
REGRESSION AND ANALYSIS OF 
VARIANCE
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Motivation

n Objective: Investigate associations between two or more variables
n What tools do you already have?

n t-test
n Comparison of means in two populations

n What will we cover in this module?
n Linear Regression

n Association of a continuous outcome with one or more predictors 
(categorical or continuous)

n Analysis of Variance
n Comparison of a continuous outcome over a fixed number of groups

n Logistic Regression
n Association of a binary outcome with one or more predictors (categorical 

or continuous)
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Module structure

n 10 sessions over 2.5 days

n Alternating in-class and “lab” practical sessions, each of approximately 
1.5 hour duration

n Day 1
n Simple linear regression

n Day 2
n Model checking
n Multiple linear regression
n ANOVA

n Day 3
n ANCOVA
n Logistic regression
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REGRESSION MODELS

SIMPLE LINEAR REGRESSION
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Outline: Simple Linear Regression

n Motivation
n The equation of a straight line
n Least Squares Estimation
n Inference

n About regression coefficients
n About predictions

n Model Checking
n Residual analysis
n Outliers & Influential observations
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Motivation: Cholesterol Example

n Data: Factors related to serum total cholesterol, 400 
individuals, 11 variables

n Our first goal: 
n Investigate the relationship between cholesterol (mg/dl) and age 

in adults

> head(cholesterol)

ID sex age chol BMI  TG APOE rs174548 rs4775401 HTN chd
1   1  74  215 26.2 367    4        1         2   1   1
2   1  51  204 24.7 150    4        2         1   1   1
3   0  64  205 24.2 213    4        0         1   1   1
4   0  34  182 23.8 111    2        1         1   1   0
5   1  52  175 34.1 328    2        0         0   1   0
6   1  39  176 22.7  53    4        0         2   0   0
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Motivation: Cholesterol Example
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Motivation: Cholesterol Example

n Is cholesterol associated with age?  
n You could dichotomize age and compare cholesterol between two age 

groups
> group = 1*(age > 55)
> group=factor(group,levels=c(0,1), labels=c("30-55","56-80"))
> table(group)
group 
30-55 56-80 

201   199 
> boxplot(chol~group,ylab=“Total cholesterol(mg/dl)”)
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Motivation: Cholesterol Example

n Is cholesterol associated with age?  

n You could compare mean cholesterol between two groups: t-test
> t.test(chol ~ group)

Welch Two Sample t-test

data:  chol by group 
t = -3.637, df = 393.477, p-value = 0.0003125
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
-12.200209  -3.638487 

sample estimates:
mean in group 30-55 mean in group 56-80  

179.9751        187.8945
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mean in group 30-55 mean in group 56-80 
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Motivation: Cholesterol Example

n Question: What do the boxplot and the t-test tell us about the 
relationship between age and cholesterol?

> t.test(chol ~ group)

Welch Two Sample t-test

data:  chol by group 
t = -3.637, df = 393.477, p-value = 0.0003125
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
-12.200209  -3.638487 

sample estimates:
mean in group 30-55 mean in group 56-80  

179.9751        187.8945

10

n Using the t-test:
n There is a statistical association between cholesterol 

and age

n There appears to be a positive association between 
cholesterol and age

n Is there any way we could estimate the magnitude of this 
association without breaking the “continuous” measure of 
age into subgroups? 

n With the t-test, we compared mean cholesterol in 
two age groups, could we compare mean 
cholesterol across “continuous” age? 

Motivation: Cholesterol Example
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Motivation: Cholesterol Example

n We might assume that mean cholesterol changes 
linearly with age:

n Can we find the equation for a straight line
that best fits these data?

12



Linear Regression

n A statistical method for modeling the relationship between a 
continuous variable [response/outcome/dependent] and other 
variables [predictors/exposure/independent]
n Most commonly used statistical model
n Flexible
n Well-developed and understood properties
n Easy interpretation
n Building block for more general models

n Goals of analysis:
n Estimate the association between response and predictors 
or,
n Predict response values given the values of the predictors.

n We will start our discussion studying the relationship between a 
response and a single predictor
n Simple linear regression model 13

The straight line equation

X

Y

A line can be described by two numbers

y = b0 + b1 x
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The straight line equation

bo is the intercept: where the line crosses the y-axis when x=0

X

Y
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The straight line equation

X

Y

b1 is the slope: the change in y corresponding to a 
unit increase in x

x x+1
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The straight line equation

X

Y

b1 is the slope: the change in y corresponding to a 
unit increase in x

x x+1

b0+b1x

b0+b1(x+1)
Difference is b1
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The straight line equation

X

Y

b1 is the slope: the change in y corresponding to a unit 
increase in x

The same across the entire line!
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The straight line equation

X

Y

Two values of “x” 2 units apart will have a difference in
“y” values of 2*b1 

1919

The straight line equation

n Slope b1 is the change in y corresponding to a unit 
increase in x

n Slope gives information about magnitude and 
direction of the association between x and y
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The straight line equation

x

y

x

y

x

y

(b1=0)  No association between x and y 
(values of y are the same regardless of x) 

(b1 > 0) Positive association between x and y 
(values of y increase as values of x increase) 

(b1 < 0) Negative association between x and y 
(values of y decrease as values of x increase) 
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Simple Linear Regression

n We can use linear regression to model how the mean of 
an outcome Y changes with the level of a predictor, X

n The individual Y observations will be scattered about the 
mean

We estimate a straight
line describing trend in
the mean of an outcome Y 
as a function of predictor X
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Simple Linear Regression

n In regression: 
n X is used to predict or explain outcome Y.

n Response or dependent variable (Y): 
n variable we want to predict or explain  

n Explanatory or independent or predictor
variable (X):
n attempts to explain the response

n Simple Linear Regression Model:
),0(~, 2

10 seebb Nxy ++=
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The model consists of two components:

§ Systematic component:

Mean population value of Y at X=x

§ Random component:

Variance does not depend on x

Simple Linear Regression

),0(~, 2
10 seebb Nxy ++=

€ 

Var[Y | X = x]=σ2
€ 

E[Y | X = x] = β0 + β1 x

b0:intercept

b1: slope

24



Simple Linear Regression: Assumptions

2]|[ σ== xXYVarxxXYE 10]|[ ββ +==MODEL:
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Compare with the boxplots on 
Slide 8

