
REGRESSION MODELS

ANOVA MODELS

148

149

Regression

Examine main effects 
considering 

predictors of interest, 
and confounders

Test effect 
modification if scientifically

relevant

Compute and plot 
Residuals

Assess influence
Transformation

Robust SEs

PUBLISH
Do the assumptions 
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Outcome?

Logistic regression 
and other methods
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NO

RECAP:
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REGRESSION

One-way
Analysis of Variance

Two-way 
Analysis of Variance

Analysis of 
Covariance

One Categorical POI Two Categorical POIs One Categorical POI +
One continuous predictor

Uses dummy variables to represent categorical variables!

COMING UP NEXT:
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Outline

n Motivation
n ANOVA as a regression model

n Dummy variables
n One-way ANOVA models

n Contrasts 
n Multiple comparisons

n Two-way ANOVA models
n Interactions

n ANCOVA models
n Logistic regression
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ANOVA

Motivation
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Motivation

n Let’s investigate if genetic factors are associated 
with cholesterol levels. 

n Ideally, you would have a confirmatory analysis of 
scientific hypotheses formulated prior to data collection

n Alternatively, you could consider an exploratory analysis
– hypotheses generation for future studies
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ANOVA/ANCOVA: Motivation

n Scientific hypotheses of interest:
n Assess the effect of rs174548 on cholesterol levels.

n Assess the effect of rs174548  and sex on cholesterol 
levels

n Does the effect of rs174548 on cholesterol differ between males 
and females?

n Assess the effect of rs174548 and age on cholesterol 
levels

n Does the effect of rs174548 on cholesterol differ depending on 
subject’s age?

155

ANOVA: One-Way Model
Motivation:

n Scientific question:
n Assess the effect of rs174548 on cholesterol levels.
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Motivation: Example

> tapply(chol, factor(rs174548), mean)
0        1        2 

181.0617 187.8639 186.5000 

> tapply(chol, factor(rs174548), sd)
0        1        2 

21.13998 23.74541 17.38333 

Here are some descriptive summaries:
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Motivation: Example

> by(chol, factor(rs174548), mean)
factor(rs174548): 0

[1] 181.0617
-----------------------------------------------------------------

factor(rs174548): 1
[1] 187.8639
-----------------------------------------------------------------

factor(rs174548): 2
[1] 186.5

> by(chol, factor(rs174548), sd)
factor(rs174548): 0

[1] 21.13998
-----------------------------------------------------------------

factor(rs174548): 1
[1] 23.74541
-----------------------------------------------------------------

factor(rs174548): 2
[1] 17.38333

Another way of getting the same results:
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Motivation: Example
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Is rs174548 associated with cholesterol? 

R command: boxplot(chol ~ factor(rs174548))

159

Motivation: Example

R command:
plot.design(chol ~ factor(rs174548))

Another graphical display:
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Motivation: Example

n Feature:

n How do the mean responses compare across different 
groups?

n Categorical/qualitative predictor

161

ANOVA

As a regression model

162

ANalysis Of VAriance Models (ANOVA)

n Compares the means of several populations

-6 -4 -2 0 2 4 6

0.
0
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8

Independence
Normality
Equal variances

Assumptions for Classical ANOVA Framework: 
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ANalysis Of VAriance Models (ANOVA)

n Compares the means of several populations

-6 -4 -2 0 2 4 6
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ANalysis Of VAriance Models (ANOVA)

n Compares the means of several populations
n Counter-intuitive name!
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ANalysis Of VAriance Models (ANOVA)

A B C
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In both data sets, the true population means are: 3 (A), 5 (B), 7(C)

Situation 1 Situation 2

High variance within groupsLow variance within groups

Where do you expect to detect difference between population means?
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ANalysis Of VAriance Models (ANOVA)

n Compares the means of several populations
n Counter-intuitive name!

n Underlying concept: 
n To assess whether the population means are equal, compares:

n Variation between the sample means (MSR) to 
n Natural variation of the observations within the samples (MSE).

n The larger the MSR compared to MSE the more support that 
there is a difference in the population means!

n The ratio MSR/MSE is the F-statistic. 

Decomposition of sum of squares
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ANalysis Of VAriance Models (ANOVA)

n Equivalent to regression with categorical 
predictors. 
n Predictors represented  with “dummy” variables
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ANOVA as a multiple regression model

n Dummy Variables:
n Suppose you have a categorical variable C with k 

categories. To represent that variable we can construct 
k-1 dummy variables of the form

…

î
í
ì

=
                       otherwise,0
2category in  issubject  if,1

1x

î
í
ì

=
                       otherwise,0
3category in  issubject  if,1

2x

î
í
ì

=-                        otherwise,0
kcategory in  issubject  if,1

1kx

The omitted category (here category 1) is the reference group.
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ANOVA as a multiple regression model

n Dummy Variables:
n Back to our motivating example: 

n Predictor: rs174548 (coded 0=C/C, 1=C/G, 2=G/G)
n Outcome (Y): cholesterol

Let’s take C/C as the reference group.

î
í
ì

=
        otherwise,0

(C/G) 1 code if,1
1x

î
í
ì

=
         otherwise,0
(G/G) 2 code if,1

2x
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ANOVA as a multiple regression model

rs174548 X1 X2

C/C 0 0

C/G 1 0

G/G 0 1
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ANOVA as a multiple regression model

n Regression with Dummy Variables:
n Example: 

Model: E[Y|x1, x2] = b0 + b1x1 + b2x2

n Interpretation of model parameters?
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ANOVA as a multiple regression model

n Regression with Dummy Variables:
n Example: 

Model: E[Y|x1, x2] = b0 + b1x1 + b2x2

n Interpretation of model parameters?
n b0: mean cholesterol when rs174548 is C/C
n b0+b1: mean cholesterol when rs174548 is C/G
n b0+b2: mean cholesterol when rs174548 is G/G
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ANOVA as a multiple regression model

n Regression with Dummy Variables:
n Example: 

Model: E[Y|x1, x2] = b0 + b1x1 + b2x2

n Interpretation of model parameters?
n b0: mean cholesterol when rs174548 is C/C
n b0+b1: mean cholesterol when rs174548 is C/G
n b0+b2: mean cholesterol when rs174548 is G/G

n Alternatively
n b1: difference in mean cholesterol levels between groups with rs174548 

equal to C/G and C/C.

n b2: difference in mean cholesterol levels between groups with rs174548 
equal to G/G and C/C.
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ANOVA as a multiple regression model

n Alternative parameterization
n Each group with its own mean! 

n Let’s re-write the model:

Model: E[Yij] = µi
(i: genotype index, j: subject index)
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ANOVA as a multiple regression model

n Regression Model:
Model 1: E[Y|x1, x2] = b0 + b1x1 + b2x2.

n ANOVA Model: 
Model 2:  E[Yij] = µi 
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ANOVA as a multiple regression model

Mean Regression 
Model

µ1 b0

µ2 b0 + b1

µ3 b0 + b2
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ANOVA as a multiple regression model

n Regression Model:
Model 1: E[Y|x1, x2] = b0 + b1x1 + b2x2.

n ANOVA Model: 
Model 2:  E[Yij] = µi

Key Message: 
ANOVA is a special case of a regression model!
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ANOVA as a multiple regression model

n The same idea applies to problems with several 
categorical predictors [aka: factors]
n One-way ANOVA: one factor
n Two-way ANOVA: two factors
n …

n Model assumptions
n Equal variances
n Normality
n Independence

180

ANOVA

One-way ANOVA models
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ANOVA: One-Way Model

n Goal: 
n Compare the means of K independent groups (defined 

by a categorical predictor)
n Statistical Hypotheses:

n (Global) Null Hypothesis:

