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EVOLUTIONARY TREE

(time scale = genetic distance)

Molecular Clock Models l PHYLOGENETICS

EVOLUTIONARY TREE

(time scale = years)




Molecular phylogenies

© most molecular phylogenies

» are unrooted (or the rooting is
due to prior information)

» have branch lengths
representing genetic change

The Tree of Life

- NR Pace, Science 1997

Molecular phylogenies

o the ideal molecular phylogeny

» is rooted (implies a branching
order)

» has branch lengths in units of
time (an evolutionary history)

@ how do we construct one of
these trees?
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A constant evolutionary rate through time

- to obtain a timed .
phylogeny, the ® shark
evolutionary model S 2%
must assume a 2 E60] o ~carp
relationship between | S £0- PP ® chicken
the accumulation of o a0 { COW
genetic diversity and - . . . . .
time - 8 § § 8§ B8

time to common ancestor (myr)

- Zuckerkandl and Pauling (1962): the rate of amino acid
replacements in animal haemoglobins was roughly
proportional to real time, as judged against the fossil record

A constant evolutionary rate through time

- the molecular clock is o

particularly striking o shark
when compared to S =%

the obvious 2 E60] " ~ carp
differences inrates of | S w4 PP 7" chicken
morphological s o0 COW

evolution... - 0 , , , , ,

time to common ancestor (myr)
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The molecular clock is not a metronome

* if mutation every MY
. . . 95% confidence limits:
with Poisson variance 5

) 1517 substitutions
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» 95% of the lineages

15MY old have 8-22 §
substitutions >
9
» 8 substitutions also E 4
could be <5 MY old g Confidence limits based
= on Poisson distribution
| | |
0 5 10 15 2 2%
Number of substitutions

» Molecular Systematics, p532.

And there is no global molecular clock

nucleotide substitutions per site per year
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And there is no global molecular clock

- different genes,
different profiles

* variation in mutation
rate?

- variation in selection

genes coding for
some molecules
under very strong
stabilizing selection
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% genetic divergence
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calibrating the molecular clock




From substitution units to time units

nodes with
point calibrations

Contemporary sample
probabilistic calibrations

time
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Calibration using sampling times

contemporary sample, ~ serial sample, with time divergence
no time structure : structure
PLLLELED
Tip calibration: two major applications
RNA viruses o Substitutions accumulate
evolve quickly: between the times of sampling

103 -10°
substitutions per d sequences or
site per year. ' etﬂeégpmr ous\sequences

©

data Sets of
radiocarberr=dated
specimens




Incorporating sampling time: naive method

observed number of substitutions

or genetic divergence
d

1

sampling time 1 sampling time 2
t1 to

substitution rate, u
=d/ |t - 1o

Incorporating sampling time: naive method

ancestral
diversity

trc;ot to t1




Incorporating sampling time: naive method

troot t2 t1

pu=(di-da)/(t1-1t)

linear regression

* can be rearranged:
di= H (ti - troot)

E[dl] =Hu. ti- H . troot

_ gradient is: U
troot ts t B Vlinterceptis: = U . troot

y =di/ (ti - troot) x-intercept is: troot




Estimating the time-scale

e Rate: 3.14E3 Ny
mutations/genomic site/year
* tMRCA: 2009.041 -

(15-dan-2009)
Correlation: 0.83

R?: 0.69

H1N1/09 ‘Swine Flu’
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A DNA virus (smallpox)

0.003 Variola, Poxviridae, 190kb genome
Sampling 1946-1977
VARV
R?=0.67862
0.002 | R

Genetic distance

0.001 §

Rate estimate: 8.2 x 106 Subs/Site/Year
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Salmonella Typhimurium

5E-2

4.5E-21

4E-2-
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root-to-tip divergence
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Diagnostic tool

- divergence accumulation

- outliers
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» Rambaut A. et al. (2016) Virus Evolution, 2(1), vew07.




Time structure via tip calibration

Contemporary sample . Serial sample time
no time structure with time structure

1980

Cg 1990

2000

» Rambaut A. (2000) Bioinformatics, 16, 395-399.