Simple Linear Regression: 
Interpreting model coefficients

n Model: E[Y|x] = b0+b1x     Var[Y|x] = s2

n Question: How do you interpret b0?
n Answer:
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Your turn: interpret b1!

b0 = E[Y|x=0] , that is, the mean response when x=0

Simple Linear Regression: 
Interpreting model coefficients

n Model: E[Y|x] = b0+b1x     Var[Y|x] = s2

n Question: How do you interpret b1?
n Answer:

27

E[Y|x]     = β0 + β1x
E[Y|x+1] = β0 + β1(x+1) =  β0 + β1x+ β1

E[Y|x+1] – E[Y|x] =  β1  independent of x (linearity)

i.e. β1 is the difference in the mean response associated 
with a one unit positive difference in x 



Example: Cholesterol and age

n Recall: Our motivating example was to determine if 
there is an association between age (a continuous 
predictor) and cholesterol (a continuous outcome)

n Suppose: We believe they are associated via the 
linear relationship E[Y|x] = b0+b1x

n Question: How would you interpret b1?

n Answer:
2828

Example: Cholesterol and age

n Recall: Our motivating example was to determine if 
there is an association between age (a continuous 
predictor) and cholesterol (a continuous outcome)

n Suppose: We believe they are associated via the 
linear relationship E[Y|x] = b0+b1x

n Question: How do you interpret b1?

n Answer:
β1 is the difference in mean cholesterol 
associated with a one year increase in age 2929

Least Squares Estimation

n Question: How to find a “best-fitting” line?

30



Least Squares Estimation
n Question: How to find a “best-fitting” line?

2 4 6 8

x

2
4

6
8

y
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§ Method: Least Squares Estimation

Idea: chooses the line that minimizes the sum of squares of the 
vertical distances from the observed points to the line. 

Least Squares Estimation

n The least squares regression line is given by 

n So the (squared) distance between the data (y) and the 
least squares regression line is

n We estimate β0 and β1 by finding the values that 
minimize D

xy 10
ˆˆˆ ββ +=

∑ −=
i

ii yyD 2)ˆ(
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Least Squares Estimation

n These values are:

n We estimate the variance as
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Estimated Standard Errors

n Recall that when estimating parameters, there will 
be sampling variability in the estimates

n This is true for regression parameter estimates
n Looking at the formulas for    and    , we can see 

that these are just complicated means
n In repeated sampling we would get different 

estimates
n Knowledge of the sampling distribution of 

parameter estimates can help us make inference 
about the line

0β̂ 1̂β

34

http://lstat.kuleuven.be/java/version2.0/Applet003.html

“true” regression line

Click here to simulate a data set

35
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Sampling Distribution
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Sampling Distribution
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n From statistical theory

(in the figure, the theoretical 
distribution is shown in pink)
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Sampling variability



n Estimate the variability of             across repeated sampling  
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Estimated Standard Errors
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Inference

n About regression model parameters
n Hypothesis testing: H0: bj=0

n Test Statistic:
n Large Samples:

n Small Samples: 

n Confidence Intervals: 

[Don’t worry about these formulae: we will use R to fit the models!]
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Inference: Hypothesis Testing

Null Hypothesis: bj = 0
T=test statistic
Alternative P-Value
bj > 0 P(tn-2 >T) 

bj < 0 P(tn-2 <T)

bj ¹ 0 2P(tn-2 >|T|)
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Inference: Confidence Intervals

100 (1-a)% Confidence Interval for bj (j=0,1)

Gives intervals that (1- α)100% of the time will cover the 
true parameter value ( β0 or β1). 

We say we are “(1- α)100% confident” the interval covers βj.

22,
ˆ ˆ( )j jnt SEαβ β−±
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> fit = lm(chol ~ age)
> summary(fit)

Call:
lm(formula = chol ~ age)

Residuals:
Min        1Q    Median        3Q       Max 

-60.45306 -14.64250  -0.02191  14.65925  58.99527 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age           0.31033    0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05 

> confint(fit)
2.5 %      97.5 %

(Intercept) 158.5171656 175.2861949
age      0.1624211   0.4582481

Example:
Scientific Question: Is cholesterol associated with age?
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> fit = lm(chol ~ age)
> summary(fit)

Call:
lm(formula = chol ~ age)

Residuals:
Min        1Q    Median        3Q       Max 

-60.45306 -14.64250  -0.02191  14.65925  58.99527 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age         0.31033      0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05 

> confint(fit)
2.5 %      97.5 %

(Intercept) 158.5171656 175.2861949
age         0.1624211   0.4582481

Estimates of the model
parameters and standard 
errors

08.0)ˆ(;31.0ˆ
26.4)ˆ(;90.166ˆ
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Example:
Scientific Question: Is cholesterol associated with age?

45



> confint(fit)
2.5 %      97.5 %

(Intercept) 158.5171656 175.2861949
age           0.1624211   0.4582481

> fit = lm(chol ~ age)
> summary(fit)

Call:
lm(formula = chol ~ age)

Residuals:
Min        1Q    Median        3Q       Max 

-60.45306 -14.64250  -0.02191  14.65925  58.99527 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age           0.31033    0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05 

95% Confidence
intervals

Example:
Scientific Question: Is cholesterol associated with age?
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Example:
Scientific Question: Is cholesterol associated with age?

n What do these models results mean in terms of 
our scientific question?
n Parameter estimates and confidence intervals:

31.0ˆ
90.166ˆ

1

0

=

=

b

b 95% CI: (158.5, 175.3)

95% CI: (0.16, 0.46)

0b̂

1̂b

47

: The estimated average serum cholesterol for 
someone of age = 0 is 166.9 

Your turn: What about      ?