H0: µ1= µ2 =…= µK.
n Alternative Hypothesis:

H1: not all means are equal

n If the means of the groups are not all equal (i.e. you 
rejected the above H0), determine which ones are 
different (multiple comparisons)
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Estimation and Inference

n Global Hypotheses
H0:                                           vs.       H1:  not all means are equal

n Analysis of variance table

Kµµµ === ...21

Source df SS MS F

Regression K-1 SSR= MSR=
SSR/(K-1)

MSR/
MSE

Residual n-K SSE= MSE=
SSE/n-K

Total n-1 SST=

å
i

2
i )y-y(

å
ji,

2
iij )y-(y

å
ji,

2
ij )y-(y
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ANOVA as a multiple regression model

Mean Regression 
Model

µ1 b0

µ2 b0 + b1

µ3 b0 + b2

Back to example:
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Estimation and Inference

n Global Hypotheses
H0:                                           vs.       H1:  not all coeffs are zero

n Analysis of variance table

0... 11 === -Kbb

Source df SS MS F

Regression K-1 SSR= MSR=
SSR/(K-1)

MSR/
MSE

Residual n-K SSE= MSE=
SSE/n-K

Total n-1 SST=

å
i

2
i )y-y(

å
ji,

2
iij )y-(y

å
ji,

2
ij )y-(y
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ANOVA: One-Way Model

n How to fit a one-way model as a regression 
problem?
n Need to use “dummy” variables

n Create on your own (can be tedious!)
n Most software packages will do this for you

n R creates dummy variables in the background as long as you state 
you have a categorical variable (may need to use:    factor)
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ANOVA: One-Way Model
> fit0 = lm(chol ~ dummy1 + dummy2)
> summary(fit0)
Call:
lm(formula = chol ~ dummy1 + dummy2)

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  181.062      1.455 124.411  < 2e-16 ***
dummy1         6.802      2.321   2.930  0.00358 ** 
dummy2         5.438      4.540   1.198  0.23167    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,     Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit0)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value   Pr(>F)   

dummy1      1   3624    3624  7.5381 0.006315 **
dummy2      1    690     690  1.4350 0.231665   
Residuals 397 190875     481                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> dummy1 = 1*(rs174548==1)
> dummy2 = 1*(rs174548==2)

By hand:
Creating “dummy”
variables:

Fitting the
ANOVA model:
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ANOVA: One-Way Model
> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           181.062      1.455 124.411  < 2e-16 ***
factor(rs174548)1    6.802      2.321   2.930  0.00358 ** 
factor(rs174548)2    5.438      4.540   1.198  0.23167    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,     Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit1.1)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value  Pr(>F)  

factor(rs174548)    2   4314    2157  4.4865 0.01184 *
Residuals           397 190875     481                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Better:
Let R do it for you!
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ANOVA: One-Way Model

n Your turn!
n Compare model fit results (fit0 & fit1.1)

What do you conclude? 
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ANOVA: One-Way Model
> fit0 = lm(chol ~ dummy1 + dummy2)
> summary(fit0)
Call:
lm(formula = chol ~ dummy1 + dummy2)

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  181.062      1.455 124.411  < 2e-16 ***
dummy1         6.802      2.321   2.930  0.00358 ** 
dummy2         5.438      4.540   1.198  0.23167    
---

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit0)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value   Pr(>F)   

dummy1      1   3624    3624  7.5381 0.006315 **
dummy2      1    690     690  1.4350 0.231665   
Residuals 397 190875     481                    
---

> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           181.062      1.455 124.411  < 2e-16 ***
factor(rs174548)1    6.802      2.321   2.930  0.00358 ** 
factor(rs174548)2    5.438      4.540   1.198  0.23167    
---

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit1.1)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value  Pr(>F)  

factor(rs174548)    2   4314    2157  4.4865 0.01184 *
Residuals           397 190875     481                  
---



> fit0 = lm(chol ~ dummy1 + dummy2)
> summary(fit0)
Call:
lm(formula = chol ~ dummy1 + dummy2)

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  181.062      1.455 124.411  < 2e-16 ***
dummy1         6.802      2.321   2.930  0.00358 ** 
dummy2         5.438      4.540   1.198  0.23167    
---

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit0)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value   Pr(>F)   

dummy1      1   3624    3624  7.5381 0.006315 **
dummy2      1    690     690  1.4350 0.231665   
Residuals 397 190875     481                    
---
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ANOVA: One-Way Model
> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           181.062      1.455 124.411  < 2e-16 ***
factor(rs174548)1    6.802      2.321   2.930  0.00358 ** 
factor(rs174548)2    5.438      4.540   1.198  0.23167    
---

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit1.1)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value  Pr(>F)  

factor(rs174548)    2   4314    2157  4.4865 0.01184 *
Residuals           397 190875     481                  
---

> 1-pf(4.4865,2,397)
[1] 0.01183671
> 1-pf(((3624+690)/2)/481,2,397)
[1] 0.01186096
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ANOVA: One-Way Model
n Let’s interpret the regression model 

results!
n What is the interpretation of the regression 

model coefficients?

> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           181.062      1.455 124.411  < 2e-16
factor(rs174548)1    6.802      2.321   2.930  0.00358 
factor(rs174548)2    5.438      4.540   1.198  0.23167    
---

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit1.1)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value  Pr(>F)  

factor(rs174548)    2   4314    2157  4.4865 0.01184 *
Residuals           397 190875     481                  
---
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ANOVA: One-Way Model
n Interpretation:

n Estimated mean cholesterol for C/C 
group: 181.062 mg/dl

n Estimated difference in mean 
cholesterol levels between C/G and 
C/C groups: 6.802 mg/dl

n Estimated difference in mean 
cholesterol levels between G/G and 
C/C groups: 5.438 mg/dl

> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           181.062      1.455 124.411  < 2e-16
factor(rs174548)1    6.802      2.321   2.930  0.00358 
factor(rs174548)2    5.438      4.540   1.198  0.23167    
---

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit1.1)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value  Pr(>F)  

factor(rs174548)    2   4314    2157  4.4865 0.01184 *
Residuals           397 190875     481                  
---
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ANOVA: One-Way Model

n Overall F-test shows a significant 
p-value. We reject the null 
hypothesis that the mean 
cholesterol levels are the same 
across groups defined by 
rs174548 (p=0.01184). 

n This does not tell us which 
groups are different!
(Need to perform multiple 
comparisons! More soon…)

> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           181.062      1.455 124.411  < 2e-16
factor(rs174548)1    6.802      2.321   2.930  0.00358 
factor(rs174548)2    5.438      4.540   1.198  0.23167    
---

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit1.1)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value  Pr(>F)  

factor(rs174548)    2   4314    2157  4.4865 0.01184 *
Residuals           397 190875     481                  
---
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ANOVA: One-Way Model
> fit1.2 = lm(chol ~ -1 + factor(rs174548)) 
> summary(fit1.2)
Call:
lm(formula = chol ~ -1 + factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

factor(rs174548)0   181.062      1.455  124.41   <2e-16 ***
factor(rs174548)1    187.864      1.809  103.88   <2e-16 ***
factor(rs174548)2    186.500      4.300   43.37   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.9861,     Adjusted R-squared: 0.986 
F-statistic:  9383 on 3 and 397 DF,  p-value: < 2.2e-16 

