Lecture 5: Different models for vaccine mechanism

Ira Longini, Dept. Biostatistics, University of Florida

SURVIVAL ANALYSIS IN A NUTSHELL

T - random variable for time to the event

PDF:
$$f(t) = \lim_{dt \to 0} P[t < T \le t + dt]/dt$$

CDF:
$$F(t) = P[T \le t]$$

Survival function:
$$S(t) = P[T > t] = 1 - F(t)$$

Hazard function:
$$\lambda(t) = \frac{f(t)}{S(t)}$$

Integrated hazard function:
$$\Lambda(t)=\int_0^t \lambda(\tau) d\tau$$

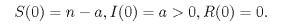
$$S(t) = e^{-\Lambda(t)}$$

$$F(t) = AR(t) = 1 - S(t)$$

FOR AN INFECTIOUS DISEASE

$$\lambda(t) = cp \frac{I(t)}{n}$$

SIR EPIDEMIC


$$rac{dS(t)}{dt} = -cprac{I(t)}{n}S(t) = -\lambda(t)S(t)$$

$$\frac{dI(t)}{dt} = cp\frac{I(t)}{n}S(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t),$$

$$S(t) + I(t) + R(t) = n$$
, for all t ,

$$rac{dI(t)}{dt} = \left[rac{cp}{\gamma}rac{S(t)}{n} - 1
ight]\gamma I(t)$$

Basic Reproductive Number:

$$R_0 = \frac{cp}{\gamma}$$

$$\frac{dI(t)}{dt} = \left[R_0 \frac{S(t)}{n} - 1\right] \gamma I(t)$$

if
$$R_0 \frac{S(t)}{n} \le 1$$
, then $\frac{dI(t)}{dt} \le 0$
if $R_0 \frac{S(t)}{n} > 1$, then $\frac{dI(t)}{dt} > 0$
near $t = 0$, $\frac{S(t)}{n} \approx 1$, and

$$\frac{dI(t)}{dt} \mid_{t=0^{+}} = [R_0 - 1] \gamma I(t)$$

if $R_0 \le 1$, then no epidemic occurs if $R_0 > 1$, then an epidemic occurs

SURVIVAL FUCTION

Let
$$a=0^+$$
 and $S(0)=n^-$

$$\frac{dS(t)}{dt} = -\lambda(t)S(t)$$
 solving yields
$$\frac{S(t)}{n} = e^{-\Lambda(t)}$$
 where

$$\Lambda(t) = \frac{cp}{n} \int_0^t I(\tau) d\tau$$
 Let AR(t) = $1 - \frac{S(t)}{n}$, then
$$AR(t) = 1 - e^{-\Lambda(t)}$$

THE VACCINE MODEL

Force of infection to an unvaccinated person

$$\lambda_0(t) = Z_0 exp(t)$$

where
$$p(t) = \left[\frac{n_0 p_0(t) + n_1 \phi p_1(t)}{n}\right]$$
.

and to a vaccinated person,

$$\lambda_1(t) = Z_1 \theta exp(t).$$

$$S_v(t) = E\{\exp[-Z_v\Lambda_v(t)]\} = L_{z_v}[\Lambda_v(t)]$$
.

where
$$\Lambda_0(t) = c\pi \int_0^t p(\tau)d\tau$$
 and $\Lambda_1(t) = c\pi \theta \int_0^t p(\tau)d\tau$.

MIXING MODEL

$$P(Z_{v} = 0) = \alpha_{v},$$

and

$$Z_{n}|Z_{n}>0$$
 ~ $f_{n}(\cdot)$, with probability $1-\alpha_{v}$.

where
$$E(X_{v}) = 1$$
 and $Var(X_{v}) = \delta_{v}$

$$E(Z_v) = 1 - \alpha_v \text{ and } Var(Z_v) = (1 - \alpha_v)(\delta_v + \alpha_v)$$

$$L_{z_{v}}(s) = \alpha_{v} + (1 - \alpha_{v})L_{x_{v}}(s).$$

MIXING MODEL (GAMMA DISTRIBUTION)

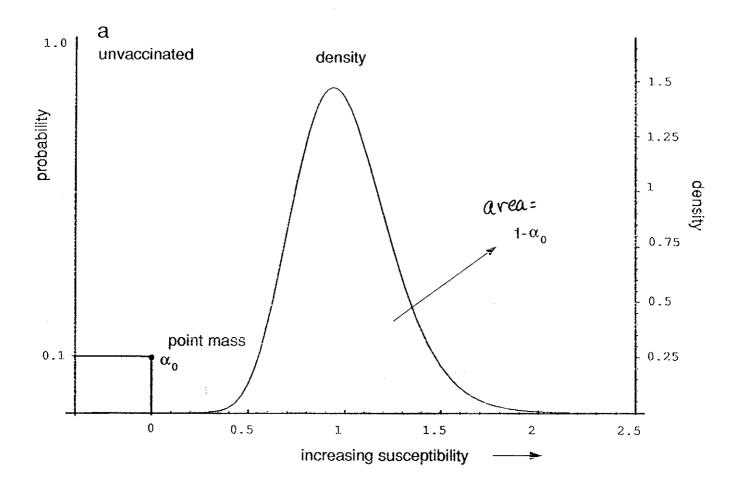
 X_{ν} gamma with scale and shape parameters $1/\delta_{\nu}$.

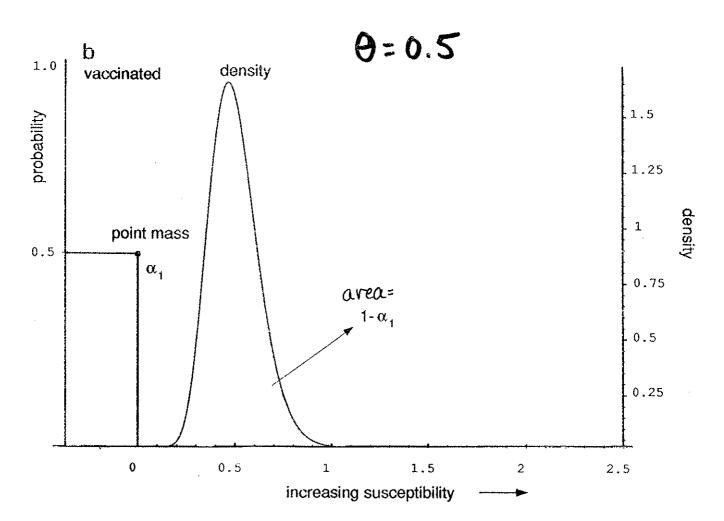
$$L_{z_{v}}(s) = \alpha_{v} + (1 - \alpha_{v}) \left[\frac{1}{1 + s\delta_{v}} \right]^{1/\delta_{v}}$$

$$S_v(t) = \alpha_v + (1 - \alpha_v) \left[\frac{1}{1 + \Lambda_v(t)\delta_v} \right]^{1/\delta_v}$$

