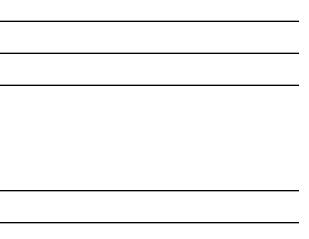
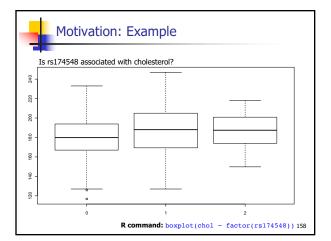
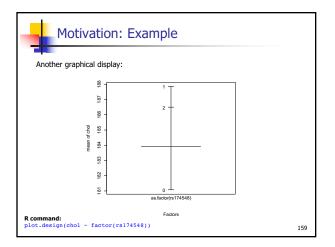


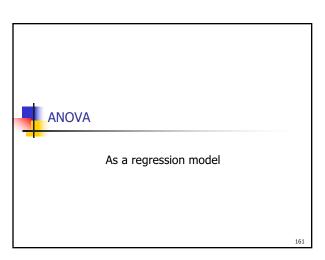
Motivation

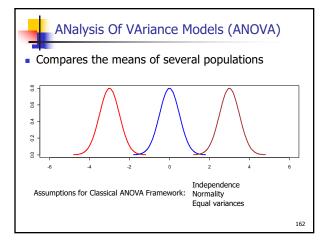

- Let's investigate if genetic factors are associated with cholesterol levels.
 - Ideally, you would have a <u>confirmatory analysis</u> of scientific hypotheses formulated prior to data collection
 - Alternatively, you could consider an <u>exploratory analysis</u> – hypotheses generation for future studies



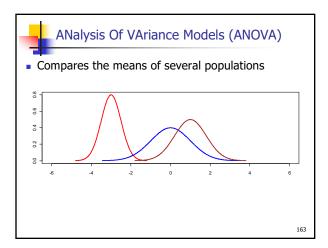


her way of getting the same results:
<pre>> by(chol, factor(rs174548), mean) factor(rs174548): 0 [1] 181.0617</pre>
factor(rs174548): 1 [1] 187.8639
factor(rs174548): 2 [1] 186.5
<pre>> by(chol, factor(rs174548), sd) factor(rs174548): 0 [1] 21.13998</pre>
factor(rs174548): 1 [1] 23.74541
factor(rs174548): 2 [1] 17.38333

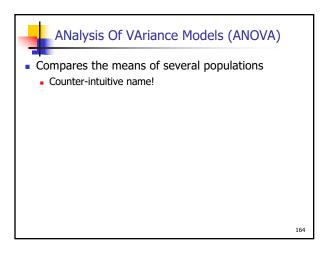

Motivation: Example

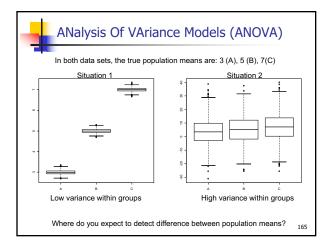

Feature:

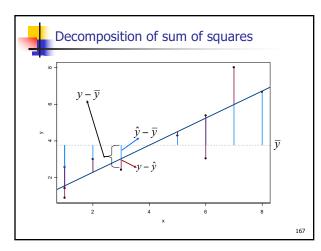
How do the mean responses compare across different groups?


160

Categorical/qualitative predictor



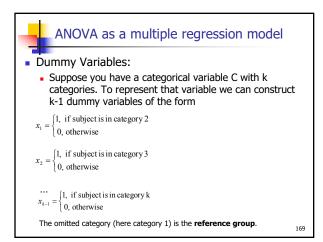


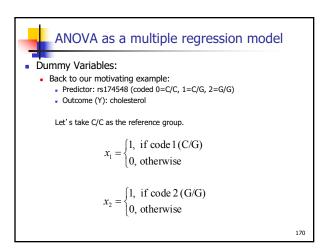

ANalysis Of VAriance Models (ANOVA)

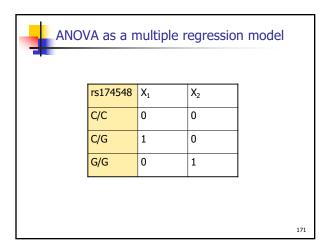
- Compares the means of several populations
 - Counter-intuitive name!
 - Underlying concept:
 - To assess whether the population means are equal, compares: Variation between the sample means (MSR) to
 Natural variation of the observations within the samples (MSE).

166

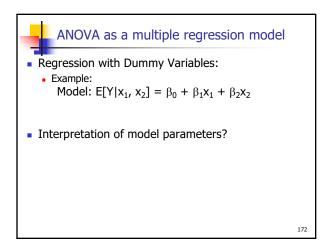
168

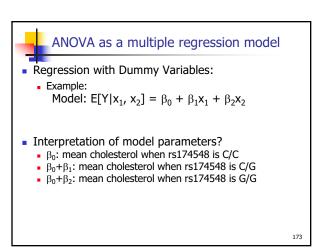

- The larger the MSR compared to MSE the more support that there is a difference in the <u>population means</u>!
- The ratio MSR/MSE is the F-statistic.

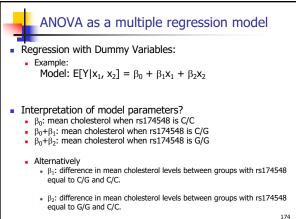


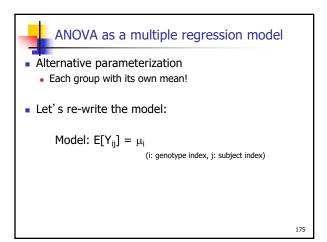


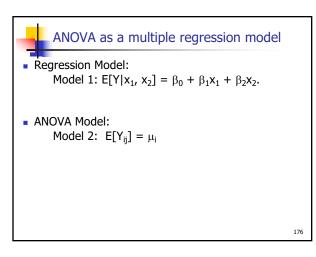
ANalysis Of VAriance Models (ANOVA)

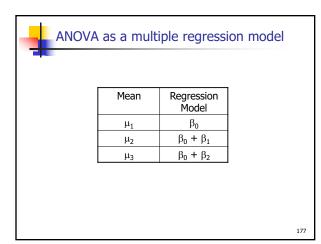

- Equivalent to regression with categorical predictors.
 - Predictors represented with "dummy" variables

