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TranStat 
 
Software for the inference  
on infectious disease 
data 



Inference on infectious diseases 
modules in addition to this one 

•  Module 7: Simulation-based Inference for 
 Epidemiological Dynamics, July 12 – 14 

•  Module 8: MCMC I Methods for Infectious Disease 
 Studies, July 17 – 19 

•  Module 10: Statistics and Modeling with Novel Data 
 Streams, July 17 – 19 

•  Module 11: MCMC II Methods for Infectious 
 Disease  Studies, July 19 – 21 

•  Module 12: Spatial Statistics in Epidemiology and 
 Public Health, July 19 – 21 
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Lectures 
 July 12: 

1. Introduction to stochastic epidemic models; notation, 
properties, examples, IL, TB 

2. Important properties: R₀, growth rate, generation 
intervals, etc., TB 

July 13:  

3. Inference on stochastic epidemic models, TB 

4. Modeling using networks and other heterogeneities, 
TB 

5. Different models for vaccine mechanisms, IL 

6. Real time analysis of infectious disease outbreaks 
using TranStat, JS 



Lectures 

July 14:     

7. Stochastic models for small groups such as 
households, IL 

8. Inference for large groups such as cities, TB 

9. Stochastic models for arboviruses, IL 

10.Design and analysis of cluster randomized vaccine 
trials for emerging infectious disease epidemics: The 
case of ring vaccination for Ebola, IL 

 



Some Infectious Diseases Under Study 

•  Influenza 

•  Novel Coronavirus, SARS-CoV, MERS-CoV 

•  Ebola 

•  Cholera 

•  Dengue 

•  Chikungunya 

•   Zika 

•   Others, polio, pertussis, hand-foot-and-mouth (EV71) 

•  Agent X 



Some Infectious Diseases Under Study 
(Continued) 

•  Bioterrorist agents 

•  Smallpox 

•  Anthrax 

•  Agent X 



http://www.who.int/blueprint/en/ 





Some Examples 



Pandemic H1N1, 2009-2010 
Stochastic, Compartmental, Patch 



Pandemic H1N1 With Vaccination 



Spread the within US 
Agent-based, RF 



Simulated Mass Vaccination in US 



What Could Have Been Done 
Agent-based, RF 

 



Cholera Epidemic in Haiti with Reactive Vaccination, 

 Agent-based, RF 



Dengue Vaccines in Thailand 



Ebola vaccine trials 

• Phase III Ebola ring vaccination efficacy 

trial in Guinea – VSV vaccine estimated to 

have 100% efficacy. 

• Stochastic transmission models have been 

used to help estimate vaccine efficacy and 

effectiveness 

• Ring vaccination is used to eliminate Ebola 

in human populations, e.g., smallpox 

eradication 

 



Ring vaccination contained 



Ring vaccination not contained 



On with the course! 
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Stochastic models

Mathematical models describes some feature in a simplified way

The discrepancy between model and reality may be contained in
”random part” in model

Very important in small populations

Stochastic models enable uncertainty estimates (i.e. standard
errors) when estimating parameters
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Background

We want to model the spread of transmittable disease in a
community of individuals

At a given time-point an individual may be Susceptible, infected
but not yet infectious (Latent or Exposed), Infectious, or recovered
and immune (Removed)

Different class of epidemic models: SIR, SEIR, SIS, SIRS, ...

Main focus: SIR (childhood diseases, STDs, influenza, ...)

Short term outbreak vs endemic situation

Simplification for short term: fixed population, no waning immunity
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Notation

Some notation to be used

n = # individuals (n(t) if varying over time)

S(t) = # ”susceptibles” (susceptible individuals) at time t

I (t) = # ”infectives” (infectious individuals) at time t

R(t) = # ”removeds” (removed individuals) at time t

T = the time when the epidemic stops

Z (= R(T )− 1) = # infected during the epidemic (excluding
index case). Possible values: 0,1,...,n − 1.

We start with the simplest situation: all individuals are ”identical”
(with respect to disease spreading) and all pairs of individuals have
contact at equal rates.

Homogeneous community that mixes uniformly
Tom Britton L1, Introduction to stochastic epidemic models
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The Reed-Frost stochastic epidemic model

Short term outbreak (fixed community), homogeneous community,
uniform mixing

An epidemic model (Reed-Frost, 1928)

Assume 1 index case (externally infected) the rest n − 1
susceptible

Anyone who gets infected infects other susceptibles
independently with prob p and then recovers

A recovered individual plays no further role in epidemic

The index case infects a random number (Bin(n − 1, p)) of
individuals, they in turn infect an additional random number, and
so on. Once no new individuals are infected the epidemic stops

Think in ”generations”
Tom Britton L1, Introduction to stochastic epidemic models
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Exercise 1

Suppose n = 3 (one index case and 2 susceptibles) and p = 0.2

Possible values for Z : 0,1,2.

P(Z = 0)? For this to happen the index can’t infect anyone

P(Z = 1)? For this to happen the index must infect EXACTLY
one AND this individual cannot infect anyone further

P(Z = 2)? Either the index infects exactly one AND this individual
infects the last one, OR the index infects both

P(Z = 0) = (1− p)2 = 0.64
P(Z = 1) =

(2
1

)
p(1− p)× (1− p) = 0.256

P(Z = 2) =
(2
1

)
p(1− p)× p + p2 = 0.104

or ... P(Z = 2) = 1− P(Z = 0)− P(Z = 1)
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What about larger communities?