> anova(fit1.2)
Analysis of Variance Table
Response: chol

Df   Sum Sq Mean Sq F value    Pr(>F)    
factor(rs174548)    3 13534205 4511402  9383.2 < 2.2e-16 ***
Residuals           397   190875     481                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Alternative form:
(better if you will 
perform multiple 
comparisons)
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ANOVA: One-Way Model

> fit1.3 = aov(chol ~ factor(rs174548))
> summary(fit1.3)

Df Sum Sq Mean Sq F value  Pr(>F)  
factor(rs174548)    2   4314 2157.10  4.4865 0.01184 *
Residuals           397 190875  480.79                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> anova(fit1.3)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value  Pr(>F)  

factor(rs174548)    2   4314 2157.10  4.4865 0.01184 *
Residuals           397 190875  480.79                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> fit1.3$coeff
(Intercept) factor(rs174548)1    factor(rs174548)2    
181.061674             6.802272             5.438326 

Alternative form:
- Different command!
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ANOVA: One-Way Model
> fit2 = lm(chol ~ rs174548)
> summary(fit2)

Call:
lm(formula = chol ~ rs174548)

Residuals:
Min      1Q  Median      3Q     Max 

-64.575 -16.278  -0.575  15.120  60.722 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  181.575      1.411 128.723  < 2e-16 ***
rs174548       4.703      1.781   2.641  0.00858 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.95 on 398 degrees of freedom
Multiple R-squared: 0.01723,    Adjusted R-squared: 0.01476 
F-statistic: 6.977 on 1 and 398 DF,  p-value: 0.008583 

> anova(fit2)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value   Pr(>F)   

rs174548    1   3363    3363  6.9766 0.008583 **
Residuals 398 191827     482                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

How about this one?
How is rs174548 being 
treated now?

Compare model fit 
results from (fit1.1 & fit2).
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ANOVA: One-Way Model
n Model: E[Y|x] = b0 + b1x 
where Y: cholesterol, x: rs174548 

n Interpretation of model parameters?
n b0: mean cholesterol in the C/C 

group [estimate: 181.575 
mg/dl]

n b1: mean cholesterol difference 
between C/G and C/C – or –
between G/G and C/G groups 
[estimate: 4.703 mg/dl]

n This model presumes differences 
between “consecutive” groups 
are the same (in this example, 
linear dose effect of allele) –
more restrictive than the ANOVA 
model!

Back to the ANOVA model…

> fit2 = lm(chol ~ rs174548)
> summary(fit2)

Call:
lm(formula = chol ~ rs174548)

Residuals:
Min      1Q  Median      3Q     Max 

-64.575 -16.278  -0.575  15.120  60.722 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  181.575      1.411 128.723  < 2e-16 ***
rs174548       4.703      1.781   2.641  0.00858 ** 

Residual standard error: 21.95 on 398 degrees of freedom
Multiple R-squared: 0.01723, Adjusted R-squared: 0.01476 
F-statistic: 6.977 on 1 and 398 DF,  p-value: 0.008583 

> anova(fit2)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value   Pr(>F)   

rs174548    1   3363    3363  6.9766 0.008583 **
Residuals 398 191827     482                    
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ANOVA: One-Way Model

n We rejected the null 
hypothesis that the mean 
cholesterol levels are the 
same across groups 
defined by rs174548 
(p=0.01184). 

n What are the groups with 
differences in means?

MULTIPLE COMPARISONS

> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           181.062      1.455 124.411  < 2e-16
factor(rs174548)1    6.802      2.321   2.930  0.00358 
factor(rs174548)2    5.438      4.540   1.198  0.23167    
---

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit1.1)
Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value  Pr(>F)  

factor(rs174548)    2   4314    2157  4.4865 0.01184 *
Residuals           397 190875     481                  
---
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MULTIPLE COMPARISONS
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ANOVA: One-Way Model

n What are the groups with differences in means?

MULTIPLE COMPARISONS:

µ0= µ1?

µ0= µ2?      Pairwise comparisons

µ1= µ2?

(µ1+ µ2)/2 = µ0? Non-pairwise comparison
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Multiple Comparisons: Family-wise error rates

n Illustrating the multiple comparison problem
n Truth: null hypotheses
n Tests: pairwise comparisons - each at the 5% level. 

What is the probability of rejecting at least one?

That is, if you have three groups and make pairwise comparisons, each at the 5% level, your family-
wise error rate (probability of making at least one false rejection) is over 14%!

Need to address this issue! 
Several methods!!!

#groups
= K

2 3 4 5 6 7 8 9 10

#pairwise
comparisons
= K(K-1)/2

1 3 6 10 15 21 28 36 45

P(at least 
one sig)
=1-(1-0.05)c

0.05 0.143 0.265 0.401 0.537 0.659 0.762 0.842 0.901
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Multiple Comparisons

n Several methods:
n None (no adjustment)
n Bonferroni
n Holm
n Hochberg
n Hommel
n BH
n BY
n FDR
n …

Available in R
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Multiple Comparisons

n Bonferroni adjustment: for k tests performed, 
use level α/k (or multiply P-values by k).
n Simple
n Conservative
n Must decide on number of tests beforehand
n Widely applicable
n Can be done without software!

204

Multiple Comparisons

> ## call library for multiple comparisons
> library(multcomp)
> 
> ## fit model 
> fit1 = lm(chol ~ -1 + factor(rs174548)) 
> 
> ## all pairwise comparisons
> ## -- first, define matrix of contrasts
> M = contrMat(table(rs174548), type="Tukey")
> M

Multiple Comparisons of Means: Tukey Contrasts

0  1 2
1 - 0 -1  1 0
2 - 0 -1  0 1
2 - 1  0 -1 1
> 
> ## -- second, obtain estimates for multiple comparisons
> mc = glht(fit1, linfct =M)

This option considers all 
pairwise comparisons 

Stands for general linear 
hypothesis testing
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Multiple Comparisons

> ## -- third, adjust the p-values (or not) for multiple comparisons
> summary(mc, test=adjusted("none"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = chol ~ -1 + factor(rs174548))

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)   

1 - 0 == 0    6.802      2.321   2.930  0.00358 **
2 - 0 == 0    5.438      4.540   1.198  0.23167   
2 - 1 == 0   -1.364      4.665  -0.292  0.77015   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- none method)
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Multiple Comparisons

> summary(mc, test=adjusted("bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = chol ~ -1 + factor(rs174548))

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)  

1 - 0 == 0    6.802      2.321   2.930   0.0107 *
2 - 0 == 0    5.438      4.540   1.198   0.6950  
2 - 1 == 0   -1.364      4.665  -0.292   1.0000  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- bonferroni method)
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Multiple Comparisons

n What if nonpairwise comparison? 
n Suppose you want to compare the mean cholesterol among those 

with genotype C/C with the mean cholesterol for the combined 
group with genotypes C/G and G/G.  

µ0 = (µ1+ µ2)/2

Or equivalently, 
2µ0 = (µ1+ µ2)

Or equivalently,
2µ0 - µ1- µ2 = 0
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Multiple Comparisons

n What if nonpairwise comparison? 
n Your turn: Suppose you want to compare the mean cholesterol 

among those with genotype C/G with the mean cholesterol for the 
combined group with genotypes C/C and G/G.  
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Multiple Comparisons

n What if nonpairwise comparison? 
n Your turn: Suppose you want to compare the mean cholesterol 

among those with genotype C/G with the mean cholesterol for the 
combined group with genotypes C/C and G/G.  