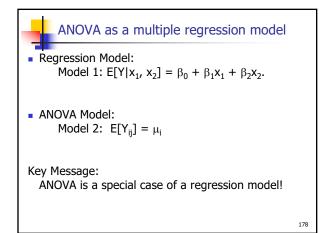


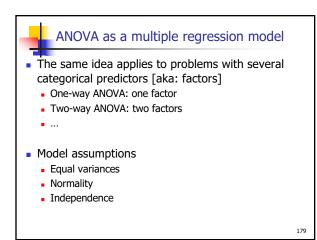


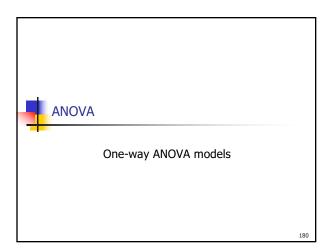


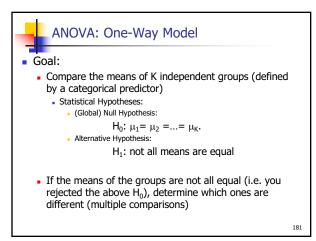


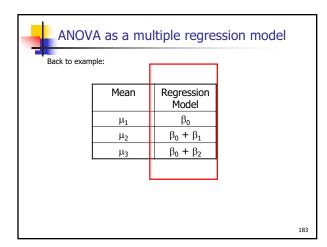












 Estimation and Inference Global Hypotheses H₀: μ₁ = μ₂ = = μ_κ vs. H₁: not all means are equal Analysis of variance table 				
Analysis	of varianc	e table		
Source	df	SS	MS	F
Regression	K-1	$SSR = \sum (\overline{y}_i - \overline{y})^2$	MSR=	MSR/
		i	SSR/(K-1)	MSE
Residual	n-K	$SSE = \sum (y_{ij} - \overline{y}_i)^2$	MSE=	
		<i>i,j</i> (1) (1)	SSE/n-K	
Total	n-1	$SST = \sum_{i,j} (y_{ij} - \overline{y})^2$		
182				

Estimation and Inference

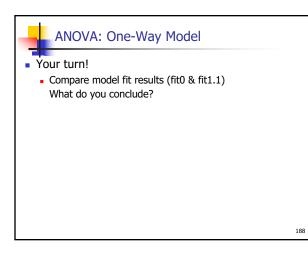
Global Hypotheses

 $H_0: \beta_1 = ... = \beta_{K-1} = 0$ vs. $H_1:$ not all coeffs are zero

Analysis of variance table

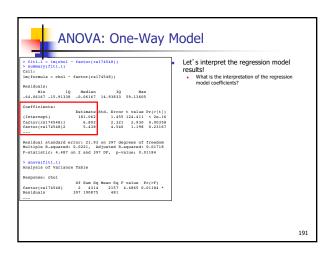
Source	df	SS	MS	F
Regression	K-1	$SSR = \sum (\overline{y}_i - \overline{y})^2$	MSR=	MSR/
		i	SSR/(K-1)	MSE
Residual	n-K	$SSE = \sum (y_{ij} - \overline{y}_i)^2$	MSE=	
		i,j	SSE/n-K	
Total	n-1	$SST = \sum (y_{ij} - \overline{y})^2$		
		i,j		184

ANOVA: One-Way Model

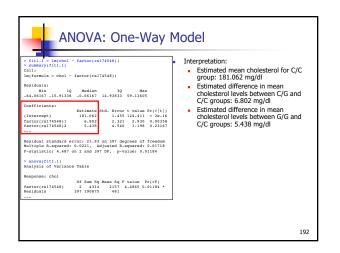

- How to fit a one-way model as a regression problem?
 - Need to use "dummy" variables
 - Create on your own (can be tedious!)
 - Most software packages will do this for you
 - R creates dummy variables in the background <u>as long as</u> you state you have a categorical variable (may need to use: factor)

ANOVA: (Dne-Way Model
By hand: Creating "dummy" variables:	<pre>> filo = in(chol ~ dummy1 + dummy2) > summary(filo) Call: in(formula = chol ~ dummy1 + dummy2) Residuals:</pre>
> dummy1 = 1* (rs174548==1) > dummy2 = 1* (rs174548==2)	
Fitting the ANOVA model:	Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718 P-statistic: 4.87 on 2 and 397 DF, p-value: 0.0184 > anova(fit) Analysis of Variance Table Response: chol Df Sum Sq Maan Sq F value Pr(Pf) dummy1 1 3624 0.5351 0.006215 ** dummy2 1 669 669 0.4350 0.231665 Residuals 397 190873 481

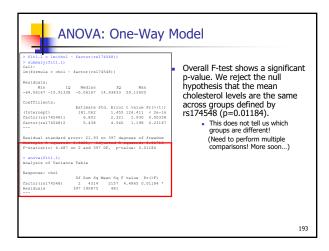
ANOVA	: One-Way Model
Better:	<pre>> fitl.1 = lm(chol ~ factor(rs174548)) > summary(fitl.1) Call:</pre>
Let R do it for you!	→ lm(formula = chol ~ factor(rs174548)) Residuals: Min 10 Median 30 Max -64.06167 -15.91338 -0.06167 14.93833 59.13605
	Coefficients: Estimate Std. Error t value Pr(> t)
	(Intercept) 181.062 1.455 124.411 < 2e-16 *** factor(rs174548)1 6.802 2.321 2.930 0.00358 ** factor(rs174548)2 5.438 4.540 1.198 0.23167
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 Residual standard error: 21.93 on 397 degrees of freedom
	Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718 F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184
	<pre>> anova(fit1.1) Analysis of Variance Table Response: chol</pre>
	Df Sum Sq Mean Sq F value Pr(>F) factor(rs174548) 2 4314 2157 4.4865 0.01184 * Residuals 397 190875 481

