Module 5:
Introduction to Stochastic Epidemic
Models with Inference

Instructors:

Tom Britton,
Dept. Mathematics, Stockholm University

Ira Longini,
Dept. Biostatistics, University of Florida

Jonathan Sugimoto,
Vaccine and Infectious Dis Div, FHCRC

> CENTERFOR  wwwsy UNIVERSITY Of ‘\L‘ ‘- »»: "d
(D oo UFIFLORIDA 4 eSqU1d



Some Books of Interest for This
Course




I.ecture Notes in

Statistics Mathematical Tools for
Understanding Infectious
Disease Dynamics

Hikan Andersson Tom Britton

Princeton Seaies e THEoRENICAL AND Comsutanional BuoLoay

Stochastic Epidemic
Models and Their
Statistical Analysis

@ Springer

S / CENTER FOR UNIVERSITY Of Ql\\,_v‘v fi -d
D) ¥8ecsonme UFIFIORIDA 4 eSquid



Statistics for Biology and Health Statistics for Biology and Health

RUIYINNS
1+ Uelo|[eH

o
=
=
—

M. Elizabeth Halloran - Ira M. Longini, Jr. - Claudio J. Struchiner M. Elizabeth Halloran

: . : : Ira M. Longini, Jr.
Design and Analysis of Vaccine Studies Claudio I. Struchiner

‘Widespread irmmumnization has many different kinds of effects in individuals and popula-

tions, incduding in the umvaccinated indiwiduals. The challenge is in understanding and

estimating all of these effects. This book presents a unified conceptual framework of the

different effects of vaccination at the individual and at the population level. The book

«covers many different vaccine effects, incduding vaccine efficacy for susceptibility, for dis-

ease, for post-infection outcomes, and for infectiousness. The book incdudes methods for
indirect, total and owerall effects of vaccination

This is the first book to present waccine evaluation in this comprehensive conceptual
framework.

This book is intended for colleagues and students in statistics, biostatistics, epidemiology,
and infectious diseases. Most essential concepts are described in simple langnage accessi-
ble to epidemiologists, followed by technical material accessible to statisticians.

Elizabeth Halloran and Ira Longini are professors of biostatistics at the University of
‘Washington and the Fred Hutchinson Cancer Research Center in Seattle. Claudio
Struchiner is professor of epidemiology and biostatistics at the Brazilian School of Public

dent happenings to delineate indirect, total, and overall effects. H:l:n-.ml.unndum
tributions at the interface of epidemiological methods, causal inference, and transmission
dynn:in.[.cnshiwm:hh the area of stochastic processes applied to epidemiological

specializing in the mathematical and statistical theory of epi-
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preting vaccine effects.
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The Mathematical Theory

of Infectious Diseases
and its Applications

Norman T. J. Bailey, M.A., D.Sc.

Unit of Health Statistical Methodology, World Health Organizatian,
Geneva, Farmerly Professor of Biomathematics, Cornell University
Graduate School of Medical Sciences, and Member of

the Sloan-Kettering Institute for Cancer Research

Second edition

CHARLES GRIFFIN & COMPANY LTD
London and High Wycombe
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Applied Probability

Analysis of
Infectious

Disease Data

Niels G. Becker

* Chapman & Hall/CRC
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TranStat

Software for the inference
on infectious disease
data

TranStat

To analyze data from outbreaks of acute infectious disease. MIDAS scientists at the University of
Washington and the Fred Hutchinson Cancer Research Center have developed Tran5tat. a tool for data
entry, storage, and rapid analysis. It is being used to test for the presence of human-to human transmission
(or animal-to-animal transmission in veterinary settings) and to estimate the epidemiological
characteristics of the disease, such as secondary attack rates and the local reproductive number.

Purpose. The key to controlling 2 pandemic iz early Information on the population at rizk includez zex; age;
detection, containment, and mitigation. The TranStattool  neighborhood and houzehold of rezidence; datez of

waz developed to enable field perzonnel and rezearcher: illnezz onzet for cases; date: of hozpitalization, if any; and
to enter and revize data from local outbreaks.' From datez of receiving treatments for caze: or prophylaxis for
theze data, TranStat provides 2 mean: of tezting for the noncazes, if any.

presence of human-to-human (or animal-to-animal) Expozure detail: for each perzon include the neighbor-

tranzmizsion. If thiz tranzmizzion iz detected, estimates bt ol S bl niited ot the e o f o it

of the houzehold-zpecific and neighborhood-zpecific

zecondary attack ratez and local reproductive number The extimated diztributionz of the infectiou: or

are provided. incubation period: are zpecified in termz of minimum
and maximum number of dayz and probabilitiez for each

Data Input. TranStat uzes information on the particular duration (e.g.. day. hour, week).