When $\alpha_{v} = 0$,

$$S_{v}(t) = \left[\frac{1}{1 + \Lambda_{v}(t)\delta_{v}}\right]^{1/\delta_{v}}$$


When $\delta_{v} = 0$,


$$S_v(t) = \alpha_v + (1 - \alpha_v) \exp[-\Lambda_v(t)]$$

$$S_o(t) = d_o + (1 - d_o) \exp[-\Lambda_o(t)]$$

$$S_o(t) = d_o + (1 - d_o) \exp[-\Lambda_o(t)]$$

$$S_o(t) = d_o + (1 - d_o) \exp[-\Lambda_o(t)]$$

MODEL OF AALEN (COMPOUND POISSON)
(Annals of Applied Probability, 1992)

$$L_{z_{v}}(s) = \exp \left\{ \frac{\alpha_{v}}{(1 - \alpha_{v})\delta_{v}} \left[1 - \left\{ 1 + \left(s\delta_{v}/\alpha_{v} \right) \right\}^{1 - \alpha_{v}} \right] \right\}, \quad \alpha_{v} \neq 1, \quad \alpha_{v} > 0$$

$$P(Z_{v} = 0) = \exp \left\{ \frac{\alpha_{v}}{(1 - \alpha_{v})\delta_{v}} \right\}$$

$$S_{v}(t) = \exp \left\{ \frac{\alpha_{v}}{(1-\alpha_{v})\delta_{v}} \left[1 - \left\{ 1 + (\Lambda_{v}(t)\delta_{v}/\alpha_{v}) \right\}^{1-\alpha_{v}} \right] \right\}$$

When $\alpha_{n} = 1$,

$$S_{v}(t) = \left[\frac{1}{1 + \Lambda_{v}(t)\delta_{v}}\right]^{1/\delta_{v}}$$

VACCINE EFFICACY

$$VE_{S} = 1 - \frac{(1 - \alpha_{1})\theta\pi}{(1 - \alpha_{0})\pi} = 1 - \frac{(1 - \alpha_{1})}{(1 - \alpha_{0})} \theta$$

$$S = (1 - a_0)^n \qquad (1 - a_0)$$

$$\alpha_0 = 0$$
, $VE_S = 1 - (1 - \alpha_1) \theta$

$$\alpha_0 = \alpha_1$$
. $VE_S = 1 - \theta$ "leaky"

$$\alpha_0 = \alpha_1$$
, VE_S = 1 - θ "leaky"

 $\alpha_0 = 0$, $\theta = 1$, VE_S = α_1 "all-or-none"

Halloran, et al. (1992)

$$VE_T = 1 - \phi$$

Special cases:

RELATIONSHIPS AMONG MODEL PARAMETERS AND VE MODELS

Model name	^α 0	α ₁	θ	VE
General	$\alpha_0 > 0$	$\alpha_1 > 0$	0 \$ 1	$1-\frac{(1-\alpha_1)}{(1-\alpha_0)}\theta$
Relative all-or-none	$\alpha_0 > 0$	$\alpha_1 > 0$	θ = 1	$\frac{\alpha_1 - \alpha_0}{1 - \alpha_0}$
All-or-none*	$\alpha_{0} = 0$	$\alpha_1 > 0$	θ = 1	α_1
All-or-partially susceptible	$\alpha_0 = 0$	$\alpha_1 > 0$	θ ‡ 1	$1 - (1 - \alpha_1)\theta$
Partially susceptible*	α ₀ :	= \alpha_1	θ ≠ 1	1 - θ
Risk difference all-or-none	$\alpha_0 > 0$	$\alpha_1 > 0$	$\theta = 1$	$\alpha_1 - \alpha_0$

^{*}Model previously described by Halloran, et al.(1992). Note that "leaky" has been changed to "partially susceptible."

^{**} Model not contained in the general model.

ESTIMATING VE FROM FINAL VALUE DATA PARTIALLY SUSCEPTIBLE CASE ($\delta_{0} = \delta_{1} = 0$, $\alpha_{0} = \alpha_{1} = 0$)

$$AR_{v}(t) = 1 - S_{v}(t).$$

$$ln[1 - AR_{O}(t)] = -\Lambda_{O}(t)$$

$$ln[1 - AR_{1}(t)] = -\theta\Lambda_{O}(t)$$

$$\theta = ln[1 - AR_{1}(t)]/ln[1 - AR_{O}(t)]$$

$$VE_{S} = 1 - \theta$$

$$\hat{V}E_{S} = 1 - [\ln(1 - \hat{A}R_{1}(t))/\ln(1 - \hat{A}R_{0}(t))] \ge 1 - \frac{4\kappa_{0}}{4\kappa_{0}}$$

Note that

$$\operatorname{Var}[\hat{AR}_{v}(t)] \stackrel{\text{\tiny a}}{=} AR_{v}(t) [1 - AR_{v}(t)]/n_{v}$$

and that $AR_0(t)$ and $AR_1(t)$ are conditionally independent.