!?
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Example:
Scientific Question: Is cholesterol associated with age?

n What do these models results mean in terms of 
our scientific question?
n Parameter estimates and confidence intervals:

n Answer:     : mean cholesterol is estimated to differ by 
0.31 mg/dl for each one year difference in age.

n Question: What about the confidence intervals?
€ 

ˆ β 0 =166.90
ˆ β 1 = 0.31

95% CI: (158.5, 175.3)

95% CI: (0.16, 0.46)

1̂b

48
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Example:
Scientific Question: Is cholesterol associated with age?

n What do these models results mean in terms of 
our scientific question?
n Parameter estimates and confidence intervals:

n Answer: 95% CIs give us a range of values that will 
cover the true intercept and slope 95% of the time

n For instance, we can be 95% confident that the true 
difference in mean cholesterol associated with a one year 
difference in age lies between 0.16 and 0.46 mg/dl

€ 

ˆ β 0 =166.90
ˆ β 1 = 0.31

95% CI: (158.5, 175.3)

95% CI: (0.16, 0.46)

49
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Example:
Scientific Question: Is cholesterol associated with age?

n Presentation of the results?
n The mean serum total cholesterol is significantly 

higher in older individuals (p < 0.001). For each 
additional year of age, we estimate that the mean 
total cholesterol differs by approximately 0.31 mg/dl 
(95% CI: 0.16, 0.46). 

n Note: 
n Emphasis on slope parameter (sign and magnitude)
n Confidence interval
n Units for predictor and response. Scale matters!

50

Inference for predictions

n Given estimates                 we can find the predicted 
value,       for any value of xi as

n Interpretation of      :
n Estimated mean value of Y at X = xi. 

Be Cautious: This assumes the model is true. 
n May be a reasonable assumption within the range of your data. 
n It may not be true outside the range of your data! 

10
ˆ,ˆ ββ

ii xy 10
ˆˆˆ ββ +=

iŷ

iŷ
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True model

x

y

Observed values of x No data in this range!

Would you use the regression line to 
“extrapolate”?? 5252
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Be careful of extrapolating

§ It would not make sense to extrapolate height at age 20 from a study of girls 
aged 4-9 years! 

Prediction

n Prediction of the mean E[Y|X=x]:
n Point Estimate:

n Standard Error:

Note that as x gets further from    ,  variance increases!

n 100 (1-a)% confidence interval for E[Y|X=x]: 
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Prediction

n Prediction of a new future observation, y*, at X=x:
n Point Estimate:

n Standard Error:

n 100 (1-a)% prediction interval for a new future 
observation:

Standard error for the prediction of a future observation is bigger: 
It depends not only on the precision of the estimated mean, but 

also on the amount of variability in Y around the line. 
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> predict.lm(fit, newdata=data.frame(age=c(46,47,48)), interval="confidence")
fit      lwr      upr

1 181.1771 178.6776 183.6765
2 181.4874 179.0619 183.9129
3 181.7977 179.4392 184.1563

> predict.lm(fit, newdata=data.frame(age=c(46,47,48)), interval="prediction")
fit      lwr      upr

1 181.1771 138.4687 223.8854
2 181.4874 138.7833 224.1915
3 181.7977 139.0974 224.4981

Prediction of the mean

Prediction of a new observation

Cholesterol Example: Prediction

56
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Example:
Scientific Question: Is cholesterol associated with age?

n Let’s interpret these predictions
n For x = 46

n Question: How do our interpretations for     and    
differ? 

2.181*ˆ
2.181ˆ

=
=
y
y 95% CI: (178.7, 183.7)

95% CI: (138.5, 223.9)
*ŷŷ

57
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Example:
Scientific Question: Is cholesterol associated with age?

n Let’s interpret these predictions
n For x = 46

n Question: How do our interpretations for     and    
differ?

n Answer: The point estimates represent our predictions 
for the mean serum cholesterol for individuals age 46 
(   ) and for a single new individual of age 46 (   )

2.181*ˆ
2.181ˆ

=
=
y
y 95% CI: (178.7, 183.7)

95% CI: (138.5, 223.9)

*ŷŷ

ŷ *ŷ
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Example:
Scientific Question: Is cholesterol associated with age?

n Let’s interpret these predictions
n For x = 46

n Question: Why are the confidence intervals for and   
of differing widths?

2.181*ˆ
2.181ˆ

=
=
y
y 95% CI: (178.7, 183.7)

95% CI: (138.5, 223.9)

*ŷ
ŷ
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Example:
Scientific Question: Is cholesterol associated with age?

n Let’s interpret these predictions
n For x = 46

n Question: Why are the confidence intervals for and   
of differing widths? 

n Answer: The interval is broader when we make a 
prediction for a cholesterol level for a single individual 
because it must incorporate random variability around 
the mean.

2.181*ˆ
2.181ˆ

=
=
y
y 95% CI: (178.7, 183.7)

95% CI: (138.5, 223.9)
ŷ

*ŷ
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Simple Linear Regression: R2

n Given no linear association:
n We could simply use the sample mean to predict E(Y).  

The variability using this simple prediction is given by 
SST (to be defined shortly).

n Given a linear association:
n The use of X permits a potentially better prediction of Y 

by using E(Y|X).  
n Question: What did we gain by using X?

Let’s examine this question with the following figure
61

Decomposition of sum of squares
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Decomposition of sum of squares

SST: describes the total variation of the Yi.
SSE: describes the variation of the Yi around the regression line.
SSR: describes the structural variation; how much of the variation is due 

to the regression relationship.

This decomposition allows a characterization of the usefulness 
of the covariate X in predicting the response variable Y.  
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It can be shown that:

It is always true that:
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Simple Linear Regression: R2

n Given no linear association:
n We could simply use  the sample mean to predict E(Y).  The 

variability between the data and this simple prediction is given as 
SST.

n Given a linear association:
n The use of X permits a potentially better prediction of Y by using 

E(Y| X).  
n Question: What did we gain by using X?
n Answer: We can answer this by computing the proportion of the 

total variation that can be explained by the regression on X

n This R2 is, in fact, the correlation coefficient squared.