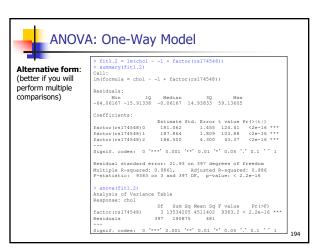


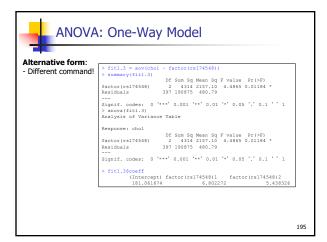
ANOVA: One-Way	y Model
<pre>> fit0 = lm(chol ~ dumnyl + dumny2) > summary(fit0)</pre>	<pre>> fit1.1 = lm(chol ~ factor(rs174548)) > summary(fit1.1)</pre>
1111	Call: in(formula c hol - factor(rs174548)) Residuals: Min 10 Modian 30 Max -64.06187-15.91338 -0.08167 14.93833 55.13605 Coefficients: Estimate Std. Error t value Pr(>(1)) (Intercept) 181.062 1.455 124.411 < 2a=16 *** factor(rs174548)1 6.802 2.212 2.230 0.00338 * factor(rs174548)2 5.438 4.540 1.198 0.23167 ***
) anov(fil) Analysis of Variance Table Response: chol Df Sum 8g Mean 8g Y Value Pr(>F) damyoi 1 523 523 7.338 0.06415 ** <u>Readinals 397 192875 681</u> 	> anova(fil.1) Analysis of Variance Table Basgonas: chol Df Sum Sq Mean Sq F value Pr(>F) factor(r17/54) 2 4314 2137 4.4865 0.01184 * Basiduals 337 190875 481
	189

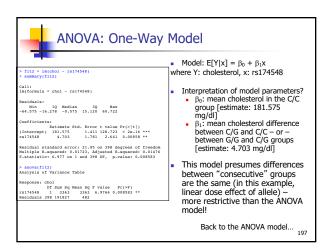


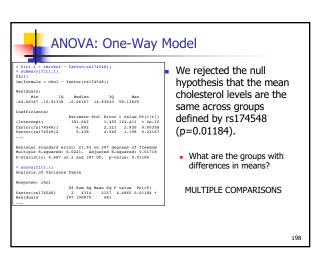
ANOVA: One-Way	y Model
<pre>> fit0 = lm(cho1 ~ dummy1 + dummy2) > summary(fit0)</pre>	<pre>> fit1.1 = lm(chol ~ factor(rs174548)) > summary(fit1.1)</pre>
lm(formula = chol ~ dummy1 + dummy2)	Call: lm(formula = chol ~ factor(rs174548))
Residuals: Min 1Q Median 3Q Max -64.06167 -15.91338 -0.06167 14.93833 59.13605	Residuals: Min 1Q Median 3Q Max -64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients: Estimate Std. Error t value Pr(> t) (Intercopt) 101.062 1.455 124.411 < 2a-16 ***	Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) 181.062 1.455 124.411 <2e-16
Residual standard error: 21.93 on 397 degrees of freedor Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718 F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184	Residual standard error: 21.93 on 397 degrees of freedom Nultiple R-squared: 0.0221, Adjusted R-squared: 0.01718 F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184
> anova(fit0) Analysis of Variance Table	> anova(fitl.1) Analysis of Variance Table
Response: chol <u>Df Sum Sq Mean Sq F value</u> Pr(>F) <u>dunmy1 1 3624</u> 3624 7.5381 0.006315 ** <u>dunmy2 1 690</u> 690 1.4350 0.231665 Residuals 397 190875 481	Response: chol 5f Sum Son Mean Sq F value Pr(>F) [actor(rs174548) 2 4314 Residuals 397 190875 481
<pre>> 1-pf(4.4865,2,397) [1] 0.01183671</pre>	
<pre>> 1-pf(((3624+690)/2)/481,2,397) [1] 0.01186096</pre>	190

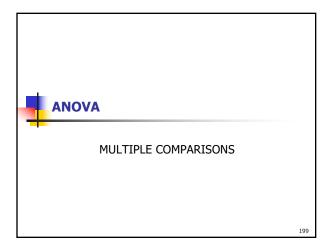


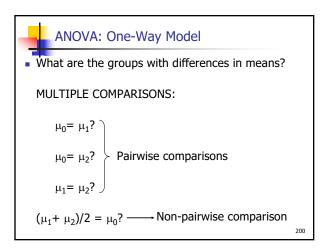


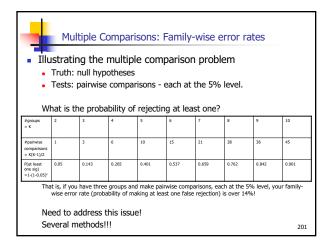


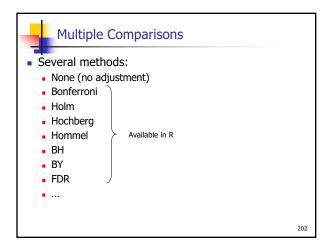


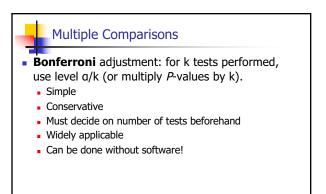


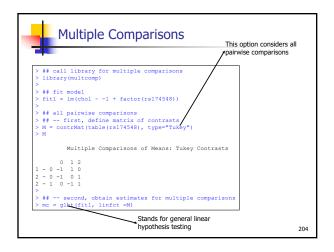


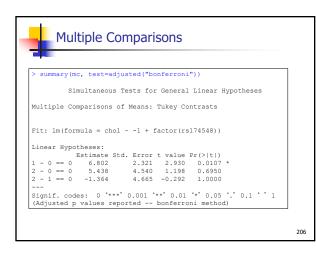


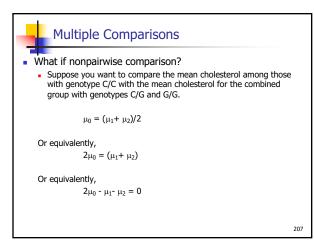

ANOVA: One-Way Model				
How about this one? How is rs174548 being treated now?	<pre>> file = im(chol - rs174548) > summary(fil2) Call: Im(formula = chol - rs174548) Pasidualis: Pasidualis: -6.575 -16.278 -0.375 15.120 60.722</pre>			
Compare model fit results from (fit1.1 & fit2).				