Relaxing the molecular clock




Clock versus non-clock

- unconstrained (unrooted) Felsenstein model:
Felsenstein (1981) JME, 17: 368 - 376

» each branch has its own rate independent of all others

» time and rate are confounded and can only be estimated as a
compound parameter (branch lengths)

- strict molecular clock:
Zuckerkandl & Pauling (1962) in Horizons in Biochemistry, pp. 189-225

» all lineages evolve at the same rate

» allows the estimation of the root of the tree and dates of
individual nodes

Need for a relaxed molecular clock

- the unrooted model of phylogeny and the strict molecular
clock model are two extremes of a continuum.

- dominate phylogenetic inference
+ but both are biologically unrealistic:

» the real evolutionary process lies between these two
extremes

» model misspecification can produce positively misleading
results

» Pybus (2006) Genome Biol. 4, e151




‘strict’ molecular clock

1 parameter virus
(rate of evolution) virus?
Virus3
virus4
Virusb
Virus6
virus7
virus8
virus9
virus10
2012 | 2013 | 2014
‘local’ molecular clock
high rate Virus
| virus2
! virus3
low rate virus4
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I Virus6
I virus7
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host specific local clock

high rate

pigrhuman human
1 human
! human
low rate birdpig human
| pig
I .
PIg
pig
bird
bird
bird
2012 | 2013 | 2014
autocorrelated relaxed clock
high rate virus1
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lognormal uncorrelated relaxed clock

virus
virus2
Virus3
: virus4
low rate  high rate
virusb
Viruse
virus?
virus8
Virus9 2 parameters
(mean rate and
virus10 variance in rate among
branches)
| ' I ' '
2012 2013 2014

Relaxed clocks: (1) local molecular clocks

» specify Ho beforehand
» problem of identifiability

D

» Yoder and Yang (2000) Mol Biol & Evol 17: 1081-1090.




true (model) tree
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Autocorrelated relaxed clocks

 rates for each branch are drawn from a distribution centered
on the rate of the ancestor

» but what is the rate P
at the root? il Y

» A prior degree of _ I A
autocorrelation? S0 6

» not currently possible ‘
to do phylogenetic . h\g‘r I
inference }F_}Elr2 ...... Fms e a

3
., .
............

?
r, ~ LogNormal(r,,,0"At,)

» e.g., Thorne JL, Kishino H, Painter IS (1998) Mol Biol & Evol 16: 1647-1657.

Uncorrelated relaxed clocks

e rates for each branch are drawn independently from an
identical distribution:

hy r ~ Exp(A)

..................
,,,,,
......
.
o
0

r ~ LogNormal(u,0?)
NG T r m|
A L v I  ~ Gamma(e.p)

dinorm(x, 0, 1)
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0 1 2 -hi 4 s o e
..... 1 e » Drummond et al. (2006) Plos Biology 4: e88.
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Bayesian evolutionary analysis sampling trees

» Given sequence data that is temporally
spaced estimate true values of: E

ACGT

» substitution parameters (u and Q)

- o0 >

» ancestral genealogy (g = Eg, t,)

tree topology M
dates of divergence

» population history (0)

» Bayesian inference
P(9.1,6,QID)= ;_ Pr{DI§.1. R} (910)f (u)F (O)E(Q)

“relaxed phylogenetics and
t={t,t t, .} dating with confidence”
12 1 t2n-1

R={r,r, L.} f(RIg)=f(R)=TAe"

Uncorrelated relaxed clocks: example

» Phylogenetic inference

» measuring autocorrelation

» measuring clock-likeness
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Evaluating clock-like behaviour?
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Bayesian model testing

* Goal: finding the most appropriate model for your data

* Over-fitting: too many parameters, the model is too complex
* Under-fitting: too few parameters, the model is too simple

* Don’t compare all possible model combinations (evolutionary model,
clock models, coalescent tree prior, ...) to one another!