(µ0 + µ2)/2 = µ1

Or equivalently, 
µ0 + µ2 = 2µ1

Or equivalently,
µ0 - 2µ1+ µ2 = 0
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Multiple Comparisons

Using R for multiple comparisons with “user-defined” contrasts:

> contr = rbind("mean(C/G+G/G) - mean(C/C)" = c(-2, 1, 1))
> mc2 = glht(fit1, linfct =contr)
> summary(mc2, test=adjusted("none"))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = chol ~ -1 + factor(rs174548))

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)  

mean(C/G+G/G) - mean(C/C) == 0   12.241      5.499   2.226   0.0266 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- none method)
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Multiple Comparisons
> ## more than one contrast (again user-defined)
> contr2 = rbind("mean(C/G+G/G) - mean(C/C)" = c(-2, 1, 1),
+                "mean(C/C+G/G) - mean(C/G)" = c(1, -2, 1))
> mc3 = glht(fit1, linfct =contr2)
> summary(mc3, test=adjusted("none"))

Simultaneous Tests for General Linear Hypotheses
Fit: lm(formula = chol ~ -1 + factor(rs174548))
Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)  
mean(C/G+G/G) - mean(C/C) == 0   12.241      5.499   2.226   0.0266 *
mean(C/C+G/G) - mean(C/G) == 0   -8.166      5.805  -1.407   0.1603  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- none method)

> summary(mc3, test=adjusted("bonferroni"))

Simultaneous Tests for General Linear Hypotheses
Fit: lm(formula = chol ~ -1 + factor(rs174548))
Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)  
mean(C/G+G/G) - mean(C/C) == 0   12.241      5.499   2.226   0.0531 .
mean(C/C+G/G) - mean(C/G) == 0   -8.166      5.805  -1.407   0.3205  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- bonferroni method)
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Multiple Comparisons

n What about using other adjustment methods?
n For example, we used:

> summary(mc, test=adjusted("bonferroni"))
(all pairwise comparisons, with Bonferroni adjustment)

n Other options, in place of “bonferroni”, are:
n summary(mc, test=adjusted("holm"))
n summary(mc, test=adjusted("hochberg"))

n summary(mc, test=adjusted("hommel"))

n summary(mc, test=adjusted("BH"))

n summary(mc, test=adjusted("BY"))

n summary(mc, test=adjusted("fdr"))

Results, in this particular example, are basically the same, but they 
don’t need to be! Different criteria could lead to different results!
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Multiple Comparisons

> summary(mc, test=adjusted("fdr"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = chol ~ -1 + factor(rs174548))

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)  

1 - 0 == 0    6.802      2.321   2.930   0.0107 *
2 - 0 == 0    5.438      4.540   1.198   0.3475  
2 - 1 == 0   -1.364      4.665  -0.292   0.7702  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- fdr method)
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Multiple Comparisons

n FDR (False Discovery Rate)
n Less conservative procedure for multiple comparisons
n Among rejected hypotheses, FDR controls the expected 

proportion of incorrectly rejected null hypotheses (that 
is, type I errors). 

ANOVA

MODEL CHECKING

215
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ANOVA Assumptions

n Recall the assumptions for classical ANOVA are:

-6 -4 -2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

Independence
Normality
Equal variance
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Bartlett’s test

n We assume that variances are the same across populations

n Bartlett’s test allows you to test the hypothesis that the 
population variances are the same (versus they are not all 
equal). 

> bartlett.test(chol ~ factor(rs174548))

Bartlett test of homogeneity of variances

data:  chol by factor(rs174548)    
Bartlett's K-squared = 4.8291, df = 2, p-value = 0.0894
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Bartlett’s test?

n No real need to test variances!

n You can perform one-way ANOVA allowing for unequal 
variances!

n You can perform one-way ANOVA – using the regression 
framework with robust standard errors!
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One-Way ANOVA allowing for unequal variances

> oneway.test(chol ~ factor(rs174548))

One-way analysis of means (not assuming equal variances)

data:  chol and factor(rs174548)    
F = 4.3258, num df = 2.000, denom df = 73.284, p-value = 0.01676
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One-Way ANOVA with robust standard errors
> summary(gee(chol ~ factor(rs174548), id=seq(1,length(chol))))
Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
running glm to get initial regression estimate

(Intercept) factor(rs174548)1    factor(rs174548)2    
181.061674             6.802272             5.438326 

GEE:  GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998) 

Model:
Link:                      Identity 
Variance to Mean Relation: Gaussian 
Correlation Structure:     Independent 

Call:
gee(formula = chol ~ factor(rs174548), id = seq(1, length(chol)))

Summary of Residuals:
Min           1Q       Median           3Q          Max 

-64.06167401 -15.91337769  -0.06167401  14.93832599  59.13605442 

Coefficients:
Estimate Naive S.E.    Naive z Robust S.E.   Robust z

(Intercept)          181.061674   1.455346 124.411431    1.400016 129.328297
factor(rs174548)1    6.802272   2.321365   2.930290    2.402005   2.831914
factor(rs174548)2    5.438326   4.539833   1.197913    3.624271   1.500530

Estimated Scale Parameter:  480.7932
Number of Iterations:  1
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Kruskal-Wallis Test

n Non-parametric analogue to the one-way ANOVA
n Based on ranks 

n In our example:

n Conclusion:
n Evidence that the cholesterol distribution is not the same across 

all groups.
n With the global null rejected, you can also perform pairwise 

comparisons [Wilcoxon rank sum], but adjust for multiplicities!

> kruskal.test(chol ~ factor(rs174548))

Kruskal-Wallis rank sum test

data:  chol by factor(rs174548)    
Kruskal-Wallis chi-squared = 7.4719, df = 2, p-value = 0.02385
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Multiple Comparisons 
(following Kruskal-Wallis Test)
> wilcox.test(chol[rs174548!=0] ~rs174548[rs174548!=0])  

Wilcoxon rank sum test with continuity correction

data:  chol[rs174548 != 0] by rs174548[rs174548 != 0] 
W = 1974.5, p-value = 0.789
alternative hypothesis: true location shift is not equal to 0 

> wilcox.test(chol[rs174548!=1] ~rs174548[rs174548!=1])  

Wilcoxon rank sum test with continuity correction

data:  chol[rs174548 != 1] by rs174548[rs174548 != 1] 
W = 2482, p-value = 0.1849
alternative hypothesis: true location shift is not equal to 0 

> wilcox.test(chol[rs174548!=2] ~rs174548[rs174548!=2])  

Wilcoxon rank sum test with continuity correction

data:  chol[rs174548 != 2] by rs174548[rs174548 != 2] 
W = 14025.5, p-value = 0.009221
alternative hypothesis: true location shift is not equal to 0 
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GOAL: Comparison of 
Means across K groups

Multiple Regression:
Model: E[Y|groups]= b0+ b1group2 +…+bk-1groupk

where group1 is the reference group
H0:b1= b2=…= bk-1=0
H1: not all bi are equal to zero

Rejected H0?

Multiple Comparisons
(control a overall)

One-way ANOVA:

H0:µ1= µ2=…= µk
H1: not all means are equal

YES

10

203

102

01

...