SST
SSE

SST
SSESST

SST
SSRR −=

−
== 12
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Examples of R2

Low values of R2 indicate that the model is not adequate. However,
high values of R2 do not mean that the model is adequate!! 65

> fit = lm(chol ~ age)
> summary(fit)

Call:
lm(formula = chol ~ age)

Residuals:
Min        1Q    Median        3Q       Max 

-60.45306 -14.64250  -0.02191  14.65925  58.99527 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age           0.31033    0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05

> confint(fit)
2.5 %      97.5 %

(Intercept) 158.5171656 175.2861949
age           0.1624211   0.4582481

Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age? 
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n R2=0.04
n What does R2 tell us about our model for 

cholesterol?

Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age? 

6767

n R2=0.04
n What does R2 tell us about our model for 

cholesterol?
n Answer: 4% of the variability in cholesterol is 

explained by age.  Although mean cholesterol 
increases with age, there is much more variability 
in cholesterol than age alone can explain

Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age? 

6868

Decomposition of the Sum of Squares

SSR=
SSE=

Mean Squares: SS/df

Degrees of freedom

F-statistic: MSR/MSE

Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age? 

§ Decomposition of Sum of Squares and the F-statistic

> anova(fit)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value    Pr(>F)    

age         1   8002  8001.7  17.013 4.522e-05 ***
Residuals 398 187187   470.3                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

In simple linear regression:
F-statistic = (t-statistic for slope)2

Hypothesis being tested: H0: b1=0, H1: b1¹0.

6969



Simple Linear Regression: Assumptions

1. E[Y|x]  is related linearly to x 
2. Y’s are independent of each other
3. Distribution of [Y|x] is normal
4. Var[Y|x] does not depend on x

Can we assess if these assumptions are valid?

Linearity
Independence
Normality
Equal variance

70

Model Checking: Residuals

)ˆˆ(

ˆ

10 ii

iii

xy

yyr

ββ +−=

−=

n (Raw or unstandardized) Residual: difference 
(ri) between the observed response and the 
predicted response, that is,

The residual captures the component of the 
measurement yi that cannot be “explained” by xi.
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Model Checking: Residuals

n Residuals can be used to
n Identify poorly fit data points

n Identify unequal variance (heteroscedasticity)

n Identify nonlinear relationships

n Identify additional variables

n Examine normality assumption

72



Model Checking: Residuals

Linearity Plot residual vs X or vs Ŷ
Q: Is there any trend?

Independence
Q: Any scientific concerns?

Normality Residual histogram or qq-plot
Q: Symmetric? Normal?

Equal variance Plot residual vs X
Q: Is there any pattern?
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Model Checking: Residuals

n If the linear model is appropriate we should see an 
unstructured horizontal band of points centered at 
zero as seen in the figure below 
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Model Checking: Residuals

The model does not provide a 
good fit in these cases!

Violations of the model assumptions? How?
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Simple Linear Regression:
Residual Analysis: Nonlinear Association

True model: y = x^1.7

Plot of Fitted Model: Plot fitted (prediction) vs. residual:
^ ^
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y=-1.41+2.67x

x
0 1 2 3 4

-5

0

5

10

y=-1.41+2.67x
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Fitted values
-5 0 5 10

-2

-1

0

1

2

Simple Linear Regression:
Residual Analysis: Non Constant Variance

True model: y = x + errors increasing with x

Plot of Fitted Model: Plot fitted (prediction) vs. residual:
^ ^
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y= .11+.921x

x
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y= .11+.921x
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0 1 2 3 4

-5

0

5

Non-constant variance

n Sometimes variance of y is not constant across the 
range of x (heteroscedasticity)

n Little effect on point estimates but variance 
estimates may be incorrect

n This may affect confidence intervals and p-values
n To account for heteroscedasticity we can

n Use robust standard errors 
n Transform the data
n Fit a model that does not assume constant variance 

(GLM)

7878



Robust standard errors

n Robust standard errors correctly estimate 
variability of parameter estimates even under non-
constant variance
n These standard errors use empirical estimates of the 

variance in y at each x value rather than assuming this 
variance is the same for all x values

n Regression point estimates will be unchanged

n Robust or empirical standard errors will give 
correct confidence intervals and p-values

7979

Simple Linear Regression:
Residual Analysis: Non-normality of errors

n QQ-plot

n Graphical technique that allows us to assess whether or 
not a data set follows a given distribution (such as the 
normal distribution)

n The data are plotted against a given theoretical 
distribution 

n Points should approximately fall in a straight line
n Departures from the straight line indicate departures from the 

specified distribution.  
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Simple Linear Regression:
Residual Analysis: Non-normality of errors

n Construction of QQ-Plot: 
(an example)

residuals
0.30

-0.25
-0.91
0.56

-0.79
-1.45
-0.42
-0.80
-0.39
-1.09
0.37

-0.56
1.15

-1.14
0.06
0.60
0.11
0.51

-0.02
-0.24

Sort

sorted index(i)
-1.45    1
-1.14    2
-1.09    3
-0.91    4
-0.80    5
-0.79    6
-0.56    7
-0.42    8
-0.39    9
-0.25   10
-0.24   11
-0.02   12
0.06   13
0.11   14
0.30   15
0.37   16
0.51   17
0.56   18
0.60   19
1.15   20

pr1   pr2
0.05  0.025
0.10  0.075
0.15  0.125 
0.20  0.175
0.25  0.225
0.30  0.275
0.35  0.325
0.40  0.375
0.45  0.425
0.50  0.475
0.55  0.525
0.60  0.575
0.65  0.625
0.70  0.675
0.75  0.725
0.80  0.775
0.85  0.825
0.90  0.875
0.95  0.925
1.00  0.975

Empirical
Probab.

i/n (i-0.5)/n

Z-quantile
-1.96
-1.44
-1.15
-0.93
-0.76
-0.60
-0.45
-0.32
-0.19
-0.06
0.06
0.19
0.32
0.45
0.60
0.76
0.93
1.15
1.44
1.96

Get z-values
(quantiles from
Normal distr.)

Plot of sorted residuals (sample quantiles) versus z-quantile (theoretical quantiles) 
= QQ-plot 8181



Simple Linear Regression:
Residual Analysis: Non-normality of errors

R
e

s
id

u
a

ls

Inverse Normal
-.5 0 .5

-.5

0

.5

1

1.5

True model: y = x + chi-squared errors

Plot of Fitted Model: Q-Q Plot

Under normality, residuals should
fall on the straight line!