Then use the delta method to yield

$$Var[\hat{VE}] \approx [AR_1(t)/n_1 + \theta^2 AR_0(t)/n_0] [log_e(1 - AR_0(t))]^{-2}$$
 (Becker, 1982)

Regression model: $[1 - AR_1(t)] = [1 - AR_0(t)]^{\theta}$ proportional hazards model

ALL-OR-NONE (
$$\delta_0 = \delta_1 = 0$$
, $\alpha_0 = 0$, $\alpha_1 = \alpha$, $\theta = 1$)

Fig. (1) The contract (
$$\alpha_0 = \alpha_1 = 0$$
, $\alpha_0 = 0$, $\alpha_1 = \alpha$, $\theta = 1$)

$$\Gamma 1 - AR (+) T - com(-A (+))$$

$$[1 - AR_O(t)] = \exp\{-\Lambda_O(t)\}$$

 $[1 - AR_1(t)] = \alpha + (1 - \alpha) \exp{-A_0(t)} = \alpha + (1 - \alpha)[1 - AR_0(t)]$

 $AR_1(t) = (1 - \alpha) AR_0(t)$

 $\alpha = 1 - [AR_1(t)/AR_0(t)]$

ALL-OR-NONE (CONTINUED)

Variance of
$$\hat{\alpha} = 1 - [\hat{A}R_1(t)/\hat{A}R_0(t)]$$

Let $a = \log_{e}(1 - \alpha)$, then

$$\hat{a} = \ln[\hat{A}R_1(t)] - \ln[\hat{A}R_0(t)].$$

Then by the delta method,

$$Var[\hat{a}] = [(1 - AR_1(t))/(n_1AR_1(t))] + [(1 - AR_0(t))/(n_0AR_0(t))]$$
(O'Neill, 1988)

Regression Model:
$$AR_0(t) = [1 + \exp(b_0)]^{-1}$$
, $AR_1(t) = [1 + \exp(b_0 + b_1)]^{-1}$.

$$\hat{V}E = 1 - \frac{1 + \exp(\hat{b}_0)}{1 + \exp(\hat{b}_0 + \hat{b}_1)}$$

$$\hat{V}E = \frac{1 + \exp(\hat{b}_0 + \hat{b}_1)}{1 + \exp(\hat{b}_0 + \hat{b}_1)}$$

Plot $\ln[-\ln[S_{v}(t)]]$ vs. t

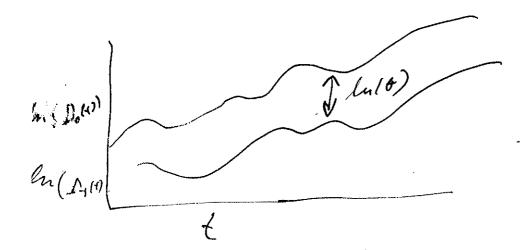
e.g., pure leaky model (
$$\delta_0 = \delta_1 = 0$$
, $\alpha_0 = \alpha_1 = 0$)

