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1. General epidemic model 

 Population of N individuals 

 At time t there are: 

  St susceptibles 

    It infectives 

    Rt recovered / immune individuals 

  Thus   St + It + Rt = N    for all t. 

  Initially (S0, I0 ,R0 ) = (N-1,1,0). 

 



1. General epidemic model 
 

 Each infectious individual remains so for a 

length of time TI ~ Exp( ). 

 During this time, infectious contacts occur 

with each susceptible according to a 

Poisson process of rate  / N. 

 Thus overall infection rate is  St It / N.  

 Two model parameters,  and . 

 



1. General epidemic model 
 

 Let infection times be  

                  i1 i2 i3  ...  in,  

where i1 is time that initial infective begins 

their infectious period. 

 Note that n = total number infected. 

 Define i = (i2, i3 , ... , in)  

 

 



1. General epidemic model 
 

 Let removal times be 

                  r1 r2 r3  ...  rn. 

 

 Note that kth infection time need not 

correspond to the kth removal. 

                   

 Define r = (r1, r2 , ... , rn)  

 

 

 



1. General epidemic model 
 

 Recall the standard inference problem: we 

observe removal times and wish to perform 

Bayesian inference for  and . 

                  

 Solution [as discussed in MCMC I ] is to use 

MCMC, treat missing infection times i1 and 

   i = (i2, i3 , ... , in) as “latent” variables. 

 

 

 

 



1. General epidemic model 
 

 The target posterior density is 

 

  π ( ,, i1, i | r )  π (i, r |  ,, i1) π ( ,, i1)  

          posterior       likelihood    prior 

 

 

 

 

 

 



1. General epidemic model 
 

 Recall the likelihood: 

π (i, r |  ,, i1) =  

 

 

 

        product terms                 integral term 

 

Note that      here means S just before time ij. 
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1. General epidemic model 
 

 Recall: if  and   Gamma a priori then both 

have Gamma full conditional distributions. 

 e.g.   

  | , i1, i, r    ( m + n -1,   + N-1  SI  ) 

               where     ( m ,   ) a priori . 

 Thus  and  can be updated using a “Gibbs 

step” - i.e. according to their full conditional 

distributions - during an MCMC algorithm. 



1. General epidemic model 
 

 Recall that the unknown infection times are 

updated using a Metropolis-Hastings step. 

 The acceptance probability requires us to 

calculate  

          posterior       likelihood  prior 



1. General epidemic model 
 

 Thus to write an MCMC algorithm, it is 

necessary to be able to evaluate both the 

product and (integral) terms in the likelihood. 



1. General epidemic model 
 

Product terms 

 

 First note that 

































































n

j

n

j

nn
n

j

n

j

γβγβN
1

r

2

ii
1

1

r

2

ii
1

 j  j j j  j j IIS IIS 




























 




n

j

n

j

nn γβ
1

r

2

i
1

 j  j II 1)n-2)...(N-1)(N-(N 



1. General epidemic model 
 

Product terms 

 

 Thus only the products of numbers of 

infectives may potentially change when 

updating the infection times. 

 The product is most easily evaluated 

“directly”, i.e. by keeping track of changes to 

It at each infection or removal event. 



1. General epidemic model 
 

Integral terms 

   It dt  = 1 k  n  (rk - ik) 

   St It dt  = 1 k  n 1 j  N [(rk  ij) - (ik  ij)] 

 

Here, “a  b” denotes “minimum of a,b”. 

 

Also ij =  for  j > n, i.e. for those individuals 

never infected. 

 

 

 

 

 



1. General epidemic model 
 

Integral terms 

 Explanation: 

    It dt  =  1 k  n  1{k is infective at time t}  dt 

             = 1 k  n   1{k is infective at time t}  dt 

 

        where 1A  = 1  if event A occurs 

                   = 0  otherwise 

 



1. General epidemic model 
 

Integral terms 

 Recall that individual k is removed at rk . 

 Suppose their infection time is iL(k) . 

  

Then   1{k is infective at time t}  dt 

           = total time k is infective 

           = (rk – iL(k)) 

 

 



1. General epidemic model 
 

Integral terms 

 

Then    It dt  = 1 k  n  (rk – iL(k)) 

                     = 1 k  n  rk - 1 k  n  iL(k) 

                     = 1 k  n  rk - 1 k  n  ik 

                                = 1 k  n  (rk - ik) 

 

 

 

 

 

 



1. General epidemic model 
 

Integral terms 

 

   St It dt  = 1 k  n 1 j  N [(rk  ij) - (ik  ij)] 

 

Similar arguments used to derive this… 



1. General epidemic model 
 

Integral terms 

[(rk  ij) - (ik  ij)] = time that k is infective and  

                              j is susceptible 

 

[(rk  ij) - (ik  ij)] = rk - ik   if  ij > rk (e.g. ij =  ) 

[(rk  ij) - (ik  ij)] = ij - ik     if  ik < ij < rk  

[(rk  ij) - (ik  ij)] = 0        if  ij < ik  
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2. Non-Markov epidemic model 
 

 

  We now consider a generalisation of the 

basic (Markov) SIR model in which the 

infectious periods are no longer 

exponentially distributed. 

 This apparently minor change has a material 

impact on the likelihood calculations. 



2. Non-Markov epidemic model 
 

 Each infectious individual remains so for a 

length of time TI drawn from some specified 

distribution with parameter vector  

 During this time, infectious contacts occur 

with each susceptible according to a 

Poisson process of rate  / N. 

 Thus overall infection rate is  St It / N.  

 Two model parameters,  and . 



2. Non-Markov epidemic model 
 

Likelihood 

 Assume population contains N individuals of 

whom n ever become infective. 