^

82

y= .14+.998x

x
0 1 2 3 4

0

2

4

6

Plot of residuals versus fitted values
Curvature?
Heteroscedasticity?

R COMMAND:
plot(fit$fitted, fit$residuals)

Plot of residuals versus quantiles of a 
normal distribution(for n > 30)
Normality?

R COMMAND:
qqnorm(fit$residuals)

Cholesterol-Age example: Residuals
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Another example

n Linear regression for association between age and 
triglycerides

8484

> fit.tg=lm(TG~age)



Robust standard errors

n Residual analysis 
suggests mean-
variance relationship

n Use robust standard 
errors to get correct 
variance estimates
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Cholesterol example: Robust standard errors

n Linear regression results:

n Results incorporating robust SEs:

> summary(fit.tg)

Call:
lm(formula = TG ~ age)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -53.3059    11.1339  -4.788 2.38e-06 ***
age           4.2090     0.1964  21.429  < 2e-16 *** 

> summary(fit.tg.ese)

Call:
gee(formula = TG ~ age, id = seq(1, length(age)))

Coefficients:
Estimate Naive S.E.   Naive z Robust S.E.  Robust z

(Intercept) -53.305930 11.1339178 -4.787706   8.7387366 -6.099958
age           4.208964  0.1964165 21.428771   0.1813358 23.210880

Point estimates 
are unchanged
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Cholesterol example: Robust standard errors

n Linear regression results:

n Results incorporating robust SEs:

> summary(fit.tg)

Call:
lm(formula = TG ~ age)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -53.3059    11.1339  -4.788 2.38e-06 ***
age           4.2090     0.1964  21.429  < 2e-16 *** 

> summary(fit.tg.ese)

Call:
gee(formula = TG ~ age, id = seq(1, length(age)))

Coefficients:
Estimate Naive S.E.   Naive z Robust S.E.  Robust z

(Intercept) -53.305930 11.1339178 -4.787706   8.7387366 -6.099958
age           4.208964  0.1964165 21.428771   0.1813358 23.210880

Standard errors 
are corrected

87



Transformations

n Some reasons for using data transformations
n Content area knowledge suggests nonlinearity
n Original data suggest nonlinearity 
n Equal variance assumption violated
n Normality assumption violated

n Transformations may be applied to the response, 
predictor or both
n Be careful with the interpretation of the results

88

Cholesterol example: Transformations

n We have seen that triglycerides are associated with 
age but display non-constant variance

n What about log transformed triglycerides?

89

Cholesterol example: Transformations
> summary(fit.tg.ln)

Call:
lm(formula = log(TG) ~ age)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 3.7115803  0.0559237   66.37   <2e-16 ***
age         0.0248646  0.0009866   25.20   <2e-16 ***
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n Heteroscedasticity is corrected
n But interpretation of model is 

more complicated

90



n Rarely do we know which transformation of the predictor provides 
best “linear” fit
n As always, there is a danger in using the data to estimate the best 

transformation to use
n If there is no association of any kind between the response and the 

predictor, a “linear” fit (with a zero slope) is the correct one
n Trying to detect a transformation is thus an informal test for an association

n Multiple testing procedures inflate the Type I error

n It is best to choose the transformation of the predictor on scientific 
grounds
n However, sometimes it doesn’t matter – it is often the case that many 

functions are well approximated by a straight line over a small range of 
the data

§ Other approaches to non-linearity include splines and fractional 
polynomials

Transformations

91

Model Checking: Outliers vs Influential 
observations

n Outlier: an observation with a residual that is 
unusually large (positive or negative) as compared 
to the other residuals.

n Influential point: an observation that has a 
notable influence in determining the regression 
equation. 
n Removing such a point would markedly change the 

position of the regression line. 
n Observations that are somewhat extreme for the value 

of x can be influential.
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Outlier vs Influential observations
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Y=0.036+1.00
2*X

Line with Point A removed

Y=0.958+0.81
5*X

Line including Point A

Point A

Point A is an outlier, but is not influential.

^

^

x

x
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Outlier vs Influential observations

Point B is influential, but not an outlier.

^
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Y=0.886+0.582*X
Line including Point B

Point B

Ŷ=3.694-0.594*X
Line with Point B removed
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Cholesterol-Age Example: Residuals

95

No extreme outliers

Model Checking: Deletion diagnostics

)ˆ(

ˆˆ

)(

)()(

β

β

βββ

se
i

ii

Δ

−=Δ −
: Delta-beta

: Standardized Delta-beta

Delta-beta : tells how much the regression coefficient changed by 
excluding the ith observation

Standardized delta-beta : approximates how much the t-statistic for a coefficient 
changed by excluding the ith observation
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Cholesterol-Age Example: Deletion diagnostics

> dfb = dfbeta(fit)
> index=order(abs(dfb[,2]),decreasing=T)
> cbind(dfb[index[1:15],],age[index[1;15]])

(Intercept)          age   

114  -0.9893663  0.015268514 34

166  -0.6827966  0.014888475 78

255  -0.6190643  0.013902713 75

186  -0.8544144  0.013279531 33

113   0.5376293 -0.011943495 76

325  -0.7517511  0.011308451 37

365   0.7676508 -0.011297278 39

257  -0.7374003  0.011092575 37

290  -0.7024787  0.010757541 35

144   0.7120264 -0.010710881 37

197  -0.6784150  0.010469720 34

296  -0.6499386  0.010101515 33

231  -0.6293174  0.009712016 34

7     0.4403297 -0.009524470 79

252  -0.5981020  0.009412761 31

No evidence of influential points. The largest (in absolute value) 
delta beta is 0.015 compared to 0.31 for the regression coefficient.
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Model Checking

n What to do if you find an outlier and/or influential 
observation:

n Check it for accuracy

n Decide (based on scientific judgment) whether it is best 
to keep it or omit it

n If you think it is representative, and likely would have appeared 
in a larger sample, keep it

n If you think it is very unusual and unlikely to occur again in a 
larger sample, omit it

n Report its existence [whether or not it is omitted]

98

99

Simple Linear Regression: 
Impact of Violations of Model Assumptions

Non
Linearity

Non
Normality

Unequal 
Variances

Dependence

Estimates Problematic Minimal for most 
departures.  
Outliers can be a 
problem.  