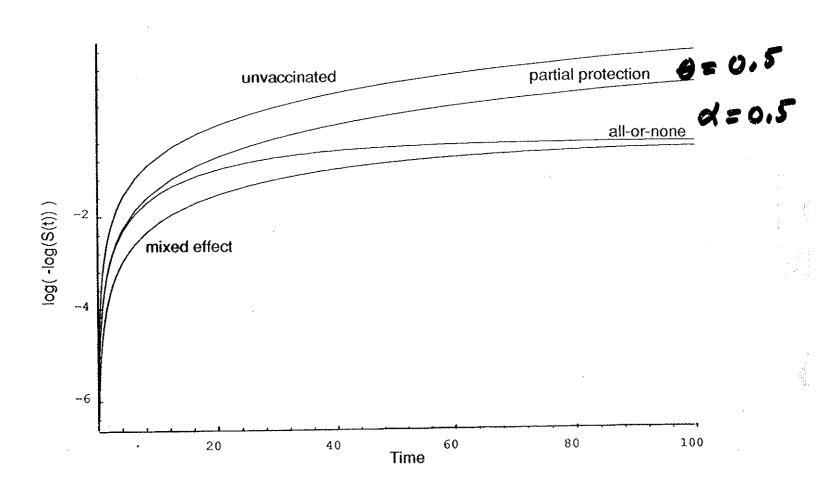
$$S_0(t) = \exp[-\Lambda_0(t)]$$

$$S_1(t) = \exp[-\theta \Lambda_0(t)]$$

$$-\ln[S_0(t)] = \Lambda_0(t)$$

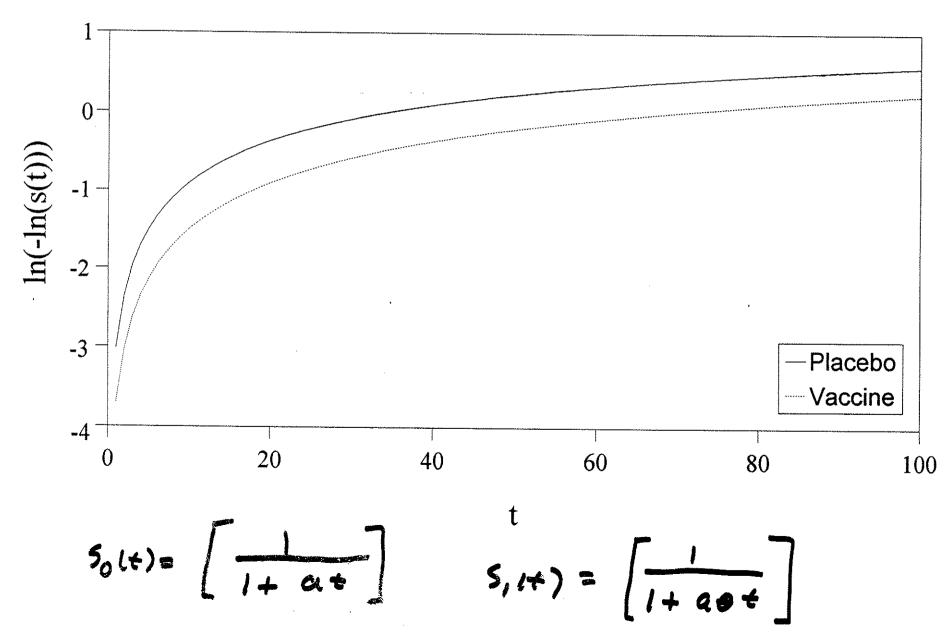
$$-\ln[S_1(t)] = \theta \Lambda_0(t)$$

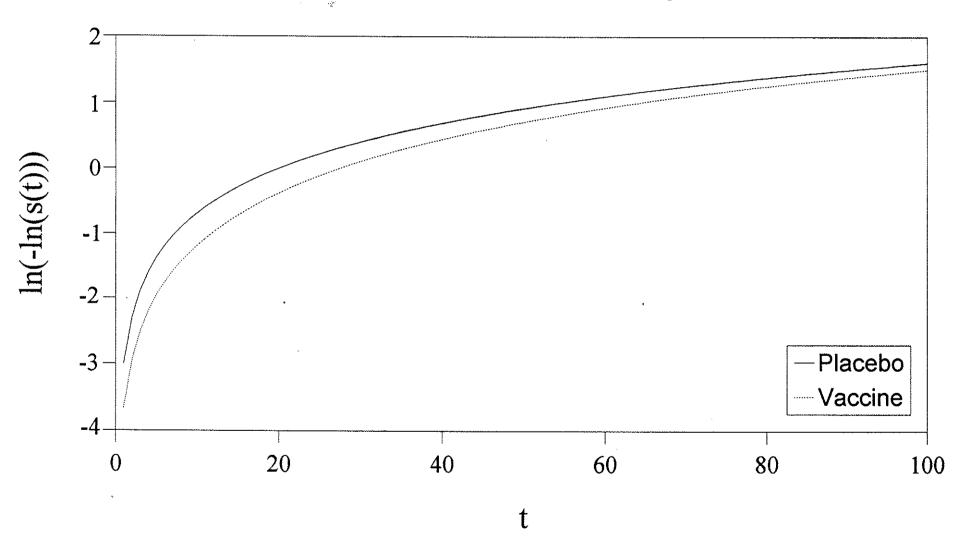

$$\ln\{-\ln[S_0(t)]\} = \ln[\Lambda_0(t)]$$


$$\ln\{-\ln[S_1(t)]\} = \ln[A_0(t)] + \ln(\theta)$$

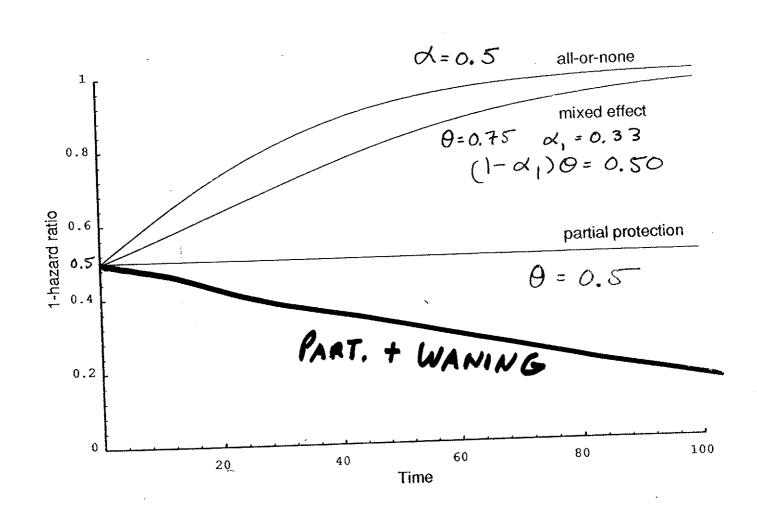
e.g., pure all-or-none model (
$$\delta_0 = \delta_1 = 0$$
, $\alpha_0 = 0$, $\alpha_1 = \alpha$, $\theta = 1$)

$$S_0(t) = \exp[-\Lambda_0(t)]$$


$$S_1(t) = \alpha + (1 - \alpha) \exp[-\Lambda_0(t)]$$


Log-log Plot Of Leaky Model With Heterogeneity

a=0.05, alpha=0, theta=0.5, deltas=1



Log-log Plot of Leaky Model With Waning

a = 0.05, alpha=0, theta=0.5, deltas=0, omega=0.05

1- A. (+)

rarameters.
$$\alpha_0$$
, α_1 α_0 , α_1 α_0 , and $\alpha = c\pi$

 $p(t) = p_i$ in interval i,

Likelihood function:

Data: Observations are made at times
$$t_0 (=0), t_1, \dots, t_k$$
.

number at risk at beginning of i

number infected during i

Parameters:
$$\alpha_0$$
, α_1 δ_0 , δ_1 θ , and $a = c\pi$

Define the time intervals, $[t_{i-1}, t_i)$, i = 1, ..., k.

ers:
$$\alpha_0$$
, α_1 δ_0 , δ_1 θ , and $\alpha = c\pi$

STATISTICAL, INFERENCE ON GROUPED DATA, $\phi = 1$

ICE ON GROUPED DATA,
$$\phi = 1$$

NCE ON GROUPED DATA,
$$\phi = 1$$

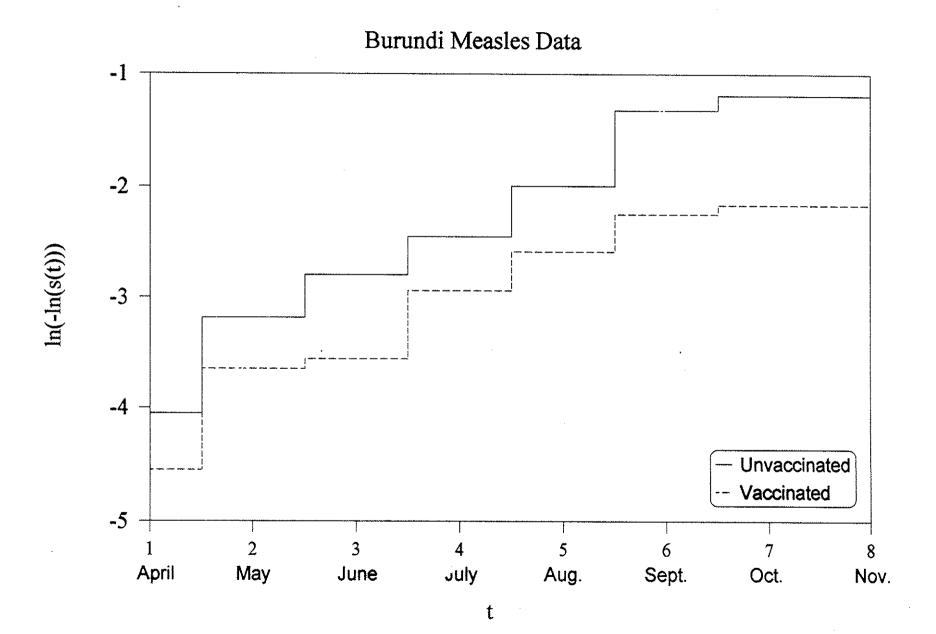
, INFERENCE ON GROUPED DATA,
$$\phi = 1$$

 $\Lambda_{0}(t) = c\pi \int_{0}^{t} p(\tau)d\tau = c\pi\kappa \left[\sum_{i=1}^{1} (t_{j}^{-t}_{j-1})p_{j} + (t_{i}^{-t}_{i})p_{i}\right], t \in [t_{i}, t_{i+1}].$

 $L = \prod_{i=1}^{m} \prod_{v=0}^{m} \{S_{v}(t_{i})/S_{v}(t_{i-1})\}^{(r_{i}v^{-m}_{i}v)} [1 - \{S_{v}(t_{i})/S_{v}(t_{i-1})\}]^{m}_{iv},$

Table 1.

