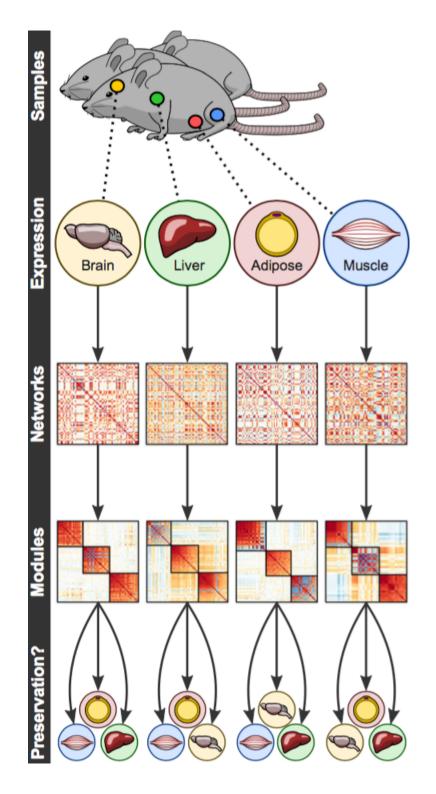
- a edge weight
- g feature vector
- cor correlation
- C correlation matrix
- Sign + / -
- Eig 1st principal component

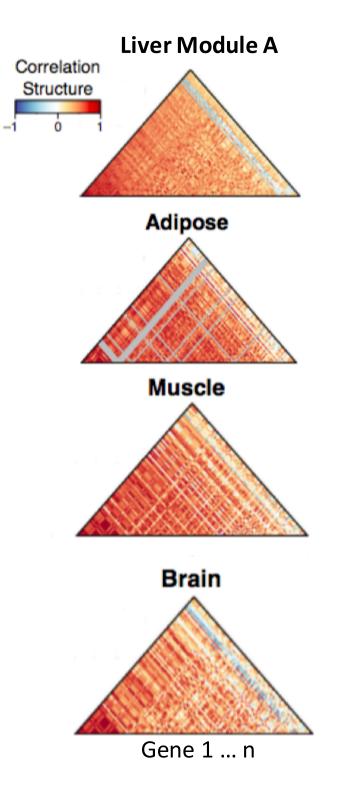

When in doubt, permute the data

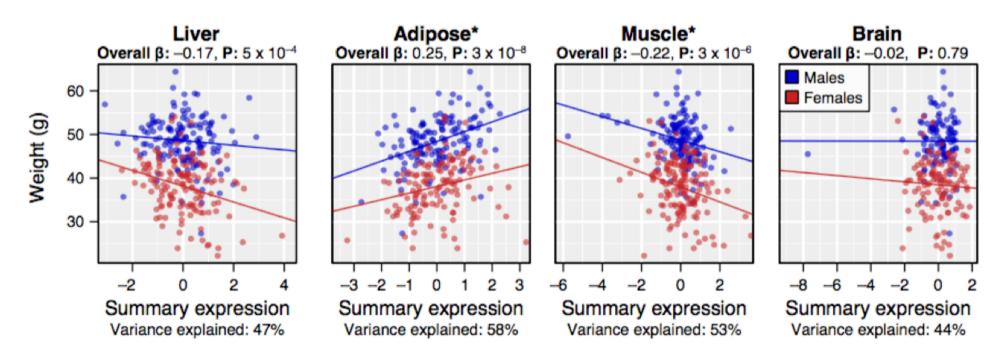
• In network analysis, the complex relationships amongst nodes can make it difficult to assume a given test statistic follows a particular distribution

- It is common (and good practice) to create an empirical (permuted) distribution of the test statistic to assess the original observation's significance
- E.g. for a given module of with M nodes, with a given test statistic...
 - Randomly draw M nodes from the overall network
 - Compute the test statistic of these random M nodes
 - Repeat many times
 - Compare the observed module value to the distribution of permuted values