Minimal impact   Often the 
estimates are 
unbiased

Tests/CIs Problematic Minimal for most 
departures. CIs 
for correlation 
are sensitive.

Variance 
estimates are 
wrong, but the 
effect is usually 
not dramatic

Variance 
estimates are 
wrong 

Correction Transform or
Choose a 
nonlinear model.

Delete outliers (if 
warranted) or
Use robust 
regression

Transform or 
Use robust 
standard error

Regression for 
dependent data
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REGRESSION MODELS

MULTIPLE LINEAR REGRESSION

100

Outline: Multiple Linear Regression

n Motivation

n Model and Interpretation

n Estimation and Inference

n Interaction

101

Motivation

n The response or dependent variable, Y, may 
depend on several predictors not just one!

n Multiple regression is an attempt to consider the 
simultaneous influence of several variables on the 
response

n This may be with the goal of an unbiased estimate 
of association or for better prediction

102
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Motivation

n Why not fit multiple separate simple linear regressions?
n If the goal is to estimate the association between the response and 

a predictor of interest, a confounder can make the observed 
association appear

n stronger than the true association,
n weaker than the true association, or 
n even the reverse of the true association

n How can we address this:
n We can adjust for the effects of the confounder by adding a 

corresponding term to our linear regression 

§ If the goal is prediction of the response, we may be able to 
improve prediction by including additional variables in the 
regression model

103

Motivation: Cholesterol Example

n Data

n Our goal: 
n Investigate the relationship between age (years), BMI (kg/m2) 

and serum total cholesterol (mg/dl)

104

> head(cholesterol)

ID sex age chol BMI  TG APOE rs174548 rs4775401 HTN chd
1   1  74  215 26.2 367    4        1         2   1   1
2   1  51  204 24.7 150    4        2         1   1   1
3   0  64  205 24.2 213    4        0         1   1   1
4   0  34  182 23.8 111    2        1         1   1   0
5   1  52  175 34.1 328    2        0         0   1   0
6   1  39  176 22.7  53    4        0         2   0   0

In general, the multiple regression equation can be written as follows: 

n We use multiple variables when: 
n The predictor variable is categorical with more than two groups
n We need polynomials, splines or other functions to model the 

shape of the relationship(s) accurately

n Estimating association:
§ We want to adjust for confounding by other variables
n We want to allow the association to differ for different values of 

other variables (interaction)

§ Prediction: we use multiple variables if we think more than one 
variable will be useful in predicting future outcomes accurately

E[Y | x1,x2,...,xp ] = β0 +β1x1+β2x2 +...+β px p

Motivation
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Model and Interpretation

n Model: 

where we assume

Extension of simple linear regression!

n Systematic component: 

n Random component:

εββββ +++++= pp xxxY ...22110

ε σ~ ( , )
iid
N 0 2

ppp xxxxxYE ββββ ++++= ...],...,|[ 221101

2
1 ],...,|[ σ=pxxYVar
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Model and Interpretation

n For example, let us assume that there are two predictors in 
the model and so

E[Y|x1, x2] = b0+ b1 x1 + b2 x2

Consider two observations with the same value for x2, but one 
observation has x1 one unit higher, that is,

Obs 1:  E[Y|x1=k+1, x2=c] = b0+ b1 (k+1) + b2 c
Obs 2:  E[Y|x1=k, x2=c] = b0+ b1 (k) + b2 c

Thus, E[Y|x1=k+1, x2=c] - E[Y|x1=k, x2=c] = b1

That is, b1 is the expected mean change in y per unit change in x1 if x2
is held constant (adjusted/controlling for x2)

Similar interpretation applies to b2
107

Model and Interpretation

n To facilitate our discussion let’s assume we have two 
predictors with binary values

n Model:
2211021 ],|[ xxxxYE βββ ++=

Mean of Y X2=0 X2=1

X1=0 b0 b0+b2

X1=1 b0+b1 b0+b1 +b2

E[Y|x1=1, x2=0] - E[Y|x1=0,x2=0] = b1

E[Y|x1=1, x2=1] - E[Y|x1=0,x2=1] = b1

E[Y|x1=0, x2=1] - E[Y|x1=0,x2=0] = b2

E[Y|x1=1, x2=1] - E[Y|x1=1,x2=0] = b2

108



Estimation

n Least Squares Estimation: 
n Chooses the coefficient estimates that minimize the residual sum of 

squares

n Computation more difficult, but statistical software (R) will do that 
for you!

( $ )y yi i
i

−∑ 2
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Estimation and Inference

n Inference
n About regression model parameters   

n Hypothesis Testing H0: bj=0

Interpretation: Is there a statistically significant relationship between the 
response y and xj after adjusting for all other factors (predictors) in the 
model?

Test Statistic:

Note: The square of the t-statistic gives the F-statistic and the test is 
known as the partial F-Test

n Confidence Intervals

1~
)ˆ(

)(ˆ
--

-
pn

j

j t
se

hypnull
b

b

)ˆ()(ˆ
jj sevaluecritical ββ ×±
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Estimation and Inference
n About the full model

n Hypotheses 
H0:                                           vs.       H1:  At least one bj is not null 

n Analysis of variance table

0...21 ==== pβββ

Source df SS MS F
Regression p SSR= MSR= SSR/p MSR/MSE

Residual n-p-1 SSE= MSE=
SSE/(n-p-1)

Total n-1 SST=

(y - y)i
2$∑

(y - y )i i
2$∑

(y - y)i
2∑
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Estimation and Inference
n The F-value is tested against a F-distribution with  p, n-p-1 

degrees of freedom
n If we reject the null hypothesis, then the predictors do aid in 

predicting Y [in this analysis we do not know which ones are 
important!]

n Failing to reject the null hypothesis does not mean that none of the 
covariates are important,  since the effect of one or more covariates 
may be "masked" by others. The hard part is choosing which 
covariates to include or exclude. 

n This is known as the global (multiple) F-test
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n We have seen that there is a significant 
relationship between age and cholesterol

n Can we better understand variability in cholesterol 
by incorporating additional covariates?