Numbers at risk, ill, and monthly exposure for the measles epidemic


Muyinga, Burundi, April - November, 1988

		Unvaccinated		Va	Exposure			
i	Month	At Risk*	111	Percent	At Risk	I 11	Percent	p _i x 100 Percent
1	April	57 9	10	1.7	857	9	1.1	1.3
2	May	551	13	2.4	848	13	1.5	1.9
3	June	517	10	1.9	835	2	0.2	0.9
4	July	483	12	2.5	833	20	2.4	2.4
5	Aug.	451	22	4.9	813	18	2.2	3.2
6	Sept.	408	50	12.3	795	24	3.0	6.4 [†]
7	Oct.	337	12	3.6	771	7	0.9	1.7
8	Nov.	317	0	0.0	764	0	0.0	0.0
	Total		129			93		

^{* 140} initially at-risk unvaccinated children were vaccinated during the epidemic, and their vaccination times were treated as right censoring times for measles illness

Includes three individuals who were vaccinated and who contracted measles in September. These individuals were treated as being unvaccinated with right-censored times for the purpose of estimation.

Ln-ln Plot of Observed Data

MEASLES OUTBREAK IN MUYINGA, BURUNDI, MARCH - DECEMBER, 1988 (CONTINUED)

$$m = 7$$
, $\alpha_0 = \delta_0 = \delta_1 = 0$

Estimates:
$$\hat{\mathbf{a}} = \mathbf{c}\pi\kappa = 1.658 \pm 0.137$$
, $\hat{\alpha}_1 = 0.805 \pm 0.060$, $\hat{\theta} = 2.764 \pm 1.235$

$$\hat{V}E \text{ all-or-none} = 0.805 \quad [0.687, 0.924]$$

$$\hat{V}E \text{ part.} = -1.765 \quad [-4.185, -0.657].$$

$$\hat{V}E \text{ gen.} = 0.462 \quad [0.318, 0.671]$$

Ln-ln Plot of Observed and Expected Data

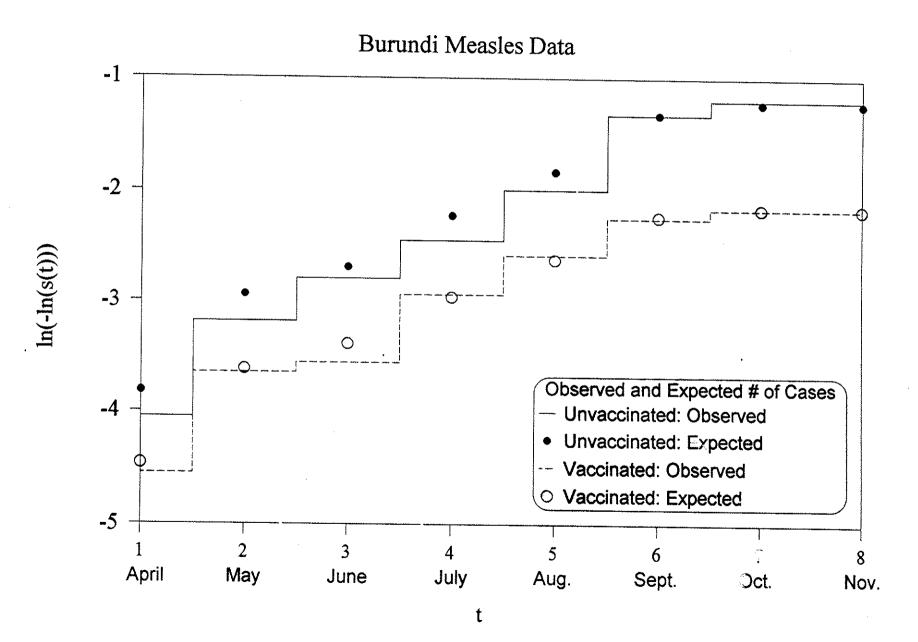


Table 2.

Observed and expected frequencies for the model fitted to the data from the measles outbreak in Muyinga, Burundi,

April - October, 1988

		Unvaco	inated	Vaccinated			
•	Month	Observed	Expected	Observed	Expected		
<u>i</u>	Month	10	12.6	9	9.8		
1	April	- -	16.7	13	12.8		
2	May	13	7.6	2	5.8		
3	June	10		20	14.7		
4	July	12	19.1	•	16.7		
5	Aug.	22	23.0	18			
6	Sept.	50	41.0	24	27.2		
7	Oct.	12	9.4	7	6.0		
	Total	129	129.3	93	93.0		

 χ_{11}^{2} - 12.8 (p-0.3)

Observed and Expected Number Ill Using Degenerate Model with Estimates: a=1.98761, alpha1=0.59442, theta=0.78174

	U:	nvaccin	ated		Vaccinated*			
Month	At Risk	Obs. Ill	Exp.	At Risk	Obs.	Exp.	p(t)	
1 2 3 4 5	1865.0 1835.0 1703.0 1536.0 1428.0	30. 132. 167. 108. 90.	31.6901 155.3851 169.4726 92.5926 77.4975	490.0 487.0 473.0 460.0 454.0	3. 14. 13. 6. 9.	2.6448 13.0952 14.3584 8.0008 6.8868	.00862 .04452 .05274 .03128	

Chi-Square=9.6139 * Vaccinated with card $\frac{1}{2} = 6$ p = 0.14

MEASLES OUTBREAK IN CHAD, FEBRUARY - JUNE, 1993 (CONTINUED)

$$m = 5, \ \alpha_0 = \delta_0 = \delta_1 = 0$$
Estimates: $a = c\pi\kappa = 1.988 \pm 0.084, \ \alpha_1 = 0.594 \pm 0.111,$

$$(-\sqrt{\xi}, = \theta = 0.782 \pm 0.238)$$

VE all-or-none =
$$0.594$$
 [0.378,0.811]

VE part. =
$$0.218$$
 [-0.248,0.684]

VE gen. =
$$0.683$$
 [0.504,0.925]

Table 2. Estimated vaccine efficacy using the summary model (VE_{sum}), partial protection model (VE_{pp}) and all-or-none model (VE_{ALL}) for data simulated with 10,000 people in both the vaccinated and unvaccinated groups, 60 time periods, 5% right censoring in the unvaccinated group, baseline hazard λ_4 (t)= 0.05 and δ_4 = δ_1 =0.