* outbreak, Method. A dizcrete-time maximum likelihood model

* population atrizk, iz uzed to estimate the time-specific probabilitiez of

* expozure events, and tranzmizzion within and between houzehold:, from which
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Inference on infectious diseases
modules In addition to this one

* Module 7: Simulation-based Inference for
Epidemiological Dynamics, July 12 — 14

« Module 8: MCMC | Methods for Infectious Disease
Studies, July 17 — 19

 Module 10: Statistics and Modeling with Novel Data
Streams, July 17 — 19

« Module 11: MCMC |l Methods for Infectious
Disease  Studies, July 19 - 21

 Module 12: Spatial Statistics in Epidemiology and
Public Health, July 19 — 21
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L ectures

July 12:

1.

2.

ntroduction to stochastic epidemic models; notation,
oroperties, examples, IL, TB

mportant properties: R, growth rate, generation
Intervals, etc., TB

July 13:

3.
4.

Inference on stochastic epidemic models, TB

Modeling using networks and other heterogeneities,
TB

Different models for vaccine mechanisms, IL

Real time analysis of infectious disease outbreaks
using TranStat, JS
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L ectures

July 14:

/. Stochastic models for small groups such as
households, IL

8. Inference for large groups such as cities, TB
9. Stochastic models for arboviruses, IL

10.Design and analysis of cluster randomized vaccine

trials for emerging infectious disease epidemics: The
case of ring vaccination for Ebola, IL
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Some Infectious Diseases Under Study

* Influenza

 Novel Coronavirus, SARS-CoV, MERS-CoV

* Ebola

* Cholera

* Dengue

* Chikungunya

e Zika

* Others, polio, pertussis, hand-foot-and-mouth (EV71)
* Agent X
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Some Infectious Diseases Under Study

(Continued)
* Bioterrorist agents
* Smallpox
* Anthrax
* Agent X
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Sharing biological samples and
data during public health
emergencies

WHO is developing a8 web-based tool to
facilitate equitable sample and dsta sharing
during public health emergencies. This
document is now relessed for comments. It
discusses in detail the possible approaches that
can be used to share samples and benefits on
the same footing, and provides conoete, real
world examples of how these can be embedded
in an MTA. Go to public consultation page

Read more on biclogical smaples and data
sharing

Go to public consultation page

ABOUT R&D BLUEPRINT WHAT TH|JEOBE'§UEPRINT

http://www.who.int/blueprint/en/
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Revised list of priority diseases, January 2017

¢ Arenaviral hemorrhagic fevers (Iincluding Lassa Fever)
¢ Cnmean Congo Haemorrhagic Fever (CCHF)

¢ Filoviral diseases (including Ebola and Marburg)
¢« NMiddle East Respiratory Syndrome Coronavirus (MERS-CoV)

e Other highly pathogenic coronaviral diseases (such as Severe Acute
Respiratory Syndrome, (SARS))

¢ Nipah and related henipaviral diseases

e Rift Valley Fever (RVF)

¢ Severe Fever with Thrombocytopenia Syndrome (SFTS)
e Jika

e Disease X~
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Some Examples
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Pandemic H1N1, 2009-2010

Stochastic, Compartmental, Patch




Pandemlc H1N1 Wlth Vaccination

No vaccination

infection prevalence, %
N

llllllllllllllllllll

Vaccination in September

I

infection prevalence, %
N
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41 71 101 11 41 7/1 10/1




Spread the within US

Agent-based, RF
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Simulated Mass Vaccination in US

- USA, unvaccinated
— USA, vaccinated
= = LSA, early vaccination

|
W
-

% vaccinated



What Could Have Been Done
Agent-based, RF
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Cholera Epidemic in Haiti with Reactive Vaccination,

No vaccination

day 0

Vaccination and education

day 0

Agent-based, RF

Symptomatic, Thousands

Symptomatic, Thousands
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Dengue Vaccines in Thailand

Baseline, day 0

=== Agent-based, RF
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Ebola vaccine trials

* Phase lll Ebola ring vaccination efficacy
trial in Guinea — VSV vaccine estimated to
have 100% efficacy.

e Stochastic transmission models have been
used to help estimate vaccine efficacy and
effectiveness

* Ring vaccination Is used to eliminate Ebola
IN human populations, e.g., smallpox
eradication



Ring vaccination contained

No interventions (week : 1) Ring vaccination (week : 1)




Ring vaccination not contained

No interventions (week : 1) Ring vaccination (week : 1)




On with the course!
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Why "stochastic” ?