Scientific example: Modeling cholesterol using 
age and BMI

113113

Scientific example: Modeling cholesterol using 
age and BMI

114114



Scientific example: Modeling cholesterol using 
age and BMI

n It appears that BMI increases with increasing age

n And cholesterol increases with increasing BMI

n What if we want to estimate the association 
between age and cholesterol while holding BMI 
constant?

n Multiple regression!

115115

> fit2=lm(chol~age+BMI)
> summary(fit2)
Call:
lm(formula = chol ~ age + BMI)

Residuals:
Min      1Q  Median      3Q     Max 

-58.994 -15.793   0.571  14.159  62.992 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 137.1612     9.0061  15.230  < 2e-16 ***
age           0.2023     0.0795   2.544 0.011327 *  
BMI           1.4266     0.3822   3.732 0.000217 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.34 on 397 degrees of freedom
Multiple R-squared: 0.07351, Adjusted R-squared: 0.06884 
F-statistic: 15.75 on 2 and 397 DF,  p-value: 2.62e-07 

Scientific example: Modeling cholesterol using 
age and BMI
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Scientific example: Modeling cholesterol using 
age and BMI

n Our estimated regression equation is

n Question: How do we interpret the age coefficient?

€ 

ˆ y =137.16 + 0.20Age +1.43BMI

117117



Scientific example: Modeling cholesterol using 
age and BMI

n Our estimated regression equation is

n Question: How do we interpret the age coefficient?
n Answer: This is the estimated average difference in 

cholesterol associated with a one year difference in 
age for two subjects with the same BMI.
€ 

ˆ y =137.16 + 0.20Age +1.43BMI

118118

Scientific example: Modeling cholesterol using 
age and BMI

n Our estimated regression equation is

n The age coefficient from our simple linear 
regression model was 0.31.  

n Question: Why do the estimates from the two 
models differ?
€ 

ˆ y =137.16 + 0.20Age +1.43BMI

119119

Scientific example: Modeling cholesterol using 
age and BMI

n Our estimated regression equation is

n The age coefficient from our simple linear 
regression model was 0.31.  

n Question: Why do the estimates from the two 
models differ?

n Answer: We are now conditioning on or controlling 
for BMI so our estimate of the age association is 
among subjects with the same BMI.

€ 

ˆ y =137.16 + 0.20Age +1.43BMI

120120



Call:
lm(formula = chol ~ age + BMI)

Residuals:
Min      1Q  Median      3Q     Max 

-58.994 -15.793   0.571  14.159  62.992 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 137.1612     9.0061  15.230  < 2e-16 ***
age           0.2023     0.0795   2.544 0.011327 *  
BMI           1.4266     0.3822   3.732 0.000217 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.34 on 397 degrees of freedom
Multiple R-squared: 0.07351, Adjusted R-squared: 0.06884 
F-statistic: 15.75 on 2 and 397 DF,  p-value: 2.62e-07 

Scientific example: Modeling cholesterol using 
age and BMI
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n Did adding BMI improve our model?

n How does the model with age and BMI compare to a model that 
contains only the mean?

Cholesterol Example:

> anova(fit,fit2)
Analysis of Variance Table 

Model 1: chol ~ age 
Model 2: chol ~ age + BMI
Res.Df RSS Df Sum of Sq F Pr(>F) 

1 398 187187 
2 397 1 80842 1 6345.8 13.931 0.0002174 *** 
--- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> fit0=lm(chol~1)
> anova(fit0,fit2)
Analysis of Variance Table

Model 1: chol ~ 1
Model 2: chol ~ age + BMI

Res.Df    RSS Df Sum of Sq      F   Pr(>F)    
1    399 195189                                 
2    397 180842  2     14347 15.748 2.62e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 122

Interaction and Linear Regression

n Statistical interaction (aka effect modification) 
occurs when the relationship between an outcome 
variable and one predictor is different depending 
on the levels of a second predictor

n Interactions are usually investigated because of a 
priori assumptions/hypotheses on the part of the 
researchers

n Linear regression models allow for the inclusion of 
interactions with cross-product terms
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n Data and scientific understanding help distinguish 
between confounding and effect modifying 
variables:

n Confounder: Associated with predictor and response; 
Association between response and predictor constant 
across strata of the new variable

n Effect modifier/interaction: Association between 
response and the predictor varies across strata of the 
new variable

124

Confounding vs. Interaction/Effect Modification

n Confounding: Estimates of association from unadjusted 
analysis are markedly different from estimates of 
association from adjusted analysis
n Association within each stratum is similar, but different from the 

“crude” association in the combined data (ignoring the strata)
n In linear regression, these symptoms are diagnostic of confounding

n Effect modification would show differences between 
adjusted analysis and unadjusted analysis, but would also 
show different associations in the different strata

Confounding vs. Interaction/Effect Modification

125
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§ Even if present, effect modification may not always be of interest in 
summarizing the effect of a predictor. 

§ For example, pleconaril, an antiviral drug, reduced the mean 
duration of symptoms in subjects with a common cold due to 
rhinoviruses but had no effect in subjects whose cold was due to 
some other agent. 

§ In the case of the pleconaril, effect modification was important in 
checking that the drug did actually work by inhibiting rhinovirus. 
However, in clinical use of the drug, it would typically not be 
possible to determine the infectious agent (the tests are expensive 
and take longer than just recovering from the cold), and so the 
average effectiveness of the drug across all colds would be a more 
important quantity.