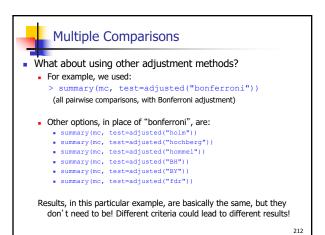


> ## thi	rd, adjust the p-values (or not) for multiple comparison
> summary(m	c, test=adjusted("none"))
Si	multaneous Tests for General Linear Hypotheses
Multiple Co	mparisons of Means: Tukey Contrasts
Fit. lm(for	$r_{mula} = chol \sim -1 + factor(rel74548))$
Fit: lm(for	mula = chol ~ -1 + factor(rs174548))
Fit: lm(for Linear Hypo	
Linear Hypo	theses: Estimate Std. Error t value Pr(> t)
Linear Hypo 1 - 0 == 0	theses: Estimate Std. Error t value Pr(> t) 6.802 2.321 2.930 0.00358 **
Linear Hypo 1 - 0 == 0 2 - 0 == 0	theses: Estimate Std. Error t value Pr(> t) 6.802 2.321 2.930 0.00358 ** 5.438 4.540 1.198 0.23167
Linear Hypo 1 - 0 == 0 2 - 0 == 0	theses: Estimate Std. Error t value Pr(> t) 6.802 2.321 2.930 0.00358 **
Linear Hypo 1 - 0 == 0 2 - 0 == 0 2 - 1 == 0 	theses: Estimate Std. Error t value Pr(> t) 6.802 2.321 2.930 0.00358 ** 5.438 4.540 1.198 0.23167 -1.364 4.665 -0.292 0.77015
Linear Hypo 1 - 0 == 0 2 - 0 == 0 2 - 1 == 0 Signif. cod	theses: Estimate Std. Error t value Pr(> t) 6.802 2.321 2.930 0.00358 ** 5.438 4.540 1.198 0.23167





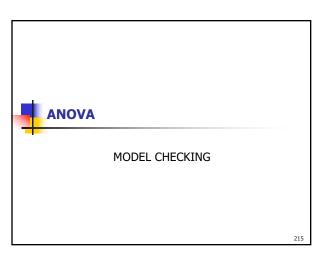
- What if nonpairwise comparison?
 - Your turn: Suppose you want to compare the mean cholesterol among those with genotype C/G with the mean cholesterol for the combined group with genotypes C/C and G/G.

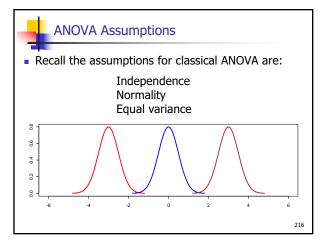


M	Iultiple Comparisons
Using R	for multiple comparisons with "user-defined" contrasts:
	<pre>rbind("mean(C/G+G/G) - mean(C/C)" = c(-2, 1, 1)) ht(fit1, linfct =contr)</pre>
	(mc2, test=adjusted("none"))
5	Simultaneous Tests for General Linear Hypotheses
Fit: lm(fo	ormula = chol ~ -1 + factor(rs174548))
Linear Hyp	ootheses:
mean(C/G+C	Estimate Std. Error t value Pr(> t) S/G) - mean(C/C) == 0 12.241 5.499 2.226 0.0266 *
	pdes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 p values reported none method)



Multiple Comparisons	
<pre>> ## more than one contrast (again user-defined) > contr2 = rbind("mean(C/cHG/G) - mean(C/C)" = c(-2, 1, 1), +</pre>	
Simultaneous Tests for General Linear Hypotheses Fit: lm(formula = chol ~ -1 + factor(rs174548)) Linear Hypotheses:	
Estimate Std. Error t value Pr(> t) mean(C/G+G/G) - mean(C/C) == 0 12.241 5.499 2.226 0.0266 * mean(C/C+G/G) - mean(C/G) == 0 -8.166 5.805 -1.407 0.1603	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported none method)	
<pre>> summary(mc3, test=adjusted("bonferroni"))</pre>	
Simultaneous Tests for General Linear Hypotheses Fit: lm(formula = chol ~ -1 + factor(rs174548)) Linear Hypotheses:	
Estimate Std. Error t value Pr(>lt) mean(C/G+G/G) - mean(C/C) == 0 12.24 5.499 2.226 0.0531 mean(C/C+G/G) - mean(C/G) == 0 -8.166 5.805 -1.407 0.3205	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 (Adjusted p values reported bonferroni method)	211

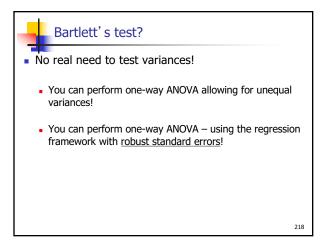


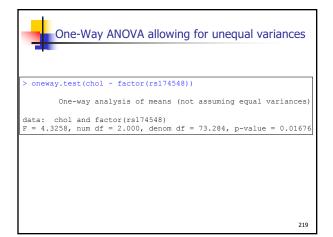

> summary(mo	<pre>c, test=adjusted("fdr"))</pre>
Sir	multaneous Tests for General Linear Hypotheses
Multiple Cor	mparisons of Means: Tukey Contrasts
1 - 0 == 0 2 - 0 == 0 2 - 1 == 0	Estimate Std. Error t value Pr(> t) 6.802 2.321 2.930 0.0107 * 5.438 4.540 1.198 0.3475 -1.364 4.665 -0.292 0.7702
Signif. code	es: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 values reported fdr method)

Multiple Comparisons

- FDR (False Discovery Rate)
 - Less conservative procedure for multiple comparisonsAmong rejected hypotheses, FDR controls the expected
 - Among rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (that is, type I errors).

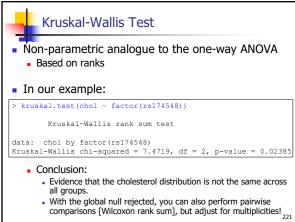
Bartlett's test

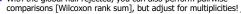

• We assume that variances are the same across populations

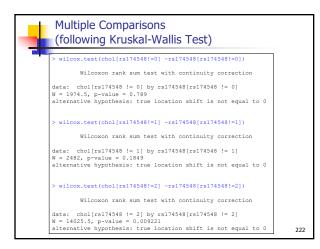

Bartlett's test allows you to test the hypothesis that the population variances are the same (versus they are not all equal).