-+=

+=
+=

=

KK bbµ

bbµ
bbµ

bµ
Relationships:

e.g. Bonferroni: a/#comparisons

Summary:
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ANOVA

Two-way ANOVA models

225

ANOVA: Two-Way Model
Motivation:

n Scientific question:
n Assess the effect of rs174548 and sex on cholesterol 

levels.
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ANOVA: Two-Way Model

n Factors: A and B
n Goals:

n Test for main effect of A
n Test for main effect of B
n Test for interaction effect of A and B
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ANOVA: Two-Way Model

n To simplify discussion, assume that factor A has three 
levels, while factor B has two levels

A1 A2 A3

B1 µ11 µ21 µ31

B2 µ12 µ22 µ32

Factor A

Fa
ct

or
 B

228

A1 A2 A3

B1

B2

Means

Parallel lines = No interaction

A1 A2 A3

B1

B2

Lines are not parallel = Interaction

ANOVA: Two-Way Model
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ANOVA: Two-Way Model

n Recall: 

n Categorical variables can be represented with “dummy”
variables

n Interactions are represented with “cross-products”
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ANOVA: Two-Way Model

n Model 1:
E[Y|A2, A3, B2] = b0 + b1A2 + b2A3 + b3B2.

n What are the means in each combination-group?

A1 A2 A3

B1 µ11=b0 µ21 =b0+ b1 µ31 =b0+ b2

B2 µ12 =b0+ b3 µ22 =b0+ b1 + b3 µ32= b0+ b2 + b3
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ANOVA: Two-Way Model

n Model 1:
E[Y|A2, A3, B2] = b0 + b1A2 + b2A3 + b3B2.

A1 A2 A3

B1 µ11=b0 µ21 =b0+ b1 µ31 =b0+ b2

B2 µ12 =b0+ b3 µ22 =b0+ b1 + b3 µ32= b0+ b2 + b3

Model with no interaction:
•Difference in means between groups defined by factor B does not depend on 

the level of factor A.
•Difference in means between groups defined by factor A does not depend on 

the level of factor B.
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ANOVA: Two-Way Model

n Model 2:
E[Y|A2, A3, B2] = b0 + b1A2 + b2A3 + b3B2+ b4A2B2 + b5A3B2 

n What are the means in each combination-group?
A1 A2 A3

B1 µ11=b0 µ21 =b0+ b1 µ31 =b0+ b2

B2 µ12 =b0+ b3 µ22 =b0+ b1 + b3 + b4 µ32= b0+ b2 + b3 + b5
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ANOVA: Two-Way Model

n Three (possible) tests
n Interaction of A and B (may want to start here)

n Rejection would imply that differences between means of A 
depends on the level of B (and vice-versa) so stop

n Main effect of A 
n Test only if no interaction

n Main effect of B
n Test only if no interaction

[ Note:  If you have one observation per cell, you cannot test interaction! ]
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ANOVA: Two-Way Model

n Model without interaction
E[Y|A2, A3, B2] = b0 + b1A2 + b2A3 + b3B2.

How do we test for main effect of factor A?
H0: b1= b2=0   vs.  H1: b1 or b2 not zero 

How do we test for main effect of factor B?
H0: b3=0   vs.  H1: b3 not zero 
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ANOVA: Two-Way Model

n Model with interaction:
E[Y|A2, A3, B2] = b0 + b1A2 + b2A3 + b3B2+ b4A2B2 + b5A3B2 

How do we test for interactions?

H0: b4= b5=0   vs.  

H1: b4 or b5 not zero 

IMPORTANT: 
If you reject the null, do not test main effects!!!

236

ANOVA: Two-Way Model (without interaction)
> fit1 = lm(chol ~ factor(sex) + factor(rs174548))
> summary(fit1)
Call:
lm(formula = chol ~ factor(sex) + factor(rs174548))

Residuals:
Min       1Q   Median       3Q      Max 

-66.6534 -14.4633  -0.6008  15.4450  57.6350 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           175.365      1.786  98.208  < 2e-16 ***
factor(sex)1           11.053      2.126   5.199 3.22e-07 ***
factor(rs174548)1    7.236      2.250   3.215  0.00141 ** 
factor(rs174548)2    5.184      4.398   1.179  0.23928    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.24 on 396 degrees of freedom
Multiple R-squared: 0.08458,    Adjusted R-squared: 0.07764 
F-statistic:  12.2 on 3 and 396 DF,  p-value: 1.196e-07 

> anova(fit0,fit1)
Analysis of Variance Table

Model 1: chol ~ factor(sex)
Model 2: chol ~ factor(sex) + factor(rs174548)

Res.Df    RSS Df Sum of Sq     F   Pr(>F)   
1    398 183480                               
2    396 178681  2    4799.1 5.318 0.005259 **
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ANOVA: Two-Way Model (without interaction)

> fit1 = lm(chol ~ factor(sex) + factor(rs174548))
> summary(fit1)
Call:
lm(formula = chol ~ factor(sex) + factor(rs174548))

Residuals:
Min       1Q   Median       3Q      Max 

-66.6534 -14.4633  -0.6008  15.4450  57.6350 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           175.365      1.786  98.208  < 2e-16 ***
factor(sex)1           11.053      2.126   5.199 3.22e-07 ***
factor(rs174548)1    7.236      2.250   3.215  0.00141 ** 
factor(rs174548)2    5.184      4.398   1.179  0.23928    

Residual standard error: 21.24 on 396 degrees of freedom
Multiple R-squared: 0.08458,    Adjusted R-squared: 0.07764 
F-statistic:  12.2 on 3 and 396 DF,  p-value: 1.196e-07 

> anova(fit0,fit1)
Analysis of Variance Table

Model 1: chol ~ factor(sex)
Model 2: chol ~ factor(sex) + factor(rs174548)

Res.Df    RSS Df Sum of Sq     F   Pr(>F)   
1    398 183480                               
2    396 178681  2    4799.1 5.318 0.005259 **

n Interpretation of results:
n Estimated mean cholesterol for male 

C/C group: 175.37 mg/dl
n Estimated difference in mean 

cholesterol levels between females 
and males adjusted by genotype: 
11.053 mg/dl

n Estimated difference in mean 
cholesterol levels between C/G and 
C/C groups adjusted by sex: 7.236 
mg/dl

n Estimated difference in mean 
cholesterol levels between G/G and 
C/C groups adjusted by sex: 5.184 
mg/dl

n There is evidence that cholesterol is 
associated with sex (p< 0.001).

n There is evidence that cholesterol is 
associated with genotype (p=0.005) 
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ANOVA: Two-Way Model (without interaction)

n In words:
n Adjusting for sex, the difference in mean cholesterol 

comparing C/G to C/C is 7.236 and comparing G/G to 
C/C is 5.184.

n This difference does not depend on sex
n (this is because the model does not have an interaction between 

sex and genotype!)
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ANOVA: Two-Way Model (with interaction)

> fit2 = lm(chol ~ factor(sex) * factor(rs174548))
> summary(fit2)

Call:
lm(formula = chol ~ factor(sex) * factor(rs174548))

Residuals:
Min       1Q   Median       3Q      Max 

-70.5286 -13.6037  -0.9736  14.1709  54.8818 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)                          178.1182     2.0089  88.666  < 2e-16 ***
factor(sex)1                           5.7109     2.7982   2.041  0.04192 *  
factor(rs174548)1    0.9597     3.1306   0.307  0.75933    
factor(rs174548)2    -0.2015     6.4053  -0.031  0.97492    
factor(sex)1:factor(rs174548)1   12.7398     4.4650   2.853  0.00456 ** 
factor(sex)1:factor(rs174548)2    10.2296     8.7482   1.169  0.24297    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.07 on 394 degrees of freedom
Multiple R-squared: 0.1039,     Adjusted R-squared: 0.09257 
F-statistic:  9.14 on 5 and 394 DF,  p-value: 3.062e-08 
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ANOVA: Model comparison

