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Phylogeography

“a field of study concerned with 
the principles and processes 
governing the geographic 
distribution of genealogical 
lineages, especially those 
within and among closely 
related species.”

Avise, 2000



Phylogeography: three roads diverged?

Population genetics
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Phylogeographic inference (road I)

Nested clade 
phylogeographic 
analysis (NCPA)



Phylogeographic inference (road II)

Coalescent theory: 
๏ is a statistical framework for the 

analysis of genetic 
polymorphism data 

๏ is an extension of classical 
population-genetics theory and 
models 

๏ one can estimate time (number 
of generations) for lineages to 
coalesce 

๏ many applications (including 
migration analysis)
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MIGRATE-N
estimation of population sizes 

and gene flow using the coalescent

LAMARC - Likelihood Analysis with 
Metropolis Algorithm using Random Coalescence

http://evolution.genetics.washington.edu/lamarc.html

Batwing: http://www.maths.abdn.ac.uk/~ijw/downloads/download.htm

MDIV: http://www.biom.cornell.edu/Homepages/Rasmus_Nielsen/files.htm

http://popgen.sc.fsu.edu/Migrate-n.html  http://genfaculty.rutgers.edu/hey/software

Structured coalescent (road II)

BEAST2: http://compevol.github.io/MultiTypeTree / BASTA



Structured coalescent (road II)

Keele et al., 2006, Science



Inferring discrete ancestral state locations

Parsimony analysis
Location 1 Location 2

ML analysis

Bayesian analysis
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• Given sequence and trait data (X,Y) that is 
temporally spaced estimate true values of:  

‣ substitution parameters (µ and Q ) 
‣ ancestral genealogy (g = E , t  ) 

tree topology 

dates of divergence 

‣ population history (θ) 

‣ trait evolution (𝚿 ) 
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Phylogenetic diffusion models
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discrete continuous

∆Y = BVN(0,St)

Lemey et al., MBE, 2010Lemey et al., PLoS Comp Bio, 2009
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๏ Discrete Model: A B C D

A . πBi πCj πDk

B πAi . πCl πDm

C πAj πBl . πDn

D πAk πBm πCn .
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๏ priors A B C D

A . πBi πCj πDk

B πAi . πCl πDm

C πAj πBl . πDn

D πAk πBm πCn .
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Phylogenetic diffusion models

๏ Do we need all those 
parameters?

A B C D
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A B C D

A . πBiIi πCjIj πDkIk

B πAiIi . πClIl πDmIm

C πAjIj πBlIl . πDnIn

D πAkIk πBmIm πCn .

๏ Do we need all those 
parameters?
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Rate Indicators I[0,1]

mean = log(2)
offset = K -1

Poisson Prior
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Phylogenetic diffusion models

๏ Bayesian stochastic search variable selection procedure

➡ support for a particular rate (connection)?

posterior odds 

prior odds
Bayes factor = 

Pr(I=1| D)/(1-Pr(I=1| D)

Pr(I=1)/(1-Pr(I=1)

Poisson offset+ mean

K(K-2)/2
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๏ Wild fowl act as natural asymptomatic carriers

H5N1 ‘bird flu’

๏ first HPAI outbreak in 
Guangdong, China in 1996

๏ the A/goose/Guangdong/
1/96 (Gs/GD) virus lineage 
has become the longest 
recorded HPAI virus to 
remain endemic in poultry

๏ ‘Bird flu’ outbreak in Hong 
Kong in 1997
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Influenza A H5N1

Wallace et al., PNAS, 2007
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Influenza A H5N1: discrete model
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Understanding the evolutionary history of human viruses, 
along with the factors that have shaped their spatial 
distributions, is one of the most active areas of study in the 
field of microbial evolution.

Eddie Holmes, Ann Rev Microbiol 2008 

Phylogeographic patterns in RNA viruses



๏ priors A B C D
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Phylogeographic hypothesis testing?

Equal rates -320
Distance -299.8
Population sizes -381
Gravity model -388.6
Population surface -335.9
Road distances -298.5
Accessibility -313.7

Ln Marginal
likelihoodPredictor

Predictors of dog rabies diffusion in Morocco

Talbi et al (2010) PLoS Pathogens



Predictors of phylogenetic diffusion
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to the 15-geographic region partition, we subsequently obtain the average a�nity for each
airport to the communities in this partition. We assign each airport to the community for
which it shows the highest average a�nity, but we take into account its uncertainty by also
considering assignments that yield a�nities that are > 2/3 of the highest a�nity score. This
cut-o↵ resulted in 771 ambiguous airport assignments. Finally, we partitioned the sequence
data according to the air community assignment and accommodate 368 (24%) ambiguous
sequence locations, i.e. those sequences related to airports with ambiguous community as-
signments, using ambiguity coding in our phylogeographic approach.