 Label the n infectives 1, 2, ..., n and the 

other individuals n+1, n+2, ..., N. 

 Define rk and ik as the removal and infection 

times of individual k. Note these =  if k 

never becomes infected. 



2. Non-Markov epidemic model 
 

Likelihood 

 Let b be the label of the last removal time, 

i.e.  rb  rk  for all k = 1, ..., n.  

 Given removal data, b is observed and fixed 

for any given labelling. 

 Define a as the label of the first infection 

time, i.e.  ia  ik  for all k = 1, ..., n.  

 Given removal data, a is unknown. 



2. Non-Markov epidemic model 
 

Likelihood 

 Define r = (r1, r2 , ... , rn)  

 Define i = (i1, i2 , ... , ia-1, ia+1, ... , in)   

 

  Let f(x |  ) denote the probability density 

function (or mass function if appropriate) of 

the infectious period distribution with 

parameter vector . 



2. Non-Markov epidemic model 
 

Likelihood 

 π (i, r |  ,, a, ia) =  
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2. Non-Markov epidemic model 
 

Bayesian inference 

 π (  ,, a, ia , i | r)  

           π (i, r |  ,, a, ia) π ( ,, a, ia) 

 

 Thus we must specify a prior distribution for 

 ,, a, and ia . 

 

           



2. Non-Markov epidemic model 
 

MCMC algorithm 

   is updated as for the Markov model (i.e. 

Gibbs step, assuming  has a Gamma prior) 

 Infection times updated using a M-H step. 

One option is to propose (rk - ik) from 

distribution of infectious period.  

  updates depend on particular choice of 

infectious period distribution. 
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3. Debugging tips 
 

1. Test each piece of code separately 

Most MCMC algorithms in this field involve 

various components, e.g.  

 Gibbs updates 

 Metropolis-Hastings updates 

 Likelihood 

It is good practice to check each component 

works before proceeding. 

 



3. Debugging tips 
 

2. Validate output using simulations 

As discussed in Lecture 1, one way to test 

MCMC code (e.g. for SIR model) is 

 Simulate SIR model M times (e.g. M=1000) 

 Run MCMC on each output to infer 

parameters 

 Average parameter estimates from MCMC 

should be close to the known true values 

 



3. Debugging tips 
 

2. Validate output using simulations 

If the MCMC code is time-consuming to run 

then an alternative is use simulation output 

that gives a single large epidemic - idea 

being that this should give reasonable 

information about the model parameters. 



3. Debugging tips 
 

3. Beware Zeroes 

Some languages allow operations such as 

“0/0” without reporting an error. 

 



3. Debugging tips 
 

4. Try a very small data set 

Sometimes it is possible to test MCMC code 

by using a very small data set where one 

can work out the required inference by 

hand. This can then be checked against the 

MCMC output. 

 



3. Debugging tips 
 

5. Use log likelihood 

Many likelihoods require calculation of  

products which can in turn lead to numerical 

instabilities and run-time errors. 

One way to tackle this issue is to instead work 

with the log likelihood, since 

   log( A1 x A2 x ... x Am) = log(A1)+...+ log(Am) 

 

 



3. Debugging tips 
 

5. Use log likelihood (cont) 

The likelihood may involve the calculation of 

Beta or Gamma functions.  

R has built-in functions to compute such 

functions, i.e. beta, gamma; but if we are 

working on the log scale, instead of doing 

something like log(gamma(k)) we could use 

another built in function lgamma(k) to ensure 

numerical stability, especially if k is large.     
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4. What to do with MCMC output 
 

In this section, for illustration it is assumed 

that we have MCMC output from the Markov 

SIR model removal-data-observed scenario: 

           (1 ,1 ), (2 ,2 ), ..., (M ,M ),   

where M is large (e.g. M=106 ). 

 

Each pair (k ,k ) is (approx) a sample from 

the joint posterior density  π ( , | r ). 

 



4. What to do with MCMC output 
 

Marginal summaries 

Quantities such as the marginal mean, 

median, variance etc of  and of  can be 

readily obtained using the package R. 

 

It is also useful to plot the marginal posterior 

density of each parameter. 



4. What to do with MCMC output 
 

Joint summaries 

It can be useful to assess the extent to which 

 and  can be estimated separately.  

The posterior correlation and a scatterplot of 

the samples against axes  and   provide 

such information. 



4. What to do with MCMC output 
 

Functions of model parameters 

The quantity R0 is of enormous interest in 

mathematical epidemic theory. It is (roughly) 

defined as the average number of 

secondary cases caused by a typical 

infective in an infinitely large population of 

susceptibles. 

If R0  1, epidemics are unlikely to take off. 



4. What to do with MCMC output 
 

Functions of model parameters 

For the (general) SIR model,  

                       R0 =  E(TI), 

where E(TI) is the mean infectious period.  

 

This follows from the fact that each infective 

causes new infections at (Poisson) rate  

during a period of time TI . 

 



4. What to do with MCMC output 
 

Functions of model parameters 

For the Markov model we have 

                       R0 =  E(TI) =  /  , 

since TI  Exp( ).  

Thus given the MCMC output we can create a 

new file containing 

           (1 /1 ), (2 / 2 ), ..., (M / M ),  

i.e. samples from the posterior density of R0. 



4. What to do with MCMC output 
 

Functions of model parameters 

R0 can be summarised in the usual ways 

(mean, variance etc): also interesting to find 

the posterior probability that R0  1.  

 



4. What to do with MCMC output 
 

Functions of model parameters 

Can also be interesting to translate inference 

for rates into inference for probabilities. 

 

e.g. 1 - exp(-  / N) is the probability that one 

infective individual infects a given 

susceptible in one time unit.  

 