> anova(fit1,fit2)
Analysis of Variance Table

Model 1: chol ~ factor(sex) + factor(rs174548)
Model 2: chol ~ factor(sex) * factor(rs174548)

Res.Df    RSS  Df Sum of Sq      F  Pr(>F)  
1    396 178681                               
2    394 174902   2      3779 4.2564 0.01483 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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ANOVA: Two-Way Model (with interaction)
> fit2 = lm(chol ~ factor(sex) * factor(rs174548))
> summary(fit2)

Call:
lm(formula = chol ~ factor(sex) * factor(rs174548))

Residuals:
Min       1Q   Median       3Q      Max 

-70.5286 -13.6037  -0.9736  14.1709  54.8818 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)                          178.1182     2.0089  88.666  < 2e-16 ***
factor(sex)1                           5.7109     2.7982   2.041  0.04192 *  
factor(rs174548)1    0.9597     3.1306   0.307  0.75933    
factor(rs174548)2    -0.2015     6.4053  -0.031  0.97492    
factor(sex)1:factor(rs174548)1     12.7398     4.4650   2.853  0.00456 ** 
factor(sex)1:factor(rs174548)2    10.2296     8.7482   1.169  0.24297    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.07 on 394 degrees of freedom
Multiple R-squared: 0.1039,     Adjusted R-squared: 0.09257 
F-statistic:  9.14 on 5 and 394 DF,  p-value: 3.062e-08 

n Interpretation of results:
n Estimated mean cholesterol 

for male C/C group: 
178.12 mg/dl

n Estimated mean cholesterol 
for female C/C group? 
(178.12 + 5.7109) mg/dl

n Estimated mean cholesterol 
for male C/G group: 
(178.12 +0.9597) mg/dl

n Estimated mean cholesterol 
for female C/G group: 
(178.12 + 5.7109 + 
0.9597 + 12.7398) mg/dl

n …

n There is evidence for an 
interaction between sex 
and genotype (p= 0.015)

> anova(fit1,fit2)
Analysis of Variance Table

Model 1: chol ~ factor(sex) + factor(rs174548)
Model 2: chol ~ factor(sex) *    factor(rs174548)

Res.Df    RSS  Df Sum of Sq      F  Pr(>F)  
1    396 178681                               
2    394 174902   2      3779 4.2564 0.01483 *
---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Two-Way ANOVA

Significant 
Interaction?

Interpret the effect of factor A on 
mean response for each level of 
factor B (or effect of factor B on 
mean response for each level 

of factor A)

Interpret main effects of 
factor A and factor B

YES

NO
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ANCOVA MODELS

(aka ANACOVA)
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ANalysis of COVAriance Models (ANCOVA)
Motivation:

n Scientific question:
n Assess the effect of rs174548 on cholesterol levels 

adjusting for age
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ANalysis of COVAriance Models (ANCOVA)

n ANOVA with one or more continuous variables
n Equivalent to regression with “dummy” variables and 

continuous variables

n Primary comparison of interest is across k groups 
defined by a categorical variable, but the k groups may 
differ on some other potential predictor or confounder 
variables [also called covariates].
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ANalysis of COVAriance Models (ANCOVA)

n To facilitate discussion assume
n Y: continuous response (e.g. cholesterol) 
n X: continuous variable (e.g. age) 
n Z: dummy variable (e.g. indicator of C/G or G/G versus C/C)

n Model:

Note that:

This model allows for different intercepts/slopes for each 
group.

ebbbb ++++= XZZXY 3210

XZXYEZ
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)()(]1,|[1
]0,|[0

3120

10

bbbb
bb

+++==Þ=
+==Þ=

Interaction term



247

ANCOVA

n Testing coincident lines:
n Compares overall model with reduced model

n Testing parallelism: 
n Compares overall model with reduced model

0: 30 =bH

0,0: 320 == bbH

ebb ++= XY 10

ebbb +++= ZXY 210
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ANCOVA
> fit0 = lm(chol ~ factor(rs174548))
> summary(fit0)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
Min        1Q    Median        3Q       Max 

-64.06167 -15.91338  -0.06167  14.93833  59.13605 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           181.062      1.455 124.411  < 2e-16 ***
factor(rs174548)1    6.802      2.321   2.930  0.00358 ** 
factor(rs174548)2    5.438      4.540   1.198  0.23167    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,     Adjusted R-squared: 0.01718 
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184 

> anova(fit0)
Analysis of Variance Table
Response: chol

Df Sum Sq Mean Sq F value  Pr(>F)  
factor(rs174548)    2   4314    2157  4.4865 0.01184 *
Residuals           397 190875     481                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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ANCOVA
> fit1 = lm(chol ~ factor(rs174548) + age)
> summary(fit1)
Call:
lm(formula = chol ~ factor(rs174548) + age)

Residuals:
Min       1Q   Median       3Q      Max 

-57.2089 -14.4293   0.4443  14.2652  55.8985 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)          163.28125    4.36422  37.414  < 2e-16 ***
factor(rs174548)1    7.30137    2.27457   3.210  0.00144 ** 
factor(rs174548)2    5.08431    4.44331   1.144  0.25321    
age                    0.32140    0.07457   4.310 2.06e-05 ***

Residual standard error: 21.46 on 396 degrees of freedom
Multiple R-squared: 0.06592,    Adjusted R-squared: 0.05884 
F-statistic: 9.316 on 3 and 396 DF,  p-value: 5.778e-06 

> anova(fit0,fit1)
Analysis of Variance Table

Model 1: chol ~ factor(rs174548)
Model 2: chol ~ factor(rs174548) + age

Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
1    397 190875                                  
2    396 182322  1    8552.9 18.577 2.062e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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ANCOVA
> fit2 = lm(chol ~ factor(rs174548) * age)
> summary(fit2)
Call:
lm(formula = chol ~ factor(rs174548) * age)

Residuals:
Min       1Q   Median       3Q      Max 

-57.5425 -14.3002   0.7131  14.2138  55.7089 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)              164.14677    5.79545  28.323  < 2e-16 ***
factor(rs174548)1    3.42799    8.79946   0.390  0.69707    
factor(rs174548)2    16.53004   18.28067   0.904  0.36642    
age                        0.30576    0.10154   3.011  0.00277 ** 
factor(rs174548)1:age      0.07159    0.15617   0.458  0.64692    
factor(rs174548)2:age     -0.20255    0.31488  -0.643  0.52043    

Residual standard error: 21.49 on 394 degrees of freedom
Multiple R-squared: 0.06777,    Adjusted R-squared: 0.05594 
F-statistic: 5.729 on 5 and 394 DF,  p-value: 4.065e-05 
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ANCOVA

Test of 
coincident 
lines

> fit0 = lm(chol ~ age)
> summary(fit0)

Call:
lm(formula = chol ~ age)

Residuals:
Min      1Q  Median      3Q     Max 

-60.453 -14.643  -0.022  14.659  58.995 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age           0.31033    0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared:  0.04099, Adjusted R-squared:  0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05