Effect Modification /Interaction



Graphical Representation

X

Y

W=0

W=1

No parallel lines Interaction
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Graphical Representation

X

Y

W=0

W=1

No parallel lines Interaction
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Graphical Representation

X

Y

W=0

W=1

Parallel lines No Interaction
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Graphical Representation

X

Y

W=0

W=1

[Y
|W

=
1]

[Y
|W

=
0]

[X|W=0] [X|W=1]

Parallel lines No Interaction

W is possibly a 
Confounder
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Graphical Representation

X

Y

W=0

W=1

Parallel lines No Interaction
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n Assume that there are two predictors in the model 
E[Y|x1, x2] = b0+ b1 x1 + b2 x2 +  b3 x1x2

Consider two observations with the same value, c, for x2, but one observation 
has x1 one unit higher 

Obs 1:  E[Y|x1=k+1, x2=c] = b0+ b1 (k+1) + b2 c + b3 (k+1)c
Obs 2:  E[Y|x1=k, x2=c] = b0+ b1 (k) + b2 c + b3 kc

Thus, E[Y|x1=k+1, x2=c] - E[Y|x1=k, x2=c] = b1 + b3 c 

That is, the difference in means depends now on the value of x2!

Model and Interpretation: interaction
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Model and Interpretation: interaction

n Model: E[Y|x1, x2] = b0+ b1 x1 + b2 x2 +  b3 x1x2

n Difference in Means: 
E[Y|x1=k+1, x2=c] - E[Y|x1=k, x2=c] = b1 + b3 c

The difference in means depends on the value of x2
n The difference in means is b1 if c=0.
n The difference in means is b1+ b3 if c=1
n The difference in means changes by b3 for each unit difference 

in c (that is, in x2)  [that is, b3 is the difference of differences!]

133133

§ H0: β3=0 tests for interaction 

Model and Interpretation: interaction

n Model: E[Y|x1, x2] = b0+ b1 x1 + b2 x2 +  b3 x1x2

n Another way to look at this

n Factor terms involving x1:
E[Y|x1, x2] = b0+ (b1 + b3 x2)x1 + b2 x2

Slope of x1 changes with x2 =
Difference in means for each unit difference in x1 changes 

with x2 (for each one unit difference in x2, the difference 
in means changes by b3)

134134

Cholesterol Example: Does sex affect the age –
cholesterol relationship?
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Cholesterol Example: Does sex affect the age –
cholesterol relationship?

> fit3 = lm(chol ~ age+sex)
> summary(fit3)

Call:
lm(formula = chol ~ age + sex)

Residuals:
Min      1Q  Median      3Q     Max 

-55.662 -14.482  -1.411  14.682  57.876 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 162.35445    4.24184  38.275  < 2e-16 ***
age           0.29697    0.07313   4.061 5.89e-05 ***
sex          10.50728    2.10794   4.985 9.29e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.06 on 397 degrees of freedom
Multiple R-squared: 0.09748,    Adjusted R-squared: 0.09293 
F-statistic: 21.44 on 2 and 397 DF,  p-value: 1.440e-09 

We first fit the model with age and sex terms only
(Male: sex=0,  Female: sex=1)

136

Cholesterol Example: Does sex affect the age –
cholesterol relationship?

137

10.5

n This model indicates that, after controlling for the 
effect of sex, the average cholesterol differs by 
0.30 for each additional year of age

n The age effect in this model is very similar to the 
effect from our simple linear regression (0.31)

n However, this does not mean that the 
age/cholesterol relationship is the same in males 
and females

n To answer this question we must add the 
interaction term

Cholesterol Example: Does sex affect the age –
cholesterol relationship?

138138
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> fit4=lm(chol~age*sex)
> summary(fit4)
Call:
lm(formula = chol ~ age * sex)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
sex          14.56271    8.29802   1.755  0.08004 .  
age:sex      -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Model with age and sex main effects, plus interaction effect

Cholesterol Example: Does sex affect the age –
cholesterol relationship?

139

140

Call:
lm(formula = chol ~ age * sex)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
sex          14.56271    8.29802   1.755  0.08004 .  
age:sex      -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Cholesterol Example: Does sex affect the age –
cholesterol relationship?
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Mean cholesterol 
for males at age 0

140

141

Call:
lm(formula = chol ~ age * sex)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
sex          14.56271    8.29802   1.755  0.08004 .  
age:sex      -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Cholesterol Example: Does sex affect the age –
cholesterol relationship?

141

Difference in 
mean cholesterol 
between males 
and females at 
age 0

141



142

Call:
lm(formula = chol ~ age * sex)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
sex          14.56271    8.29802   1.755  0.08004 .  
age:sex      -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Cholesterol Example: Does sex affect the age –
cholesterol relationship?

142

Difference in 
mean cholesterol 
associated with 
each one year 
change in age for 
males

142

143

Call:
lm(formula = chol ~ age * sex)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
sex          14.56271    8.29802   1.755  0.08004 .  
age:sex      -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Cholesterol Example: Does sex affect the age –
cholesterol relationship?

143

Difference in 
change in mean 
cholesterol 
associated with 
each one year 
change in age for 
females compared 
to males

143

n Interpretation?
n Estimated model: 
160.3 + 0.33 Age + 14.56 Sex- 0.07 Age x Sex

Subject 1: Age = a+1,  sex = b
Subject 2: Age = a,      sex = b
Difference in the estimated cholesterol: 
[160.3 + 0.33(a+1) + 14.56(b) – 0.07 (a+1)(b)] –

[160.3 + 0.33(a) + 14.56 (b) – 0.07 (a)(b)] = 0.33-0.07b

n Sex exerts a small (not statistically significant) 
effect on the age/cholesterol relationship
In males: 160.3+0.33 Age
In females: 174.9+0.26 Age

Cholesterol Example: Does sex affect the age –
cholesterol relationship?

144



n We can also test the significance of interaction 
terms using an F-test

n Adding the interaction term did not significantly 
improve model fit

> anova(fit3,fit4)
Analysis of Variance Table

Model 1: chol ~ age + sex
Model 2: chol ~ age * sex

Res.Df    RSS Df Sum of Sq      F Pr(>F)
1    397 176162                           
2    396 176049  1    113.52 0.2554 0.6136

Cholesterol Example: Does sex affect the age –
cholesterol relationship?
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Cholesterol Example: Does sex affect the age –
cholesterol relationship?
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Summary

We have considered:

§ Simple linear regression
§ Interpretation
§ Estimation
§ Model checking

§ Multiple linear regression
§ Confounding
§ Interpretation
§ Estimation
§ Interaction