α',	Model	Point estimate and empirical 95% confidence interval for vaccine efficacy [†]							
		$1-\theta^{\ddagger}=0.2$	1-0 = 0.4	$1-\theta = 0.6$	$1-\theta = 0.8$				
0.2	Preset	0.36	0.52	0.68	0.84				
	VE _{SUM}	0.36 (0.34-0.38)	0.52 (0.50-0.54)	0.68 (0.67-0.69)	- : : :				
	VEPP	0.52 (0.50-0.53)	0.61 (0.60-0.62)	0.72 (0.71-0.73)	0.84 (0.83-0.85)				
	VE_{ALL}	0.23 (0.22-0.24)	0.29 (0.28-0.30)	0.40 (0.39-0.41)	0.85 (0.84-0.86) 0.61 (0.60-0.62)				
0.4	Preset	0.52	0.64	0.76	•				
	VE _{SUM}	0.52 (0.50-0.54)	0.64 (0.62-0.66)	0.76	0.88				
	VE	0.71 (0.70-0.72)	0.75 (0.74-0.76)	0.76 (0;75-0.77)	0.88 (0.87-0.89)				
	VE _{ALL}	0.42 (0.41-0.43)	0.47 (0.46-0.48)	0.81 (0.81-0.82) 0.55 (0.54-0.56)	0.89 (0.89-0.90) 0.71 (0.70-0.72)				
0.6	Preset	0.68	0.76	0.04	•				
	VE	0.68 (0.66-0.70)	0.76 (0.74-0.77)	0.84	0.92				
	VEPP	0.84 (0.83-0.84)	0.86 (0.85-0.86)	0.84 (0.83-0.85)	0.92 (0.91-0.93)				
	VEALL	0.62 (0.61-0.63)	0.65 (0.64-0.66)	0.89 (0.88-0.89) 0.70 (0.69-0.71)	0.93 (0.93-0.94) 0.81 (0.80-0.82)				
0.8	Preset	0.84	0.88	0.92	•				
	VE _{SUM}	0.84 (0.83-0.85)	0.88 (0.87-0.89)	0.92 (0.91-0.93)	0.96				
	VE _{PP}	0.93 (0.93-0.93)	0.94 (0.93-0.94)	0.95 (0.95-0.95)	0.96 (0.96-0.96)				
		0.81 (0.80-0.82)	0.82 (0.82-0.83)	0.85 (0.85-0.86)	0.97 (0.97-0.97) 0.91 (0.90-0.91)				

 $[\]alpha_1$ = proportion completely protected in vaccinated group.

. . . .

[†] Average point estimate based on 1,000 simulations per α_1 , 1-0 combination.

 $[\]theta$ = relative residual susceptibility of vaccinated susceptibles compared to the unvaccinated group.

Freset value of VE_{SUM} in the simulation model = 1-(1- α_1) θ .

¹ Empirical 95% confidence intervals based on 1,000 simulations per α_1 , 1- θ combination.

Cholera Vaccines

Durham, L.K., Longini, I.M., Halloran, M.E., Clemens, J.D., Nizam, A. and Rao, M.: Estimation of vaccine efficacy in the presence of waning: Application to cholera vaccines. *American Journal of Epidemiology* **147**, 948-959 (1998).

Durham, L.K., Halloran, M.E., Longini, I.M. and Manatunga, A.K.: Comparing two smoothing methods for exploring waning vaccine effects. *Applied Statistics* **48**, 395-407 (1999).

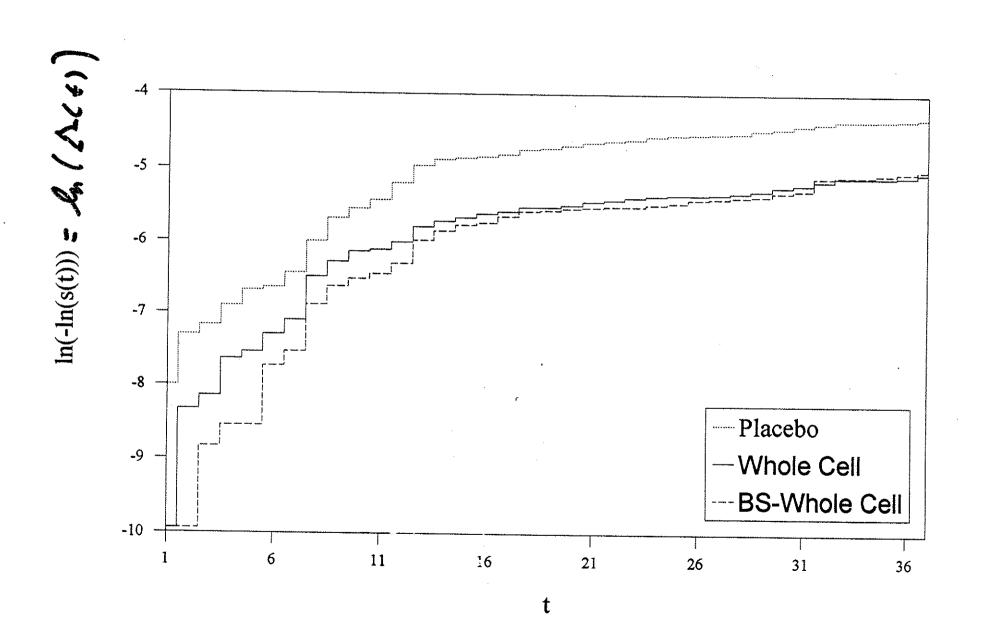

Longini, I.M., Nizam, A., Ali, M., Yunus, M., Shenvi, N. and Clemens, J.D.: Controlling endemic cholera with oral vaccines. *Public Library of Science (PloS)*, *Medicine* **4** (11) 2007: e336 doi:10.1371/journal.pmed.0040336.