> anova(fit0,fit2)
Analysis of Variance Table

Model 1: chol ~ age
Model 2: chol ~ factor(rs174548) * age

Res.Df RSS Df Sum of Sq F  Pr(>F)  
1    398 187187                              
2    394 181961  4    5226.6 2.8293 0.02455 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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ANCOVA

> anova(fit1,fit2)
Analysis of Variance Table

Model 1: chol ~ factor(rs174548) + age
Model 2: chol ~ factor(rs174548) * age

Res.Df    RSS Df Sum of Sq     F Pr(>F)
1    396 182322                          
2    394 181961  2    361.11 0.391 0.6767

Test of 
parallel lines
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ANCOVA

n In summary:
n If the slopes are not equal, then age is an effect modifier

n If the slopes are the same, 
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ANCOVA

n If the slopes are the same, 

n then one can obtain adjusted means for the three genotypes using the 
mean age over all groups

n For example, the adjusted means for the three groups would be
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ANCOVA

> ## mean cholesterol for different genotypes adjusted by age
> predict(fit1, new=data.frame(age=mean(age),rs174548=0))

1 
180.9013 
> predict(fit1, new=data.frame(age=mean(age),rs174548=1))

1 
188.2026 
> predict(fit1, new=data.frame(age=mean(age),rs174548=2))

1 
185.9856 
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ANCOVA

Significant 
Interaction?

(slopes are different?)

Interpret the difference in means 
of the response for given values 

of the continuous variable

YES

Control for potential 
confounder?

Compute adjusted means 
at the common X mean 

NO

YES
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Logistic Regression

Linear
Regression/ANOVA

Continuous
Outcome?

Binary
Outcome?

YES

NO

RECAP:

Logistic
Regression

Examine main effects 
considering 

predictors of interest 
and confounders

Test effect 
modifications or other 

interactions

Other
Methods

YES

260

NO
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Logistic Regression: Motivation

n Many scientific questions of interest involve a 
binary outcome (e.g. disease/no disease)

n Let’s investigate if genetic factors are associated 
with coronary heart disease. 
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Logistic Regression: Motivation

n Scientific questions of interest:
n Assess the effect of rs4775401 on CHD

n Assess the effect of cholesterol on CHD

n Assess the effect of rs4775401 on CHD after accounting 
for cholesterol 
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Logistic Regression: Motivation

n Scientific question:
n Assess the effect of rs4775401 on odds of CHD

Here is a contingency table for the SNP and CHD:

Without using regression, what tool could we use to 
look for an association?
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Motivation: rs4755401 and CHD

> table(rs4775401,chd)

chd

rs4775401   0   1

0 154  48

1 104  66

2  15  13



Here is a contingency table for the SNP and CHD:

Without using regression, what tool could we use to look for an association?

In addition to hypothesis testing, we need to summarize the strength of 
association between the two variables
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Motivation: rs4755401 and CHD

> table(rs4775401,chd)

0   1
0 154  48
1 104  66
2  15  13

> chisq.test(rs4775401,chd)

Pearson's Chi-squared test
data:  rs4775401 and chd
X-squared = 12.657, df = 2, p-value = 0.001785

Measures of association for binary outcomes

n Risk difference (RD) = P(outcome|exposed) - P(outcome|not exposed) 
= (b/(a+b)) - (d/(c+d))

n RD(T/T vs C/C) = 13/(13+15) – 48/(48+154) = 0.23

Outcome

No Yes

Ex
po

su
re Yes a b

No c d

> table(rs4775401,chd)

0   1
0 154  48
1 104  66
2  15  13
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n Risk difference interpretation
n Additive difference in probability (risk) between exposed 

and unexposed
n Also called excess risk
n -1 < RD < 1
n RD = 0 ⇒ no association; risk of outcome same for 

exposed and unexposed

Outcome

No Yes

Ex
po

su
re Yes a b

No c d

Measures of association for binary outcomes
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n Relative risk (RR) = P(outcome|exposed)/P(outcome|not exposed) 
= (b/(a+b))/(d/(c+d))

n RR(T/T vs C/C) = (13/(13+15)) / (48/(48+154)) = 1.95

Outcome

No Yes
Ex

po
su

re Yes a b

No c d

Measures of association for binary outcomes

> table(rs4775401,chd)

0   1
0 154  48
1 104  66
2  15  13
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n Relative risk interpretation
n Multiplicative difference in probability (risk) of outcome 

among exposed compared to unexposed
n 0 < RR < ∞
n RR = 1 ⇒ no association; risk of outcome same for exposed 

and unexposed

Outcome

No Yes

Ex
po

su
re Yes a b

No c d

Measures of association for binary outcomes
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n Odds = P/(1-P)
n Odds ratio (OR)    = Odds(outcome|exposed)/Odds(outcome|not exposed) 

= ((b/(a+b))/(a/(a+b)))/((d/(c+d))/(c/(c+d)))
= (b/a)/(d/c) = (bc)/(ad)

n OR(T/T vs C/C) = (13/15) / (48/154) = 2.78

Outcome

No Yes

Ex
po

su
re Yes a b

No c d

Measures of association for binary outcomes

> table(rs4775401,chd)

0   1
0 154  48
1 104  66
2  15  13
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n Odds ratio interpretation
n Multiplicative difference in odds of outcome between 

exposed and unexposed
n 0 < OR < ∞
n OR = 1 ⇒ no association; odds of outcome same for 

exposed and unexposed

Outcome

No Yes
Ex

po
su

re Yes a b

No c d

Measures of association for binary outcomes
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Pros and cons of measures of association

n RD is appealing because it directly 
communicates absolute increase in risk
n Often more policy relevant than relative measures

n RR more directly interpretable than OR (most 
people don’t have an intuitive understanding 
of odds)

n OR estimable in case-control studies where 
RR and RD are not

n For rare outcomes, OR ≈ RR

272
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Logistic Regression: Motivation

n The chi-squared test is adequate for investigating 
the association between two categorical predictors

n But what if we want to investigate the association 
between a continuous predictor like cholesterol and 
a binary outcome like CHD?

n Logistic regression will provide us with a tool for this



Binary outcome and continuous exposure

n Objective: Estimate association between binary outcome 
and continuous exposure

n Yi = binary response
Xi = continuous exposure
pi = E(Yi|Xi) = P(Yi = 1|Xi) 

n One solution – fit a linear model

n This is just a standard linear model except our outcome is 
binary

n Interpretation of b1?
n Problems with this approach?

E(Yi | Xi ) = P(Yi =1| Xi ) = β0 +β1Xi
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Motivating example: CHD and cholesterol

> lm.mod1  <- lm(chd ~ chol, data = cholesterol)

> summary(lm.mod1)

Call:

lm(formula = chd ~ chol, data = cholesterol)

Residuals:

Min      1Q  Median      3Q     Max 

-0.7067 -0.3301 -0.1289  0.3975  1.0227 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -1.4245087  0.1747852   -8.15 4.77e-15 ***

chol         0.0094718  0.0009436   10.04  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4169 on 398 degrees of freedom

Multiple R-squared:  0.202, Adjusted R-squared:    0.2 

F-statistic: 100.8 on 1 and 398 DF,  p-value: < 2.2e-16

What is the interpretation of the 
cholesterol parameter estimate?
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Binary outcome and continuous exposure

w Solution: use a transformation that maps P(Yi = 1|Xi) 
to the real line

w Let logit(pi) = log(pi / (1 - pi)))
w pi       (0, 1) 
w pi /(1 - pi) (0, ∞) 
w log(pi /(1 - pi)) (-∞, ∞) 
w Regress logit(pi) on Xi

logit(E(Yi | Xi )) = log(P(Yi =1| Xi ) / (1−P(Yi =1| Xi ))) = β0 +β1Xi

∈

∈

∈

0.0 0.2 0.4 0.6 0.8 1.0

−6
−4

−2
0

2
4

6

p

lo
gi
t(p
)