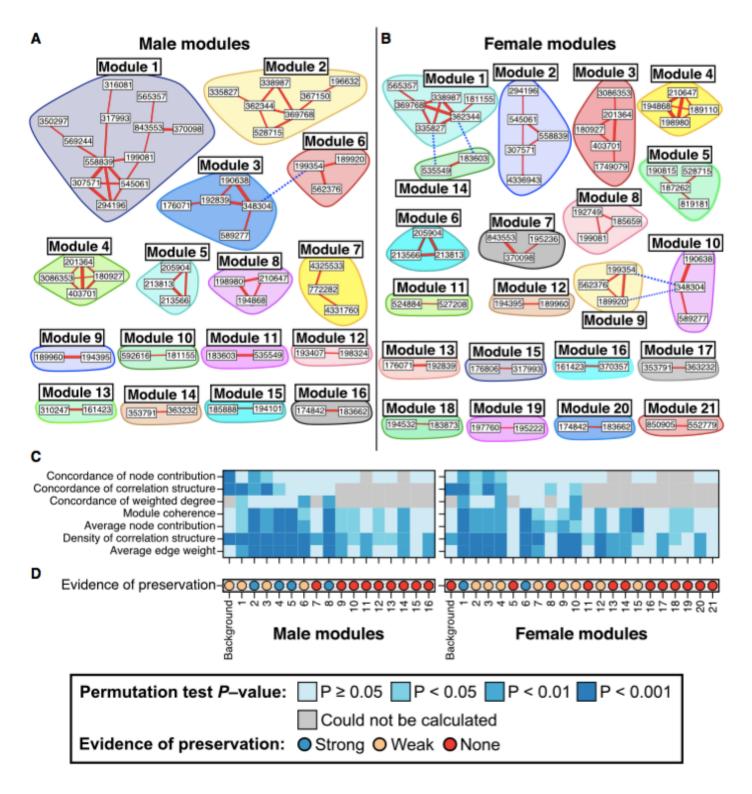
Effect of scale-free'edness on preservation

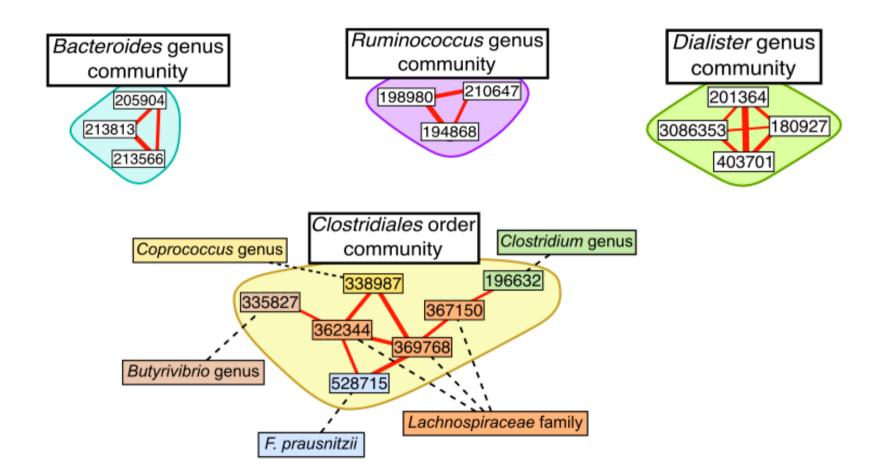






Figure S4, related to the experimental procedures and the main text: The scale-free assumption affects non-normality of the average edge weight statistic. Quantile-Quantile plots comparing



Ritchie et al, Cell Systems 2016




Phenotypic association (body weight)

Test tissue	Trait	Effect size	95% confidence interval	P-value	Q-value
	Weight	0.25	0.16-0.33	3×10^{-8}	
	Insulin	0.23	0.14-0.32	1 x 10 ⁻⁶	2 x 10 ⁻⁵
	Glucose/Insulin	-0.21	-0.300.12	7 x 10 ⁻⁶	7 x 10 ⁻
A	Other fat	0.23	0.11-0.35	1 x 10 ⁻⁴	8 x 10 ⁻¹
Adipose	Total fat	0.19	0.081-0.30	7 x 10 ⁻⁴	0.004
	Length	0.17	0.069-0.27	0.001	0.004
	MCP-1 (CCL2)	0.18	0.064-0.29	0.002	0.00
	Glucose	0.18	0.064-0.30	0.003	0.007
	Unesterified cholesterol	0.18	0.061-0.29	0.003	0.00
	Weight	-0.21	-0.300.13	3 × 10 ⁻⁶	
	Unesterified cholesterol	-0.21	-0.340.092	6 x 10 ⁻⁴	0.0
	Insulin	-0.16	-0.250.061	0.001	0.0
	Total fat	-0.19	-0.310.072	0.002	0.0
Muscle	Abdominal fat	-0.17	-0.270.061	0.002	0.0
	Glucose/Insulin	0.14	0.048-0.24	0.003	0.0
	Free fatty acids	-0.18	-0.310.059	0.004	0.0
	LDL+VLDL	-0.18	-0.300.056	0.005	0.0
	HDL/LDL+VLDL	0.17	0.051-0.29	0.005	0.0
	Total cholesterol	-0.17	-0.290.049	0.006	0.0

Microbiome communities present in both men and women