1.3 Bayesian statistical analysis of sequence and trait evolution

We integrate genetic, spatial and air transportation data within a single full probabilistic
evolutionary model and simultaneously estimate the parameters of phylogeographic di↵u-
sion using Markov chain Monte Carlo (MCMC) analysis implemented in BEAST [3]. We
introduce a novel phylogenetic di↵usion model and associated inference procedures in the
subsections below. To model sequence evolution, we partition the hemagglutinin codon posi-
tions into first+second and third positions [4] and apply a separate HKY85 [5] CTMC model
of nucleotide substitution with discrete gamma-distributed rate variation [6] to both. We
assume a flexible Bayesian skyride prior over the unknown phylogeny [7]. Exploratory runs
using the data for the 26 locations indicated that a relaxed molecular clock represented an
over-parametrization [8]. A strict clock was therefore used in subsequent analyses. Because
the exact date of sampling was not known for some additional publicly available sequences,
we integrated out their dates over the known sampling time interval [9]. We capitalize on
BEAGLE [10] in conjunction with BEAST to improve computational performance on our
large data sets. MCMC analyses were run su�ciently long to ensure stationarity as diag-
nosed using Tracer. We used the TreeAnnotator tool in BEAST to summarize trees in the
form of maximum clade credibility (MCC) trees. As part of the supplementary files (Dataset
S1), we make available an XML document specifying the data and analysis settings for main
analysis of the air communities, and the associated empirical trees required to run the anal-
ysis (section 1.3.3). This includes accession numbers for all the sequences as well as their
sampling dates, the locations we assigned them to (section 1.1), the di↵erent sub-samplings,
the (GLM) model settings and the predictors (section 1.3.1 and 1.3.2).

1.3.1 GLM di↵usion implementation and predictor support

Bayesian phylogeographic inference models discrete di↵usion as a continuous-time Markov
chain process parameterized in terms of a K ⇥ K infinitesimal rate matrix ⇤ of discrete
location change withK representing the number of location states. The GLM di↵usion model
extends this by adopting a generalized linear model (GLM) approach that takes an arbitrary
number P of predictors X = (x1, . . . ,xP ), where a single predictor xp is a flattened vector of
quantities corresponding to entries in the i to j rate matrix xp = (x1,2,p, . . . xK�1,K,p)

0
. The

GLM considers every instantaneous movement rate ⇤ij for i 6= j in ⇤ as a log linear function
of the set of predictors X, such that:

log⇤ij = �1�1xi,j,1 + �2�2xi,j,2 + . . .+ �P �Pxi,j,P , (1)
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Hypothetical scenario for discretely and continuously distributed samples on the same geographical scale (top) and modeling assumptions underlying
the discrete and continuous phylogeographic approaches (bottom). The choice of the phylogeographic approach depends on whether the sampling
scheme is amenable to discretization or not. For example, if sequences are drawn from a single city in each country or if only the country of sampling is
known (panel a; k represents the number of sequences available for each state or location), a discrete diffusion model may be preferred, although such
sampling does not necessarily preclude the application of a continuous diffusion model. Intermediate scenarios may be treated either way (panel b). In
this case, the choice may more depend on the objectives of the analysis (see Box 1). Phylogeographic inference for sequences drawn from unique
locations that are continuously distributed over this geographic area and for which administrative borders do not offer a realistic discretization (panel c)
will have to resort to continuous diffusion models. To illustrate the assumptions underlying for the discrete model, we consider a graphical
representation of a four-state CTMC path (panel d). All possible transitions from state i to state j are color-labeled according to the end state j (diffusion
to a location) within a time interval, although other arbitrary labels can be considered to build different counting processes [52,53]. Conditioning on the
observed locations at the tips of a rooted phylogeny, CTMCs model the instantaneous locations along each branch of a tree [9!,56!,57] to infer the
ancestral states at the internal nodes (panel e). Continuous diffusion approaches are based in Brownian diffusion models and can account for
variability on the branch dispersal rates [10!]. We consider a simulation of a Brownian diffusion process, in which the lines represent branches of the
tree projected on a two-dimensional arbitrary map (panel f). In this case, only diffusion pathways for the tips are shown.
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