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Who is this man?

How sure are you?
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The one ‘true’ tree?

Methods we’ve learned so far
try to find a single tree that
best describes the data
However, they do not search
everywhere, and it is difficult
to find the “best” tree
Many (gazillions of) trees may
be almost as good
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Bayesian phylogenetics: general principle

Using Bayesian principles, we will search for and average over sets
of plausible trees (weighted by their probability) instead a single
“best” tree
In this method, the “space” that you search is limited by prior
information and the data

The posterior distribution of
trees naturally translates into
probability statements (and
uncertainty) on aspects of
direct scientific interest

I When did an evolutionary
event happen?

I Are a subset of sequences
more closely related?

The cost: we must formalize
our prior beliefs
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Conditional probability: intuition

Philippe is a hipster.
Philippe is a hipster

and rides a single-speed bike.

Which is more probable?
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Conditional probability: intuition

Arbitrary events A (hipster) and B (bike) from sample space U
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Bayes theorem

Definition of conditional probability in words:

probability(A and B) = probability(A given B)× probability(B)

In usual mathematical symbols:

p(A|B)p(B) = p(A,B) = p(B|A)p(A)

With a slight re-arrangement:

p(A|B) =
p(B|A)p(A)

p(B)

“Just" a restatement of conditional probability
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Bayes theorem

Integration (averaging) yields a marginal probability:

p(A) =

∫
p(A,B)dB =

∫
p(A|B)p(B)dB︸ ︷︷ ︸

over all possible values of B

probability(hipster) = probability(hipster and has bike) +
probability(hipster and has no bike)
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Conditional probability: pop quiz

What do you know about Thomas Bayes?
Bayes theorem?

Some discussion points:
Favorite game? Best buddies?
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Bayes theorem for statistical inference

Unknown quantity θ (model parameters, scientific hypotheses)
Prior p(θ) beliefs before observed data Y become available
Conditional probability p(Y |θ) of the data given fixed θ – also
called the likelihood of Y
Posterior p(θ|Y ) beliefs:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

p(θ) and p(Y |θ) – easy
p(Y ) =

∫
p(Y |θ)p(θ)dθ – hard
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Bayesian phylogenetic inference
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Bayesian phylogenetic inference
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Bayesian phylogenetic inference

Posterior:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

Trouble: p(Y ) is not
computable – sum over all
possible trees
For N taxa: there are G(N) =
(2N − 3)× (2N − 5)× · · · × 1

θ = (tree, substitution process)
p(Y |θ) - continuous-time
Markov chain process that
gives rise to sequences at tips
of tree

E.g., G(21) > 3× 1023
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Priors

Strongest assumption: most parameters are separable, e.g. the tree
is independent of the substitution process
Weaker assumption: tree ∼ Coalescent process
Weaker assumption: functional form on substitution parameters

Specialized priors as well
If worried: check sensitivity
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Posterior inference

Numerical (Monte Carlo) integration as a solution:
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Markov chain Monte Carlo

Metropolis et al (1953) and
Hastings (1970) proposed a
stochastic integration
algorithm that can explore vast
parameter spaces
Algorithm generates a Markov
chain that visits parameter
values (e.g., a specific tree)
with frequency equal to their
posterior density / probability.
Markov chain: random walk
where the next step only
depends on the current
parameter state
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Metropolis-Hastings Algorithm

Each step in the Markov chain starts at its current state θ and
proposes a new state θ? from an arbitrary proposal distribution
q(·|θ) (transition kernel)
θ? becomes the new state of the chain with probability:

R = min

 p(θ?|Y )

p(θ|Y )
× q(θ|θ?)
q(θ?|θ)


= min

 p(Y |θ?)p(θ?) / p(Y )

p(Y |θ)p(θ) / p(Y )
× q(θ|θ?)
q(θ?|θ)


= min

 p(Y |θ?)p(θ?)

p(Y |θ)p(θ)
× q(θ|θ?)
q(θ?|θ)


Otherwise, θ remains the state of the chain
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Posterior sampling
We repeat the process of proposing a new state,
calculating the acceptance probability and either
accepting or rejecting the proposed move millions of
times

Although correlated, the Markov
chain samples are valid draws from
the posterior; however . . .

Initial sampling (burn-in) is often
discarded due to correlation with
chain’s starting point ( 6= posterior)
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Transition Kernels

Often we propose changes to only a small # of dimensions in θ at a
time (Metropolis-within-Gibbs)
In phylogenetics, mixing (correlation) in continuous dimensions is
much better (smaller) than for the tree
So, dominate approach has been keep-it-simple-stupid –
alternatives exist and may become necessary:

I Gibbs sampler; slice sampler; Hamiltonian MC
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Tree Transition Kernels
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Posterior Summaries

For continuous θ, consider:
posterior mean or median ≈
MCMC sample average or
median
quantitative measures of
uncertainty, e.g. high posterior
density interval

Credible Regions

Parameter (x)

The Bayesian equivalent of a confidence interval is called the 
highest posterior density (HPD) credible region. This is the 

smallest region that contains 95% of the posterior probability.
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For trees, consider:
scientifically interesting
posterior probability
statement, e.g. the probability
of monophyly ≈ MCMC
sample proportion under which
hypothesis is true
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Posterior Probabilities
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Summarizing Trees
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MCMC Diagnostics: within a single chain

Visually
inspect
MCMC
output traces

Measure au-
tocorrelation
within a
chain: the
effective
sample size
(ESS)
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MCMC Diagnostics: across multiple chains

Visually
inspect
MCMC
output traces

Comparing different chains → variance among and between chains

SISMID University of Washington Bayesian Phylogenetics



Improving Mixing

(Only if convergence diagnostics suggest a problem)

Run the chain longer
Use a more parsimonious model
(uninformative data)
Change tuning parameters of transition
kernels to bring acceptance rates to 10% to
70%

Use different transition kernels (consult an
expert)
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Improving Mixing
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Why Bother being Bayesian?

In practice, we have almost no prior knowledge for the model
parameters. So, why bother with Bayesian inference?

Analysis provides directly interpretable probability statements
given the observed data
MCMC is a stochastic algorithm that (in theory) avoids getting
trapped in local sub-optimal solutions
Search space under Coalescent prior is astronomically “smaller”
By numerically integrating over all possible trees, we obtain
marginal probability statements on hypotheses of scientific interest,
e.g. specific branching events or population dynamics, avoiding bias
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