Background and notation

A simple stochastic epidemic model
Some extensions

Stochastic models

7/4//7 b, @«0
Stockholms
universitet

Mathematical models describes some feature in a simplified way

The discrepancy between model and reality may be contained in
"random part” in model

Very important in small populations

Stochastic models enable uncertainty estimates (i.e. standard
errors) when estimating parameters

Tom Britton L1, Introduction to stochastic epidemic models
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Background

We want to model the spread of transmittable disease in a
community of individuals

At a given time-point an individual may be Susceptible, infected
but not yet infectious (Latent or Exposed), Infectious, or recovered
and immune (Removed)

Different class of epidemic models: SIR, SEIR, SIS, SIRS, ...

Main focus: SIR (childhood diseases, STDs, influenza, ...)

Short term outbreak vs endemic situation

Simplification for short term: fixed population, no waning immunity

Tom Britton L1, Introduction to stochastic epidemic models



Why "stochastic” ?

Background and notation

A simple stochastic epidemic model
Some extensions
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Notation

Some notation to be used
o n = # individuals (n(t) if varying over time)
o S(t) = # "susceptibles” (susceptible individuals) at time t
o I(t) = # "infectives” (infectious individuals) at time t

o R(t) = # "removeds” (removed individuals) at time t
o T = the time when the epidemic stops
o Z (= R(T) — 1) = # infected during the epidemic (excluding

index case). Possible values: 0,1,...,n — 1.

We start with the simplest situation: all individuals are "identical”
(with respect to disease spreading) and all pairs of individuals have
contact at equal rates.

Homogeneous community that mixes uniformly

Tom Britton L1, Introduction to stochastic epidemic models
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Background and notation

A simple stochastic epidemic model
Some extensions
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The Reed-Frost stochastic epidemic model

Short term outbreak (fixed community), homogeneous community,
uniform mixing

An epidemic model (Reed-Frost, 1928)

o Assume 1 index case (externally infected) the rest n — 1
susceptible

o Anyone who gets infected infects other susceptibles
independently with prob p and then recovers

o A recovered individual plays no further role in epidemic

The index case infects a random number (Bin(n — 1, p)) of
individuals, they in turn infect an additional random number, and
so on. Once no new individuals are infected the epidemic stops

Think in " generations”

Tom Britton L1, Introduction to stochastic epidemic models
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Exercise 1

Suppose n = 3 (one index case and 2 susceptibles) and p = 0.2
Possible values for Z: 0,1,2.
P(Z = 0)? For this to happen the index can’t infect anyone

P(Z = 1)? For this to happen the index must infect EXACTLY
one AND this individual cannot infect anyone further

P(Z = 2)? Either the index infects exactly one AND this individual
infects the last one, OR the index infects both

Tom Britton L1, Introduction to stochastic epidemic models
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Exercise 1

Suppose n = 3 (one index case and 2 susceptibles) and p = 0.2
Possible values for Z: 0,1,2.
P(Z = 0)? For this to happen the index can’t infect anyone

P(Z = 1)? For this to happen the index must infect EXACTLY
one AND this individual cannot infect anyone further

P(Z = 2)? Either the index infects exactly one AND this individual
infects the last one, OR the index infects both

P(Z =0)=(1-p)?>=0.64

P(Z=1)= (3)p(1 - p) x (1 - p) =0.256
P(Z=2)= (3)p(1—p) x p+ p*>=0.104
or ... P(Z=2)=1-P(Z=0)—-P(Z=1)

Tom Britton L1, Introduction to stochastic epidemic models
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What about larger communities?

General n, think in " generations”

Epidemic chains: i — 3 — 2 — 0: the index infects 3, they infect 2
and these infect no further and the epidemic stops

P(Z=0)=P(i—0)=(1-p)"*
P(Z=1)=P(i+1-0)=("7)p(L-p)"2x(1-p)">
P(Z=2)=P(i—-2—-0)+P(ii—1—-1—-0)=..
P(Z=3)=P(i—=3—=0)+Pi—=2—=1=0)+P(i—1—
2-50+Pi—-1—-1-1-0)=..

P.(Z = z) gets very complicated when n > 10 and z > 5.