Table 1

Data from the Bangladesh cholera vaccine trial (Clemens, et al., 1990)

					ν					
		laceb v=0	o		WC v=1		BS-WC v=2			
Month	At Risk	m		At Risk	· [11]		At Risk	III	·····	
i	r _{io}	d_{i_0}	Lost	r _{il}	d _{il}	Lost	r _{i2}	d _{i2}	Lost	p _i
0 Initial	20837			20743			20705			
1 May '8	5 20822.0	7	30	20723.5	1	39	20689.5	1	31	0.00014
2 Jun	20777.შ	7	46	20681.5	4	43	20649.0	0	4 8	0.00032
3 Jul	20722.0	2	50	20633.5	1	45	20600.0	2	50	0.00040
4 Aug	20677.0	5	36	20589.0	4	42	20547.0	1	5 2	0.00056
5 Sep	20612.5	5	83	20530.0	1	58	20485.0	0	7 0	0.00066
6 Oct	20536.5	1	59	20466.0	3	58	20423.0	5	54	0.00081
7 Nov	20484.5	6	43	20414.5	3	39	20374.0	2	34	0.00099
8 Dec	20442.5	18	2 9	20375.5	14	33	20337.5	10	3 5	0.00167
9 Jan '86		19	99	20307.0	7	7 6	20265.5	6	8 9	0.00220
10 Feb	20252.5	10	7 9	20219.0	6	86	20192.0	3	46	0.00251 0.00273
11 M ar	20165.5	10	7 5	20141.0	1	58	20135.5	2	61	
12 Apr	20090.0	23	56	20080.5	5	61	20075.0	5	56	0.00328 0.00421
13 May	20020.5	30	37	20023.5	12	43	20021.0	14	42	0.00421
14 Jun	19937.0	12	70	19960.5	5	59	19953.0	7	6 6	0.00401
15 Jul	19860.0	3	60	19896.5	3	59	19883.5	5	59 67	0.00479
16 Aug	19791.5	3	71	19836.5	4	55	19815.5	2	55	0.00494
17 Sep	19732.0	5	42	19785.5	2	39	19752.5	6	33 34	0.00510
18 Oct	19689.5	11	33	19744.0	5	40	19702.0	5		0.00559
19 Nov	19650.5	3	23	19702.5	0	33	19663.5	1	30 20	U.00339 U.00576
20 Dec	19614.0	6	44	19671.0	2	30	19626.5	2	39 78	0.06.298
21 Jan '87		8	82	19620.5	4	67	19566.0	1	56	0.00135
22 Feb	19464.5	4	63	19552.0	2	62	19498.0	1	65	0.00620
23 Mar	19403.0	3	52	19486.0	3	66	19436.5	2	38	0.00642
24 Apr	19349.5	9	49	19433.5	2	33	19385.0),00653
25 May	19290.0	3	52	19393.0	1	44	19346.5	2	35 56	0, ~)663
26 Jun	19233.5	2	55 57	19348.5	0	43	19299.0	4	63	0.00670
27 Jul	19175.5	2	57	19295.5	1	63	19235.5	1 2	114	0.00680
28 Aug	19099.5	2	91	19206.0	2	14	19146.0		- 66	0.00703
29 Sep	19028.0	9	48	19118.0	3	58	19054.0	1	46	0.00703
30 Oct	18969.5	5	5í	19063.5	5	45	18997.0	5 3	38	0.00756
31 Nov	18912.5	9	53	19013.0	3	46	18950.0		38	0.00730
32 Dec	18863.0	7	28	18972.5	6	29	18909.0	18	35	0.00811
33 Jan '8		9	36	18933.0	5	38	18854.5	2	26	0.00839
34 Feb	18786.5	0	21	18900.0	0	18	18822.0	0		
35 Mar	18766.0	1	20	18882.0	0	18	18793.5	3	31 7	0.00846
36 Apr	18749.5	2	11	18866.5	2	13	18771.5	3	-	0.00858
37 May	18739.0	5	6_	18852.0	5	12	18761.5	4	7	0.00883

Ln-Ln Plot: Observed Bangladesh Cholera Data

W4671

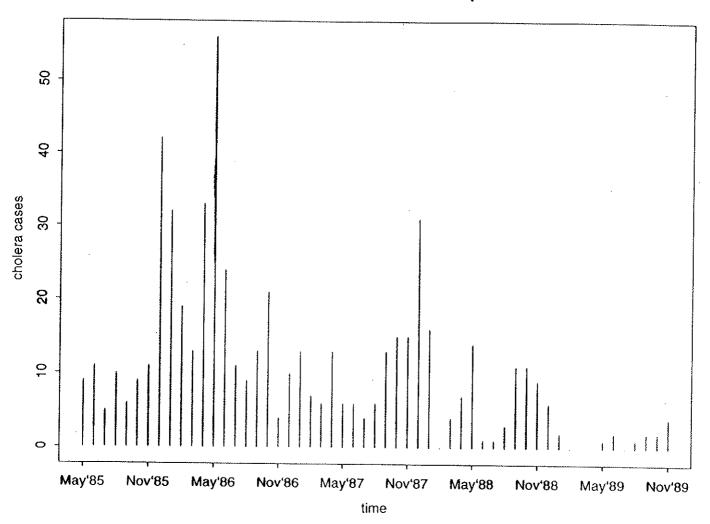
DURHAM, HALLORAN, LONGINI

- 1. SCHOENFELD RESIDUALS
- 2. GEN. ADD. MODELS (GAM)

SCHOENFELD RESIDVALS

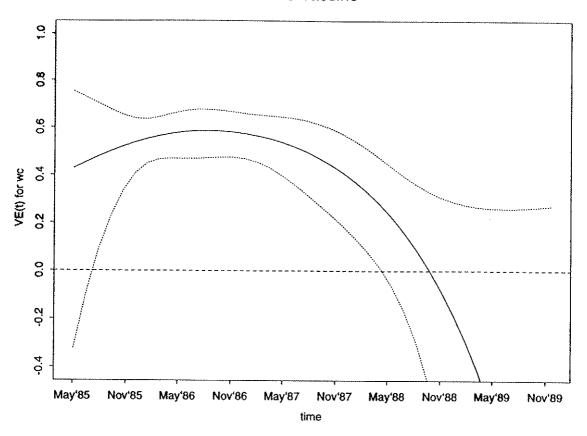
Nilt) - COUNTING PROCESS

NOUT) - BASELINE INTENSITY


INTENITY FOR TIME INVARIANT MOD. Y:(+) e 程: 入o(+) FIT AND GET ESTIMATE OF B COMPUTE RESIDUAL AT FAILURE TIMES AND CONSTRUCT