» Test/compare those models if that is part of the hypothesis your testing,
or if your hypothesis test is sensitive to the model choice




Model testing using Bayes factors

¢ A Bayesian alternative to classical hypothesis testing: the Bayes
factor (@ summary of the evidence provided by the data in favor of
one scientific theory, represented by a statistical model, as opposed
to another; Kass & Raftery, 1995).

p(YIM1)

e Bayes factor Byt = ——
p(Y|Mo)

¢ \When two models Mo and M1 are being compared, one defines
the Bayes factor in favor of My over Mo as the ratio of their
respective marginal likelihoods

¢ \When there are unknown parameters, the Bayes Factor Bo1 has
in a sense the form of a likelihood ratio

Model testing using Bayes factors

e However, the densities are * Posterior:
obtained by integrating p(6]Y,M) =
over parameter space:
p(Y16,M) p(6|M)

p(YIM) = jepme,/w) pOIM)do  «—p(MM)

e So for model fit, the marginal likelihood p(Y|M) or integrated
likelihood, i.e. the normalizing constant (cancels out in the
calculation of the MH acceptance ratio), is of primary
importance, but awfully hard to calculate.




Reminder: MHG MCMC Sampling

The algorithm starts from a random state (6) and
‘proposes’ a new state (6%)

The new state is accepted with probability:
R = min (1, p (6*ID) 4 p (6] 6) )
p(6ID)  p (67 6)

=mnc,mmwwww@mxwaﬂ)

p (DI6) p (O)4p(D) f(6°| 6)
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the two marginal likelihoods cancel out
and don’t have to be computed !

= min (1, f(Dl6")  f(6r) , (616 )
f(Dle) () f (6| 6)

Likelihood ratio Prior ratio Proposal ratio

Calculating marginal likelihoods

Methods of general applicability:

rior arithmetic mean estimator (pAME; Aitkin, 1991)
imator (AME/ILP; but a misno
arly the harmonic mean

the arithmetic m

(o :
* [ the importance sampling esti
estimator (HME) (Newton and

mean estimator (SHME) (Redeli

* | the stabilized har; Suchard, 2005)

(No additional analysis req

° rpa’[h sampling (Gelman, 1998; Ogata, 1989), applied in phylogenetics (Lar‘[illot1
and Philippe, 2006)

.. . . )
* | stepping-stone sampling (Xie et al., 2011) (Addltlonal analysis required |
. Lgeneralised stepping-stone sampling (Fan et al., 2011; Baele et al., 2016)




path sampling and stepping-stone sampling

* requires samples from a series of power posteriors, along a
path between prior and posterior:

as®) = p(Y | 6,M)Pp(6 | M) reduces to the posterior when B = 1

reduces to the prior when 3 =0
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-400 ekl
R p=0.8
450 b ET iy i on L ¥ 4
B=0.6
D 500 F - = J
p=0.4
-550 - ; : - - —f 1
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0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1
# iterations B

path sampling and stepping-stone sampling

Constant vs. Exponential ~ 0.01 Constant vs. Exponential ~ 0.025

True positive rate
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FIG. 2. Evaluation of log BF estimates using PS (SS yields an undistinguishable plot), AICM, and the HME to compare model fit, with four pairwise
comparisons being shown: a constant population size versus an exponential population size with growth rates of 0.01, 0.025, 0.05, and 0.10. An
increasingly strong discriminatory behavior (low false positive rates and high true positive rates) can be seen for PS (and SS) up to a growth rate of
0.10, whereas the HME retains questionable performance. AICM performance lies in between that of the HME and PS/SS. Color-coded area under
the curve values are given at the bottom right of each plot.




Generalised stepping-stone sampling

requires samples from a series of power posteriors, along a
path between reference/working prior and posterior:

ae®) = [P(Y | 8,M)p(B | M)]Ppo(8 | M)'P

* reduces to the original SS method if the reference/working distribution is
equal to the actual prior

* in practice, samples from the posterior distribution (3 = 1) are used to
parameterize the joint reference/working distribution po(6|M)

» we will use kernel density estimation (KDE) to construct reference/
working priors for each of the parameters being estimated

GSS: decreased run time

HIV-1 - Timings for different demographic priors

140
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@ PS/SS
W GSS POEL
O GSsS MCM

100 120
1 |

Run time (in hours)
60 80
1 1 1

40

20
1

o -

Constant Exponential Expansion

*  GSS does not need to explore the prior, which avoids computing the likelihood
for highly unlikely parameter values, which may lead to numerical instabilities

* combined with a “shorter” path to be traversed, this leads to a drastic
performance increase (dependent on the actual reference/working prior)




Bayesian model selection vs model averaging

» Jest/compare those models if that is part of the hypothesis your testing, or
if your hypothesis test is sensitive to the model choice

Model selection refers to the problem of using the data to
select one model from the list of candidate models

Model averaging refers to the process of estimating some
quantity under each model and then averaging the estimates
according to how likely each model is.

