

Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology and Immunology KU Leuven, Belgium.

Estimating evolutionary rates and divergence times....

...and a bit of model testing

Philippe Lemey¹ and Marc Suchard²

- 1.Rega Institute, Department of Microbiology and Immunology, K.U. Leuven, Belgium.
- 2.Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA. Department of Biostatistics, UCLA School of Public Health

SISMID, July 19-21, 2017

A constant evolutionary rate through time

 to obtain a timed phylogeny, the evolutionary model must assume a relationship between the accumulation of genetic diversity and time

• Zuckerkandl and Pauling (1962): the rate of amino acid replacements in animal haemoglobins was roughly proportional to real time, as judged against the fossil record

And there is no global molecular clock

- different genes, different profiles
- variation in mutation rate?
- variation in selection

genes coding for some molecules under very strong stabilizing selection

Estimating the time-scale

- H1N1/09 'Swine Flu'
- Rate: 3.14E⁻³ mutations/genomic site/year
- tMRCA: 2009.041 (15-Jan-2009)
- Correlation: 0.83
- R²: 0.69

Clock versus non-clock

- unconstrained (unrooted) Felsenstein model: Felsenstein (1981) *JME*, **17**: 368 - 376
 - each branch has its own rate independent of all others
 - time and rate are confounded and can only be estimated as a compound parameter (branch lengths)
- strict molecular clock: Zuckerkandl & Pauling (1962) in Horizons in Biochemistry, pp. 189–225
 - all lineages evolve at the same rate
 - allows the estimation of the root of the tree and dates of individual nodes

Need for a relaxed molecular clock

- the unrooted model of phylogeny and the strict molecular clock model are two extremes of a continuum.
- dominate phylogenetic inference
- but both are biologically unrealistic:
 - the real evolutionary process lies between these two extremes
 - model misspecification can produce positively misleading results

Bayesian model testing

- Goal: finding the most appropriate model for your data
- Over-fitting: too many parameters, the model is too complex
- Under-fitting: too few parameters, the model is too simple
- Don't compare all possible model combinations (evolutionary model, clock models, coalescent tree prior, ...) to one another!
- Test/compare those models if that is part of the hypothesis your testing, or if your hypothesis test is sensitive to the model choice

Model testing using Bayes factors

• A Bayesian alternative to classical hypothesis testing: the Bayes factor (a summary of the evidence provided by the data in favor of one scientific theory, represented by a statistical model, as opposed to another; Kass & Raftery, 1995).

• Bayes factor $B_{01} = \frac{p(Y|M_1)}{p(Y|M_0)}$

- When two models M_0 and M_1 are being compared, one defines the Bayes factor in favor of M_1 over M_0 as the ratio of their respective marginal likelihoods
- When there are unknown parameters, the Bayes Factor B_{01} has in a sense the form of a likelihood ratio

 combined with a "snorter" path to be traversed, this leads to a drastic performance increase (dependent on the actual reference/working prior)

Bayesian model selection vs model averaging

• Test/compare those models if that is part of the hypothesis your testing, or if your hypothesis test is sensitive to the model choice

Model selection refers to the problem of using the data to select one model from the list of candidate models

Model averaging refers to the process of estimating some quantity under each model and then averaging the estimates according to how likely each model is.

Random local clocks

Using Bayesian stochastic search variable selection: formulate a prior that such that many rate changes (indicators) are 0 but allow the data to determine which ones are required to explain (most of the) rate variation using MCMC