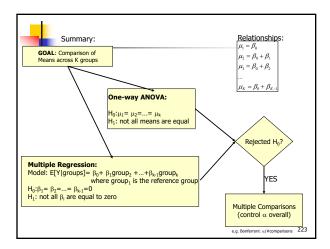
> bartlett.test(chol ~ factor(rs174548))

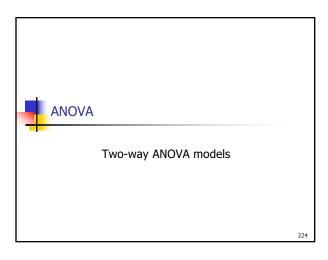

Bartlett test of homogeneity of variances

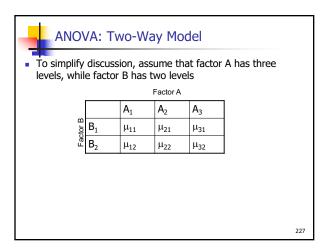

data: chol by factor(rs174548) Bartlett's K-squared = 4.8291, df = 2, p-value = 0.0894

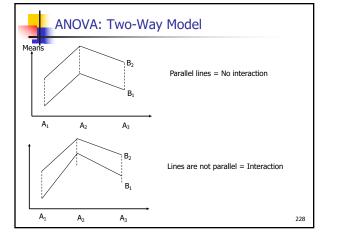





> summary(gee(chol Beginning Cgee S-fu					
running glm to get				, = .	
) factor(rs1745				
181.06167	α ε	5.802272	5	.438326	
GEE: GENERALIZED	LINEAR MODELS F	OR DEPEND	ENT DATA		
gee S-function, ve					
Model:					
Link: Variance to Mean B	Identi				
Correlation Struct					
correlation struct	ure. Indepe	muenc			
Call:					
gee(formula = chol	~ factor(rs1745	648), id =	seq(1, leng	th(chol)))	
Summary of Residual	· ·				
	10 Me	dian	30	Max	
-64.06167401 -15.91					
Coefficients:					
(**********	Estimate Na				
(Intercept) factor(rs174548)1					





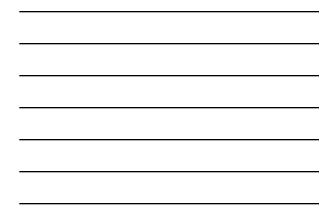

ANOVA: Two-Way Model Motivation:

- Scientific question:
 - Assess the effect of rs174548 and sex on cholesterol levels.

ANOVA: Two-Way Model

- Factors: A and B
- Goals:
 - Test for main effect of A
 - Test for main effect of B
 - Test for interaction effect of A and B

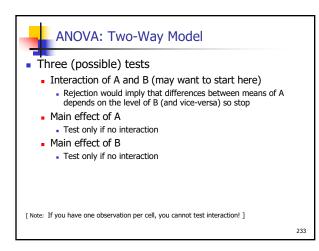
ANOVA: Two-Way Model

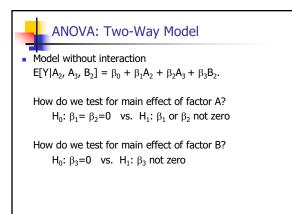

Recall:

- Categorical variables can be represented with "dummy" variables
- Interactions are represented with "cross-products"

 Mode E[Y]/ 	$A_{2}, A_{3}, B_{2}] = \beta_{0} +$	Way Model $\beta_1A_2 + \beta_2A_3 + \beta_3B_2$. each combination-group	
	A ₁	A ₂	A ₃
B ₁	μ ₁₁ =β ₀	$\mu_{21} = \beta_0 + \beta_1$	$\mu_{31} = \beta_0 + \beta_2$
B ₂	$\mu_{12} = \beta_0 + \beta_3$	$\mu_{22} = \beta_0 + \beta_1 + \beta_3$	$\mu_{32} = \beta_0 + \beta_2 + \beta_3$
	•	•	230

_			
_			
_			
_			
_			


 Mode 		Way Model $\beta_1 A_2 + \beta_2 A_3 + \beta_3 B_2.$	
	A ₁	A ₂	A ₃
B ₁	μ ₁₁ =β ₀	$\mu_{21} = \beta_0 + \beta_1$	$\mu_{31} = \beta_0 + \beta_2$
B ₂	$\mu_{12} = \beta_0 + \beta_3$	$\mu_{22} = \beta_0 + \beta_1 + \beta_3$	$\mu_{32}=\beta_0+\beta_2+\beta_3$
•Differe the •Differe	level of factor A.	groups defined by factor l	·



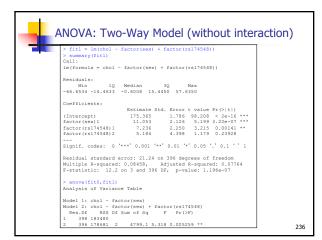
	ANOVA: Tw	vo-Way Model	
E[Y		$_{0} + \beta_{1}A_{2} + \beta_{2}A_{3} + \beta_{3}B_{2}$ s in each combination-grou	
	A ₁	A ₂	A ₃
B ₁	μ ₁₁ =β ₀	$\mu_{21} = \beta_0 + \beta_1$	$\mu_{31} = \beta_0 + \beta_2$
B ₂	$\mu_{12} = \beta_0 + \beta_3$	$\mu_{22} = \beta_0 + \beta_1 + \beta_3 + \beta_4$	$\mu_{32} = \beta_0 + \beta_2 + \beta_3 + \beta_5$
<u></u>			232

ſ

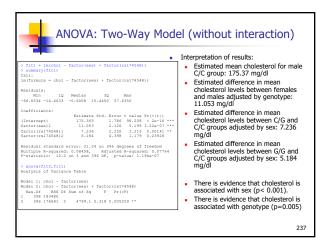
ANOVA: Two-Way Model

Model with interaction:

 $\mathsf{E}[\mathsf{Y}|\mathsf{A}_2,\,\mathsf{A}_3,\,\mathsf{B}_2] = \beta_0 + \beta_1\mathsf{A}_2 + \beta_2\mathsf{A}_3 + \beta_3\mathsf{B}_2 + \beta_4\mathsf{A}_2\mathsf{B}_2 + \beta_5\mathsf{A}_3\mathsf{B}_2$

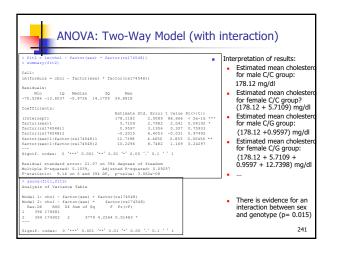

How do we test for interactions?

 $H_0: \beta_4 = \beta_5 = 0$ vs.