Random local clocks

= local clocks So, can we handle the

- specify HO a priori uncertainty in the number
- problem of identifiability and locations of a small

number of local clocks?
= uncorrelated relaxed clocks

- Rate changes do not necessarily occur regularly or on every branch

- Small number of significant changes

= o « three local

clocks

— 1 o| -tworate
changes

juapoy ised

11 ]

= How to explore 22"2 clock models?

I Slow Apes




Random local clocks

= Using Bayesian stochastic search variable selection:
formulate a prior that such that many rate changes (indicators) are
0 but allow the data to determine which ones are required to
explain (most of the) rate variation using MCMC

Didelphis

M
gvadon ™ Three mtDNA nuclear genes from
ugon
Procavia
Bradypus 42 mammals (Douzery, 2003)
Cynopterus
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eli
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al ergus
Thryonomys o | J, . L. Drummond and
Echi °
Gavia " 0 & 10 12 Suchard, 2010.
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Chinchilla # of Rate Changes

Random local clocks

= Testing whether a branch accommodates a rate change using
Bayes factors

e Data D is assumed to have been arisen under one of two models, or
one of two hypotheses H7 and Ho.

pr(D| H,)pr(H)

pr(H,|D) =

) = DT pr () + pr(D] H)pr(Fy) 5

6 | | Prior

so that Z
pr(#,|D)|_[pr(D[H))[jpr (H,)
pr(H,|D)| |pr(D|H,)|pr(,) °
posterior ~ Bayes  prior : J,A IL
odds factor odds ° 0 6 8 10 12

© Prior probabilities pr(H+) and pr(H2) = 1 - pr(H+). Posterior
probabilities pr(H+|D) and pr(H2|D) = 1 - pr(H+|D)

# of Rate Changes
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Extensions for testing /L
evolutionary rate hypotheses %

© Jennifer Gardy
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Independent parameter estimation
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Hierarchical phylogenetic models

8y

Edo-Matas et al., MBE, 2011




Hierarchical model with fixed effects

Mixed effects model:
log ui = 0; +BX;

(i is red or blue)

;

Ui M2

Edo-Matas et al., MBE, 2011

Hierarchical model with fixed effects
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Edo-Matas et al., MBE, 2011
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Pybus and Rambaut, NGR, 2009
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Local clocks with random effects

Mixed effects model:
. log ui=0; +BX;

(i is red or black)
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Vrancken et al., PloS Comp Bio, 2014, 10(4): e1003505




Rates of HIV evolution within and between hosts

Mixed effects model:
log ui= 0; +pX

pol env

Rate (103 subst./site/yr)

X=0 (within ~ 5.70 10.37
host)  (4.02-6.21) (8.06-12.76)

X=1
. 2.21 3.80
(’f/f::g’g’g)ed (1.57-2.99) (2.32-5.20)

In Bayes factor (ratetransmitted < ratwithin)

>7.50 >6.29

Vrrancken et al., PLoS Comp Bio, 2014

What drives the tempo of pathogen evolution?

Pathogen factors

Mutation rate

.y Life cycle/replication
Sl dynamics

Host factors

Life history
ﬂ Seasonality
& Metabolic rate etc.

Historical factors

Pathogen phylogeny




Courtesy of D. Streicker
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Fixed-effect hierarchical phylogenetic models

Climate
Basal metabolic rate
, Torpid metabolic rate
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Seasonal activity
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Edo-matas et al., 2011. MBE

Fixed-effect hierarchical phylogenetic models
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Fixed-effect hierarchical phylogenetic models

Climate
Basal metabolic rate
BSSVS , Torpid metabolic rate
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Seasonal activity
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/ /
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Edo-matas et al., 2011. MBE
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Bat rabies virus evolutionary rates

Predictor Bayes factor B (95% HPD) | 6 =1
Climate 466.54 B

I
Basal metabolic rate 0.82 +
Torpid metabolic rate 1.00 m
Coloniality 0.46 n
Seasonal activity 0.46 B
Long-distance migration 0.69
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Streicker et al., 2012. PLoS Pathogens