What to do then?

Tom Britton L1, Introduction to stochastic epidemic models
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Approximations when n large

When n large then often p (=per individual transmission
probability) is small.

Expected number of infectious contacts: (n— 1)p~ np =: Ry
Ry = basic reproduction number

Next page: Histogram of final outbreak sizes from 10 000
simulations in a community of n = 1000 individuals (both Ry <1
and Ry > 1)

Tom Britton L1, Introduction to stochastic epidemic models
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Histogram of final size: Ry = 0.8
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Histogram of final size: Ry = 1.5
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An approximation for the final size

b
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Ry = 1 is "threshold value”

We now derive an equation for 7 heuristically

Assume n large and let 7 = Z/n = final fraction infected

1 — 7 = proportion not infected (1)
~ probability not get infected (2)
= prob to escape inf from all infected (3)
— (- py (@
Ro ntT

—(1-20
(1-2) )
~ e for (using that (1 — x/n)" =~ e™™) (6)

Tom Britton L1, Introduction to stochastic epidemic models
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Approximation for final size

7 should hence (approximately) solve

1—7=eR7

There are two solutions: 7 =0 and (if Ry > 1): 7 =7 > 0.
Exercise 2 Compute 7* numerically when Ry = 1.5, 3 and 6.

On next page is a plot of final size as function of Ry
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Plot of final outbreak size as function of
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Approximation, cont'd

Seen from simulations: strong dichotomy: minor outbreak — major
outbreak

P(major outbreak) = 1 — P(minor outbreak) can be determined
using branching process theory

For Reed-Frost model: P( major outbreak) = 7* !l

Normal distribution for major outbreak:

V4
Vvn <n — T*> ~ Normal(0, o°)

o2 depends on model parameters

Tom Britton L1, Introduction to stochastic epidemic models
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What about epidemic over time?

A related stochastic epidemic model (the " General stochastic
epidemic”) can be defined in continuous time:

o During the infectious period an individual has "infectious
contacts” randomly in time at the average rate (3, each time
individual is chosen randomly

o A susceptible who receives an infectious contact becomes
infectious and remains so for a exponentially distributed time
with mean v (other contacts have no effect)

Ry = expected number of infectious contacts = Sv

Tom Britton L1, Introduction to stochastic epidemic models
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What about epidemic over time?

When n is large the process (S(t)/n, I(t)/n) is close to
deterministic limit (s(t), i(t)) which solves differential system

S(1) = —Bs(1)i2) ()
/() = Bs(e)i(e) — (1) (8)

F(t) = Zi(t) 9)

1

Next page: plot of /(t)/n for one (typical) simulated epidemic and
deterministic limit i(t), for a few different n

Tom Britton L1, Introduction to stochastic epidemic models
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Plots of simulated stochastic epidemic and deterministic
curve
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Summary

Exact distribution of Z (final size) is complicated

When n large two things may happen:
o either very few get infected (Z/n ~ 0), or

o a close to deterministic fraction Z/n ~ 7 get infected

Ro = np = Br = expected number of infections by one individual
during his/her infectious period

Second scenario only possible if Ry > 1

P( major outbreak)= 7* for Reed-Frost model

Tom Britton L1, Introduction to stochastic epidemic models
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Extensions

Random infectious force (e.g. length of infectious period): affects
P(outbreak) but hardly final size 7

Latent period: big effect on timing of epidemic peak and duration
of epidemic but no effect on final size (unless control measures are
initiated)

More than one index case: big effect on P(outbreak) but negligible
effect on final size 7 in large outbreak

Exercise 3. If infectious period deterministic then P(major
outbreak)= 7*. If infectious period is exponentially distributed then
P( major outbreak)=1 — 1/Ry. Compute the latter probability for
Ry = 1.5, 3 and 6 and compare with Reed-Frost model.

Tom Britton L1, Introduction to stochastic epidemic models
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Extensions

Initial fraction of immunes. If there is a fraction r of initially
immunes the same methodology can be used. The difference is
that Ry is replaced by Ryo(1 — r) since initially only the fraction

(1 — r) is susceptible. The final fraction infected among the initally
susceptible then solves

17— e—Ro(l—r)T

Major outbreak possible only if Rp(1—r) >1

Exercise 4. Compute 7" if initially only 50% were susceptible (and
50% were immune), for Ry = 1.5, 3 and 6.

Exercise 5. What are the overall fractions infected during outbreak
in later case?

Tom Britton L1, Introduction to stochastic epidemic models