General n, think in ”generations”

Epidemic chains: i → 3→ 2→ 0: the index infects 3, they infect 2
and these infect no further and the epidemic stops

P(Z = 0) = P(i → 0) = (1− p)n−1

P(Z = 1) = P(i → 1→ 0) =
(n−1

1

)
p1(1− p)n−2 × (1− p)n−2

P(Z = 2) = P(i → 2→ 0) + P(i → 1→ 1→ 0) = ...

P(Z = 3) = P(i → 3→ 0) + P(i → 2→ 1→ 0) + P(i → 1→
2→ 0) + P(i → 1→ 1→ 1→ 0) = ...

Pn(Z = z) gets very complicated when n ≥ 10 and z ≥ 5.

What to do then?
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Approximations when n large

When n large then often p (=per individual transmission
probability) is small.

Expected number of infectious contacts: (n − 1)p ≈ np =: R0

R0 = basic reproduction number

Next page: Histogram of final outbreak sizes from 10 000
simulations in a community of n = 1000 individuals (both R0 < 1
and R0 > 1)
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Histogram of final size: R0 = 0.8
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Histogram of final size: R0 = 1.5
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An approximation for the final size

R0 = 1 is ”threshold value”

We now derive an equation for τ heuristically

Assume n large and let τ = Z/n = final fraction infected

1− τ = proportion not infected (1)

≈ probability not get infected (2)

= prob to escape inf from all infected (3)

= (1− p)Z (4)

=

(
1− R0

n

)nτ

(5)

≈ e−R0τ (using that (1− x/n)n ≈ e−x) (6)
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Approximation for final size

τ should hence (approximately) solve

1− τ = e−R0τ

There are two solutions: τ = 0 and (if R0 > 1): τ = τ? > 0.

Exercise 2 Compute τ∗ numerically when R0 = 1.5, 3 and 6.

On next page is a plot of final size as function of R0
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Plot of final outbreak size as function of R0
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Approximation, cont’d

Seen from simulations: strong dichotomy: minor outbreak – major
outbreak

P(major outbreak) = 1− P(minor outbreak) can be determined
using branching process theory

For Reed-Frost model: P( major outbreak) = τ∗ !!!

Normal distribution for major outbreak:

√
n

(
Z

n
− τ∗

)
≈ Normal(0, σ2)

σ2 depends on model parameters

Tom Britton L1, Introduction to stochastic epidemic models
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What about epidemic over time?

A related stochastic epidemic model (the ”General stochastic
epidemic”) can be defined in continuous time:

During the infectious period an individual has ”infectious
contacts” randomly in time at the average rate β, each time
individual is chosen randomly

A susceptible who receives an infectious contact becomes
infectious and remains so for a exponentially distributed time
with mean ν (other contacts have no effect)

R0 = expected number of infectious contacts = βν

Tom Britton L1, Introduction to stochastic epidemic models
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What about epidemic over time?

When n is large the process (S(t)/n, I (t)/n) is close to
deterministic limit (s(t), i(t)) which solves differential system

s ′(t) = −βs(t)i(t) (7)

i ′(t) = βs(t)i(t)− 1

ν
i(t) (8)

r ′(t) =
1

ν
i(t) (9)

Next page: plot of I (t)/n for one (typical) simulated epidemic and
deterministic limit i(t), for a few different n

Tom Britton L1, Introduction to stochastic epidemic models



Why ”stochastic”?
Background and notation

A simple stochastic epidemic model
Some extensions

Plots of simulated stochastic epidemic and deterministic
curve
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Summary

Exact distribution of Z (final size) is complicated

When n large two things may happen:

either very few get infected (Z/n ≈ 0), or

a close to deterministic fraction Z/n ≈ τ∗ get infected

R0 = np = βν = expected number of infections by one individual
during his/her infectious period

Second scenario only possible if R0 > 1

P( major outbreak)= τ∗ for Reed-Frost model
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Extensions

Random infectious force (e.g. length of infectious period): affects
P(outbreak) but hardly final size τ

Latent period: big effect on timing of epidemic peak and duration
of epidemic but no effect on final size (unless control measures are
initiated)

More than one index case: big effect on P(outbreak) but negligible
effect on final size τ in large outbreak

Exercise 3. If infectious period deterministic then P(major
outbreak)= τ∗. If infectious period is exponentially distributed then
P( major outbreak)= 1− 1/R0. Compute the latter probability for
R0 = 1.5, 3 and 6 and compare with Reed-Frost model.

Tom Britton L1, Introduction to stochastic epidemic models



Why ”stochastic”?
Background and notation

A simple stochastic epidemic model
Some extensions

Extensions

Initial fraction of immunes. If there is a fraction r of initially
immunes the same methodology can be used. The difference is
that R0 is replaced by R0(1− r) since initially only the fraction
(1− r) is susceptible. The final fraction infected among the initally
susceptible then solves

1− τ = e−R0(1−r)τ

Major outbreak possible only if R0(1− r) > 1

Exercise 4. Compute τ∗ if initially only 50% were susceptible (and
50% were immune), for R0 = 1.5, 3 and 6.

Exercise 5. What are the overall fractions infected during outbreak
in later case?
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