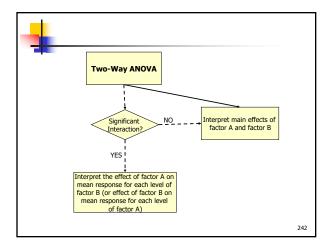

 $| H_1: \beta_4 \text{ or } \beta_5 \text{ not zero} |$

IMPORTANT:

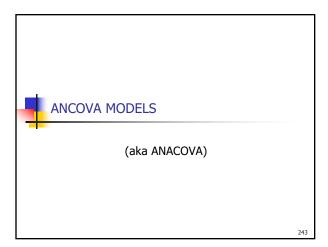
If you reject the null, do not test main effects!!!



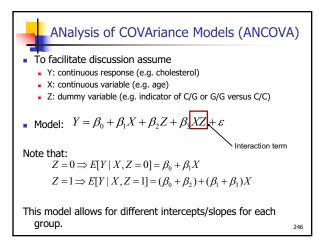

ANOVA: Two-Way Model (without interaction)

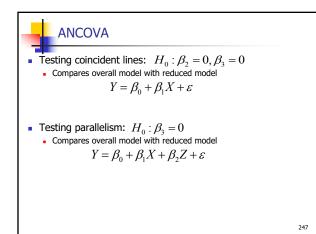

- In words:
 - Adjusting for sex, the difference in mean cholesterol comparing C/G to C/C is 7.236 and comparing G/G to C/C is 5.184.
 - This difference does not depend on sex
 - (this is because the model does not have an interaction between sex and genotype!)

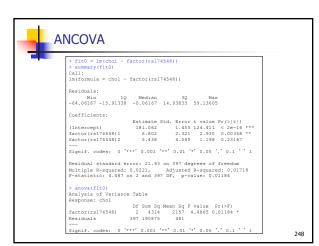
> fit2 = lm(chol ~ factor(sex) * f	actor(rs174548	3))			
> summary(fit2)					
Call:					
Call: lm(formula = chol ~ factor(sex) *	faataa (aa1745)				
im(formula = choi ~ factor(sex) *	Iactor(rs1/454	18))			
Residuals:					
Min 10 Median 3	Max				
-70.5286 -13.6037 -0.9736 14.170					
1010100 1010000 0100000 111110	5 51.0010				
Coefficients:					
	Estimate St	d. Error	t value	Pr(> t)	
(Intercept)	178.1182	2.0089	88.666	< 2e-16	**
factor(sex)1	5.7109	2.7982	2.041	0.04192	*
factor(rs174548)1	0.9597	3.1306	0.307	0.75933	
factor(rs174548)2	-0.2015	6.4053	-0.031	0.97492	
factor(sex)1:factor(rs174548)1					**
factor(sex)1:factor(rs174548)2	10.2296	8.7482	1.169	0.24297	
Signif. codes: 0 '***' 0.001 '**'					


	NOVA:	Moc	lel co	omp	aris	on					
Analysi: Model 1 Model 2 Res.D:	(fitl,fit s of Vari : chol ~ f RSS	iance Ta factor(factor(sex) + sex) *	facto	or(rsl	74548)					
2 39	5 178681 4 174902 codes:						5 '.'	0.1	. ,	1	

ANalysis of COVAriance Models (ANCOVA) Motivation:

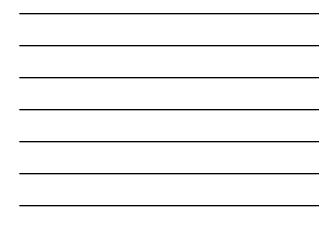

- Scientific question:
 - Assess the effect of rs174548 on cholesterol levels adjusting for age

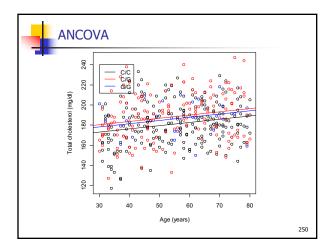

ANalysis of COVAriance Models (ANCOVA)


ANOVA with one or more continuous variables
 Equivalent to regression with "dummy" variables and continuous variables

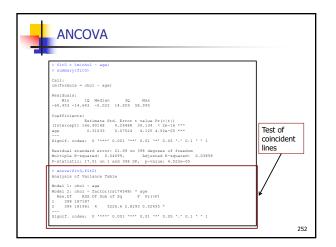
 Primary comparison of interest is across k groups defined by a categorical variable, but the k groups may differ on some other potential predictor or confounder variables [also called covariates].

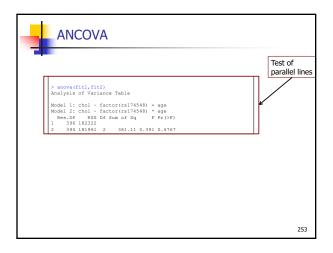
245



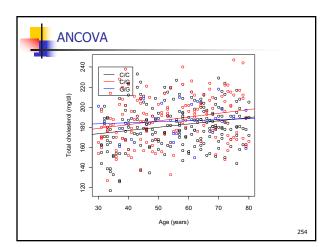


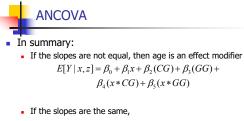
ANCOVA	
<pre>> fit1 = im(choi - factor(rs174548) + age) > summary(fit1) Call: Im(formula = chol - factor(rs174548) + age) Residuals: Nin 10 Median 30 Max -57.2089-14.4233 0.4443 14.2652 55.8985 Coefficients: Coefficients: In(factor(rs174548) 1 7.30137 2.27457 3.210 0.00144 ** factor(rs174548) 1 7.30137 2.27457 3.210 0.00144 ** factor(rs174548) 2 5.0431 4.444331 1.144 0.25321 age 0.32140 0.07457 4.310 2.06e-05 *** Residual standard error: 21.46 on 396 degrees of freedom Multiple R-squared: 0.05852, Adjusted R-squared: 0.05844 F*statistic: 9.314 on 3 and 396 DF, p-value: 5.778e-06 > anove(fit0, fit1) Analysis of Variance Table Model 1: chol - factor(rs174548) + age Res.0f R85 Df Sum of Sq F Pr(>F) 1 397 190875</pre>	
2 396 182322 1 8552.9 18.577 2.062e-05 *** Signif. codes: 0 **** 0.001 *** 0.01 *** 0.05 *. 0.1 * 1	249