276



Interpretation of logistic regression parameters

w On the log-odds scale

w That is, for two observations that differ by one unit in X 
there is a difference of     in their log odds of Y = 1

w Or, equivalently, the log of the ratio of the odds of Y = 
1 (i.e. the log OR) for two units that differ in X by one 
unit is 

log(odds(Yi =1| Xi = (c+1))) = β0 +β1(c+1)
log(odds(Yi =1| Xi = c)) = β0 +β1c
log(odds(Yi =1| Xi = (c+1)))− log(odds(Yi =1| Xi = c)) = β1
log(odds(Yi =1| Xi = (c+1)) / odds(Yi =1| Xi = c)) = β1
log(OR) = β1

β1

β1

Odds Ratio (OR)
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Interpretation of logistic regression parameters

w By exponentiating we arrive at a simpler interpretation

w So for two observations that differ in X by one unit there 
is a multiplicative difference in their odds of Y = 1 of

w Or, equivalently, the ratio of the odds of Y = 1 (i.e., the 
odds ratio) for two observations that differ in X by one 
unit is 

exp(log(OR)) = exp(β1)
OR = exp(β1)

exp(β1)

exp(β1)
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Motivating example: CHD and cholesterol

w What do these results tell us about the 
relationship between cholesterol and CHD?

> glm.mod1 <- glm(chd ~ chol, family = "binomial")
> summary(glm.mod1)

Call:
glm(formula = chd ~ chol, family = "binomial", data = cholesterol)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-1.7437  -0.8219  -0.4852   0.9096   2.4536  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -11.09600    1.29881  -8.543  < 2e-16 ***
chol 0.05498    0.00678   8.109 5.12e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 409.71  on 398  degrees of freedom
AIC: 413.71

Number of Fisher Scoring iterations: 4
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Motivating example: CHD and cholesterol

w Comparing two people who differ in cholesterol by 1 mg/dl, the log 
odds of CHD are higher by 0.055 for the individual with higher 
cholesterol

> glm.mod1 <- glm(chd ~ chol, family = "binomial")
> summary(glm.mod1)

Call:
glm(formula = chd ~ chol, family = "binomial", data = cholesterol)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-1.7437  -0.8219  -0.4852   0.9096   2.4536  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -11.09600    1.29881  -8.543  < 2e-16 ***
chol 0.05498    0.00678   8.109 5.12e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 409.71  on 398  degrees of freedom
AIC: 413.71

Number of Fisher Scoring iterations: 4
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Motivating example: CHD and cholesterol

w Differences in log odds are pretty spectacularly difficult 
to interpret!

w It would be much better to exponentiate the coefficients 
and report odds ratios

w Comparing two people who differ in cholesterol by 1 
mg/dl, the odds of CHD are higher by a factor of 1.06 
(95% CI: 1.04, 1.07) for the individual with higher 
cholesterol

> exp(glm.mod1$coef)
(Intercept)         chol

1.517293e-05 1.056515e+00 
> exp(confint(glm.mod1))
Waiting for profiling to be done...

2.5 %       97.5 %
(Intercept) 1.061838e-06 0.0001744859
chol 1.043101e+00 1.0712556915
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Multivariable logistic regression

w Often we are interested in examining associations 
between multiple predictors simultaneously and a 
binary outcome 

w Multiple logistic regression follows same pattern as 
linear regression

w exp(bk) interpreted as the OR associated with a one 
unit change in the kth predictor, among individuals 
with other predictors at same levels (or holding other 
predictors constant/controlling for/adjusting for etc.)

logit(E(Yi | X1i,...,Xpi )) = β0 +β1X1i +...+βpXpi
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Motivating example
> glm.mod2 <- glm(chd ~ chol+factor(rs4775401), family = "binomial", data = cholesterol)
> summary(glm.mod2)

Call:
glm(formula = chd ~ chol + factor(rs4775401), family = "binomial", 

data = cholesterol)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-1.5528  -0.7810  -0.4585   0.8037   2.6275  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)        -11.625209   1.335335  -8.706  < 2e-16 ***
chol 0.055443   0.006872   8.069 7.11e-16 ***
factor(rs4775401)1   0.794212   0.259257   3.063  0.00219 ** 
factor(rs4775401)2   1.138308   0.464317   2.452  0.01422 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 397.27  on 396  degrees of freedom
AIC: 405.27

Number of Fisher Scoring iterations: 4
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Hypothesis testing for logistic regression

n Maximum likelihood is the standard method of 
estimating parameters from logistic models and is 
based on finding the estimates which maximize the 
joint probability for the observed data under the 
chosen model. 

n The Wald test uses maximum likelihood estimates 
(MLE) and their standard errors to conduct hypothesis 
tests

n Test: H0: bj = 0 (no association) vs. HA: bj ≠ 0 
n Construct a z-score: 

z =             ∼ N(0, 1) ⇒ Wald Test
β̂ j

SE(β̂ j )
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Motivating example
> glm.mod2 <- glm(chd ~ chol+factor(rs4775401), family = "binomial", data = cholesterol)
> summary(glm.mod2)

Call:
glm(formula = chd ~ chol + factor(rs4775401), family = "binomial", 

data = cholesterol)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-1.5528  -0.7810  -0.4585   0.8037   2.6275  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)        -11.625209   1.335335  -8.706  < 2e-16 ***
chol 0.055443   0.006872   8.069 7.11e-16 ***
factor(rs4775401)1   0.794212   0.259257   3.063  0.00219 ** 
factor(rs4775401)2   1.138308   0.464317   2.452  0.01422 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 397.27  on 396  degrees of freedom
AIC: 405.27

Number of Fisher Scoring iterations: 4

Wald statistics and p-values for 
each parameter
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Likelihood ratio test

§ The likelihood ratio statistic is useful in comparing 
nested models. (LRT = likelihood ratio test) 

§ This allows us to test hypotheses about multiple 
parameters simultaneously such as

H0: b1 = b2 = 0 vs 
HA: at least one parameter not equal to 0

§ In order to use the LRT we must fit a nested hierarchy 
of models

§ For example:
Model 1: logit pi = b0 + b1choli
Model 2: logit pi = b0 + b1choli + b2SNP1i + b3SNP2i
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Likelihood ratio test

n The LRT allows us to test the significance of the 
additional parameters in the larger model. 

n Example: Compare model 2 to model 3
H0: b2 = b3 = 0 

LRT = -2 [L1 − L2] ∼ c22
df = # parameters 
being tested
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Example: Likelihood ratio test

n After accounting for cholesterol, there is a statistically 
significant association between rs4775401 and CHD

> lrtest(glm.mod1,glm.mod2)
Likelihood ratio test

Model 1: chd ~ chol
Model 2: chd ~ chol + factor(rs4775401)
#Df LogLik Df Chisq Pr(>Chisq)   

1   2 -204.85                       
2   4 -198.63  2 12.44   0.001989 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Summary

We have considered:

§ ANOVA and ANCOVA
§ Interpretation
§ Estimation
§ Interaction

§ Logistic regression
§ Interpretation
§ Estimation

290

Everything is regression!
(Professor Scott Emerson)