 $\hat{\beta}(+) = \hat{\beta} + \hat{\Theta}(+)$

WHICH IS DEFINED AT EACH
FAILURE TIME


THEN SMOOTH B(+)

number of new cholera cases per month

580 CASES

WC vaccine

BS-WC vaccine

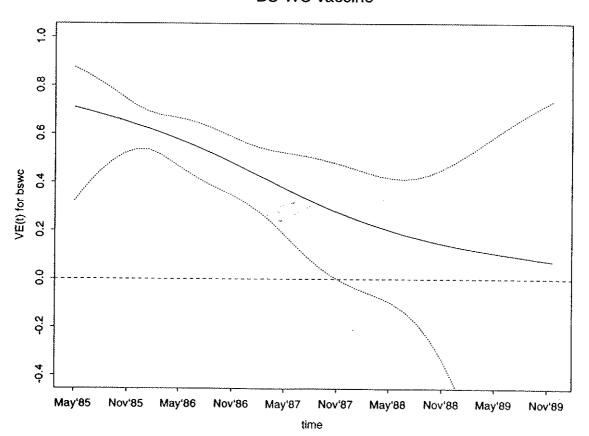
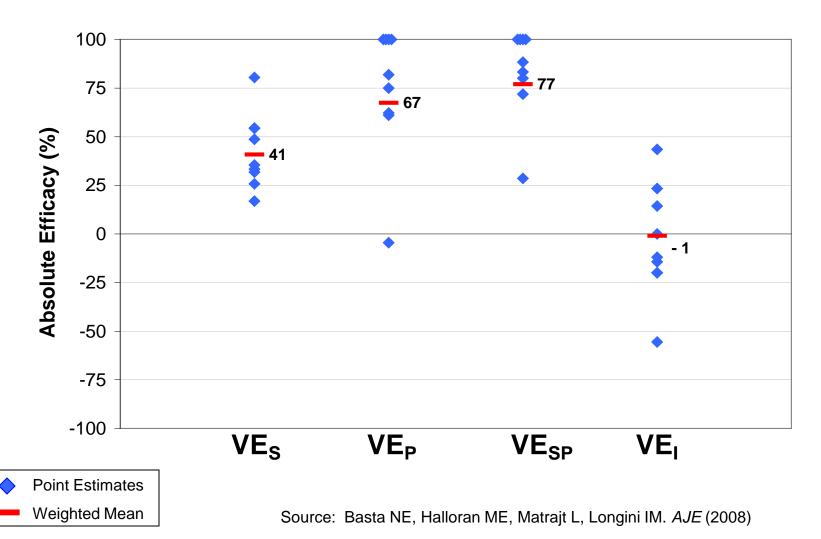


Table 3: Estimates of VE(t), with 95% confidence intervals, for the WC and BS-WC vaccines, Matlab, Bangladesh, May 1, 1985-November 31, 1989

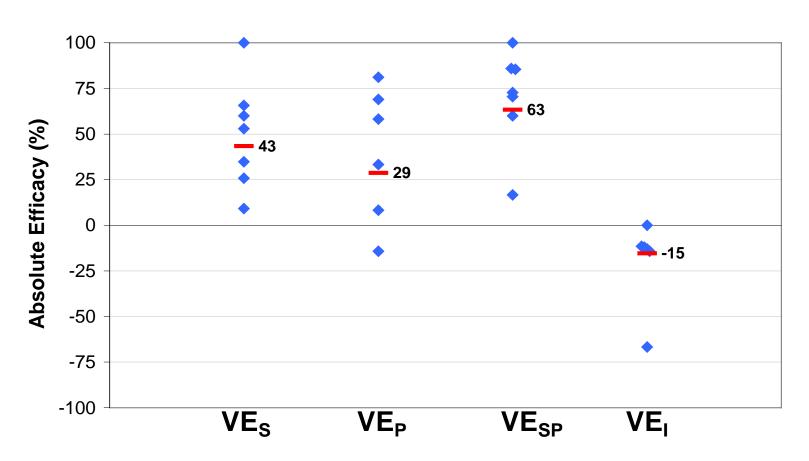
	······································	V	vhole cell	B-subunit whole cell		
date	day	VE(day)	approx. 95% c.i.	VE(day)	approx. 95% c.i.	
May 85	0	0.430	(-0.342, 0.758)	0.713	(0.320, 0.879)	
Nov 85	183	0.525	(0.356, 0.650)	0.650	(0.523, 0.743)	
May 86	365	0.579	(0.467, 0.667)	0.572	(0.457, 0.662)	
Nov 86	548	0.583	(0.478, 0.667)	0.476	(0.344, 0.582)	
May 87	730	0.538	(0.394, 0.648)	0.374	(0.176, 0.524)	
Nov 87	913	0.433	(0.220, 0.588)	0.280	(0.006, 0.478)	
May 88	1095	0.245	(-0.028, 0.445)	0.202	(-0.089, 0.416)	
Nov 88	1278	-0.073	(-0.664, 0.308)	0.141	(-0.338, 0.448)	
May 89	1460	-0.590	(-2.40, 0.257)	0.092	(-0.955, 0.578)	

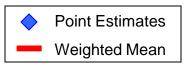
Influenza Challenge Studies

- Clements ML et al. Advantage of live attenuated cold-adapted influenza A virus over inactivated vaccine for A/Washington/80 (H3N2) wild-type virus infection. Lancet 1984;1:705-8.
- Clements ML et al. Resistance of adults to challenge with influenza A wildtype virus after receiving live or inactivated virus vaccine. J Clin.Microbiol. 1986;23:73-6.
- Sears SD et al. Comparison of live, attenuated H1N1 and H3N2 coldadapted and avian-human influenza A reassortant viruses and inactivated virus vaccine in adults. J Infect.Dis. 1988;158:1209-19.
- Clements ML et al. Evaluation of the infectivity, immunogenicity, and efficacy of live cold-adapted influenza B/Ann Arbor/1/86 reassortant virus vaccine in adult volunteers. J Infect.Dis. 1990;161:869-77.
- Treanor JJ et al. Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 1999;18:899-906.



Absolute Efficacy of Live Influenza Vaccine





Absolute Efficacy of Inactivated Influenza Vaccine

Source: Basta NE, Halloran ME, Matrajt L, Longini IM. AJE (2008)