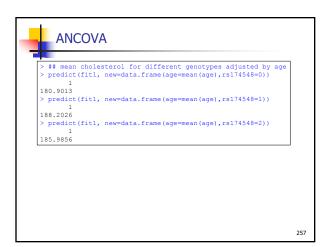


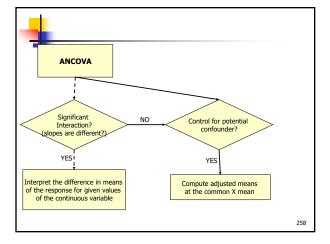
Residuals: Min 10 Median 30 Max -7.5425-14.3002 0.7131 14.2138 55.7089 Coefficients: [Intercept] I64.14677 5.75545 28.323 < 2e-16 factor(rs174548)1 3.42799 8.79946 0.390 0.69707 factor(rs174548)1 3.42799 8.79946 0.390 0.69707 factor(rs174548)1 3.42799 8.79946 0.390 0.05707 factor(rs174548)1 3.42799 8.79946 0.390 0.05707 factor(rs174548)1 3.011 0.00277 ** factor(rs174548)1:aee 0.07159 0.15617 0.058 0.66692
Estimate Std. Error t value Pr(> t) (Intercept) 164.14677 5.75545 28.323 2e-16 factor(rs174548)1 3.42799 8.79946 0.309 0.65707 factor(rs174548)2 16.53004 18.28067 0.904 0.36642 age 0.30576 0.01154 3.011 0.00277
(Intercept) 164.14677 5.79545 28.323 < 2e-16
factor(rs174548)1 3.42799 8.79946 0.300 0.69707 factor(rs174548)2 16.53004 18.28067 0.904 0.36642 age 0.30576 0.10154 3.011 0.00277 **
factor(rs174548)2 16.53004 18.28067 0.904 0.36642 age 0.30576 0.10154 3.011 0.00277 **
age 0.30576 0.10154 3.011 0.00277 **
Tactor(TS1/4548)1:age 0.0/159 0.1561/ 0.458 0.64692
factor(rs174548)2:age -0.20255 0.31488 -0.643 0.52043
Residual standard error: 21.49 on 394 degrees of freedom Multiple R-squared: 0.06777, Adjusted R-squared: 0.05594 F-statistic: 5.729 on 5 and 394 DF, p-value: 4.065e-05



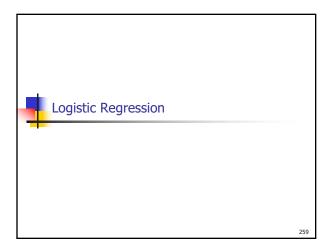


 $E[Y \mid x, z] = \beta_0 + \beta_1 x + \beta_2 (CG) + \beta_3 (GG)$

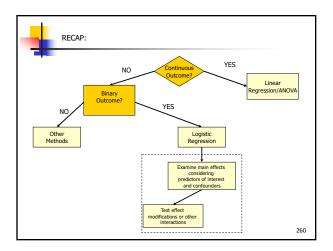

• If the slopes are the same,


$$E[Y | x, z] = \beta_0 + \beta_1 x + \beta_2 (CG) + \beta_3 (GG)$$
• then one can obtain adjusted means for the three genotypes using the mean age over all groups
• For example, the adjusted means for the three groups would be

$$\overline{Y}_1(adj) = \hat{\beta}_0 + \overline{x} \hat{\beta}_1$$


$$\overline{Y}_2(adj) = (\hat{\beta}_0 + \hat{\beta}_2) + \overline{x} \hat{\beta}_1$$

$$\overline{Y}_3(adj) = (\hat{\beta}_0 + \hat{\beta}_3) + \overline{x} \hat{\beta}_1$$



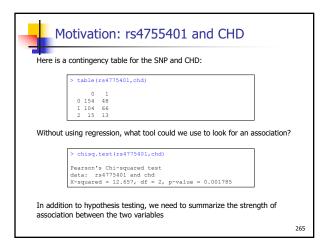
Logistic Regression: Motivation

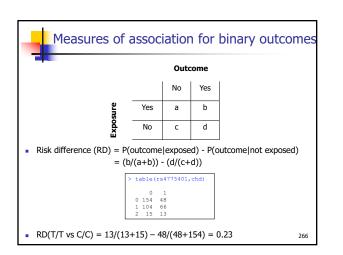
- Many scientific questions of interest involve a binary outcome (e.g. disease/no disease)
- Let's investigate if genetic factors are associated with coronary heart disease.

- Scientific questions of interest:
 - Assess the effect of rs4775401 on CHD
 - Assess the effect of cholesterol on CHD
 - Assess the effect of rs4775401 on CHD after accounting for cholesterol

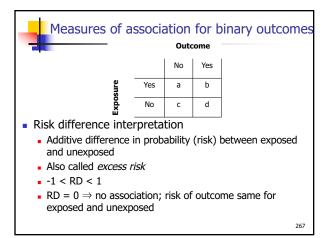
Logistic Regression: Motivation Scientific question: Assess the effect of rs4775401 on odds of CHD 263

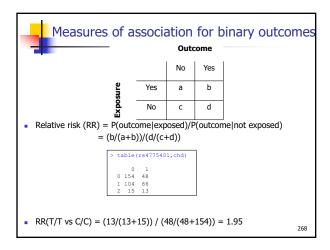
Motivation: rs4755401 and CHD

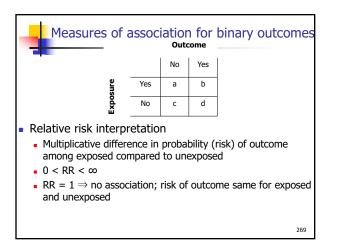

Here is a contingency table for the SNP and CHD:

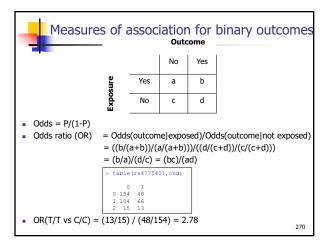

table(rs4775401,chd)

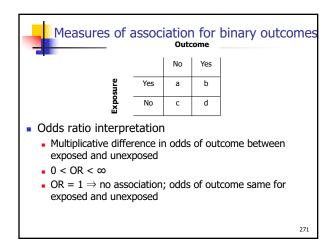
chd rs4775401 0 1 0 154 48 1 104 66 2 15 13

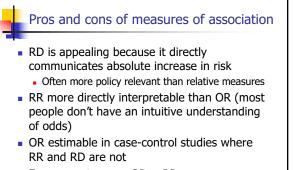

Without using regression, what tool could we use to look for an association?

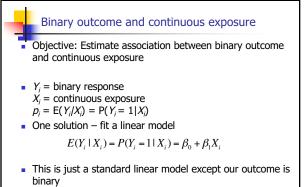

264



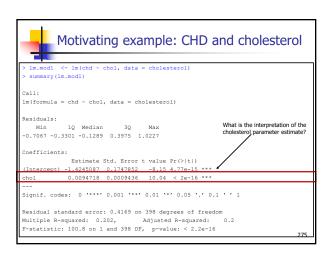


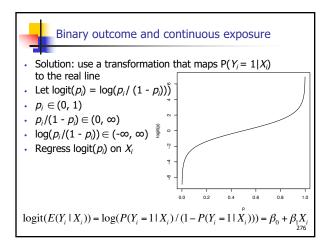




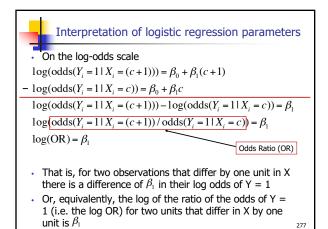


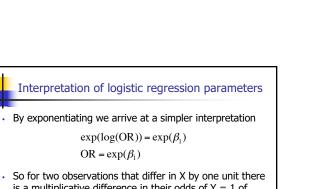
■ For rare outcomes, OR ≈ RR

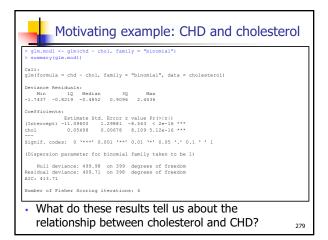

272

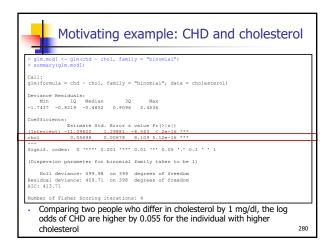

Logistic Regression: Motivation

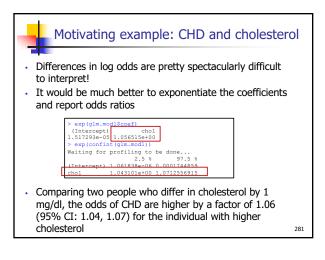
- The chi-squared test is adequate for investigating the association between two categorical predictors
- But what if we want to investigate the association between a continuous predictor like cholesterol and a binary outcome like CHD?
- Logistic regression will provide us with a tool for this




- Interpretation of β_l ?
- Problems with this approach?

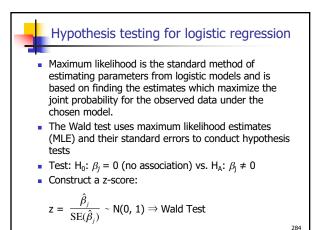


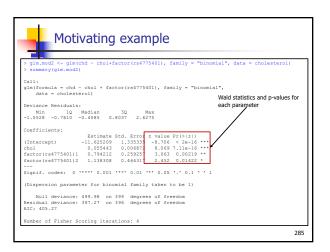




- So for two observations that difference in X by one unit there is a multiplicative difference in their odds of Y = 1 of $\exp(\beta_1)$
- Or, equivalently, the ratio of the odds of Y = 1 (i.e., the odds ratio) for two observations that differ in X by one unit is $exp(\beta_i)$

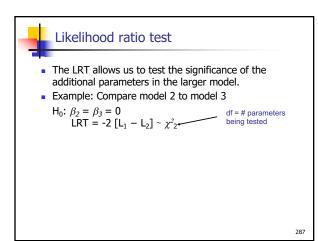
Multivariable logistic regression

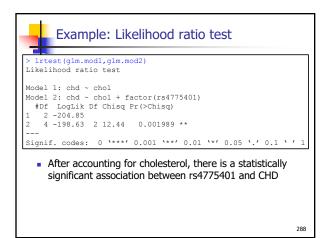

- Often we are interested in examining associations between multiple predictors simultaneously and a binary outcome
- Multiple logistic regression follows same pattern as linear regression

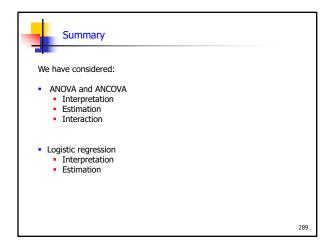

 $logit(E(Y_{i} | X_{1i},...,X_{pi})) = \beta_{0} + \beta_{1}X_{1i} + ... + \beta_{p}X_{pi}$

 exp(β_k) interpreted as the OR associated with a one unit change in the *k*th predictor, among individuals with other predictors at same levels (or holding other predictors constant/controlling for/adjusting for etc.)

Motivating example	
<pre>> glm.mod2 <- glm(chd ~ chol+factor(rs4775401), family = "binomial", data = cholesterol)</pre>	
<pre>> summary(glm.mod2)</pre>	
Call:	
<pre>glm(formula = chd ~ chol + factor(rs4775401), family = "binomial",</pre>	
Deviance Residuals:	
Min 1Q Median 3Q Max -1.5528 -0.7810 -0.4585 0.8037 2.6275	
Coefficients:	
Estimate Std. Error z value Pr(> z)	
(Intercept) -11.625209 1.335335 -8.706 < 2e-16 *** chol 0.055443 0.006872 8.069 7.11e-16 ***	-
factor(rs4775401)1 0.794212 0.259257 3.063 0.00219 **	
factor(rs4775401)2 1.138308 0.464317 2.452 0.01422 *	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
(Dispersion parameter for binomial family taken to be 1)	
Null deviance: 499.98 on 399 degrees of freedom	
Residual deviance: 397.27 on 396 degrees of freedom AIC: 405.27	
Number of Fisher Scoring iterations: 4	
2	83




Likelihood ratio test


- The likelihood ratio statistic is useful in comparing nested models. (LRT = likelihood ratio test)
- This allows us to test hypotheses about multiple parameters simultaneously such as $H_0: \beta_1 = \beta_2 = 0 vs$

 H_A : at least one parameter not equal to 0

- In order to use the LRT we must fit a nested hierarchy of models
- For example:
 - Model 1: logit $p_i = \beta_0 + \beta_1 chol_i$ Model 2: logit $p_i = \beta_0 + \beta_1 chol_i + \beta_2 SNP_{1i} + \beta_3 SNP_{2i}$

