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Outline of Session 5

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (Price, Gilbert, van der Laan, 2017)
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Prospective Cohort Study Sub-Sampling Design
Nomenclature

• Terms used: case-cohort, nested case-control, 2-phase sampling

• Case-cohort sampling originally meant taking a Bernoulli random
sample of subjects at study entry for marker measurements (the
“sub-cohort”), and also measuring the markers in all disease cases
(Prentice, 1986, Biometrika)

• Nested case-control sampling is Bernoulli or without replacement
sampling done separately within disease cases and controls
(retrospective sampling)

• 2-phase sampling is the generalization of nested case-control sampling
that samples within discrete levels of a covariate as well as within case
and control strata (Breslow et al., 2009, AJE, Stat Biosciences)

• Source of confusion: Some papers allow case-cohort to include
retrospective sampling

• We restrict case-cohort to its original meaning
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The Cox Model with a Sub-Sampling Design

• Cox proportional hazards model

λ(t|Z ) = λ0(t)exp
{
βT0 Z (t)

}
• λ(t|Z ) = conditional failure hazard given covariate history until time t
• β0 = unknown vector-valued parameter
• λ0(t) = λ(t|0) = unspecified baseline hazard function

• Z are “expensive” covariates only measured on failures and subjects in
a random sub-sample

• i.e., Z = immune response biomarkers, measured at fixed time τ
post-randomization or at longitudinal visits
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Notation and Set-Up (Matches Kulich and Lin, 2004,
JASA)

• T = failure time (e.g., time to HIV infection diagnosis)

• C = censoring time

• X = min(T ,C ),∆ = I (T ≤ C )

• N(t) = I (X ≤ t,∆ = 1)

• Y (t) = I (X ≥ t)

• Cases are subjects with ∆ = 1

• Controls are subjects with ∆ = 0
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Notation and Set-Up (Matches Kulich and Lin, 2004,
JASA)

• Consider a prospective cohort of N subjects, who are stratified by a
variable V with K categories

• ε = indicator of whether a subject is selected for measurement of
immune responses Z (and they are measured)

• αk = Pr(ε = 1|V = k), where αk > 0

• (Xki ,∆ki ,Zki (t), 0 ≤ t ≤ τ,Vki , εki ≡ 1) observed for all marker
subcohort subjects

• At least (Xki ,∆ki ≡ 1,Zki (Xki )) observed for all cases
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Estimation of β0

• With full data, β0 may be estimated by the MPLE, defined as the
root of the score function

UF (β) =
n∑

i=1

∫ τ

0

{
Zi (t)− Z̄F (t, β)

}
dNi (t), (1)

where
Z̄F (t, β) = S

(1)
F (t, β)/S

(0)
F (t, β);

S
(1)
F (t, β) = n−1

n∑
i=1

Zi (t)exp
{
βTZi (t)

}
Yi (t)

S
(0)
F (t, β) = n−1

n∑
i=1

exp
{
βTZi (t)

}
Yi (t)
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Estimation of β0

• Due to missing data (1) cannot be calculated under the sub-sampling
design

• Most estimators are based on pseudoscores parallel to (1), with
Z̄F (t, β) replaced with an approximation Z̄C (t, β)

UC (β) =
K∑

k=1

nk∑
i=1

∫ τ

0

{
Zki (t)− Z̄C (t, β)

}
dNki (t)

• The double indices k , i reflect the stratification
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Estimation of β0

• The marker sampled cohort at-risk average is defined as

Z̄C (t, β) ≡ S
(1)
C (t, β)/S

(0)
C (t, β),

where

S
(1)
C (t, β) = n−1

K∑
k=1

nk∑
i=1

ρki (t)Zki (t)exp
{
βTZki (t)

}
Yki (t)

S
(0)
C (t, β) = n−1

K∑
k=1

nk∑
i=1

ρki (t)exp
{
βTZki (t)

}
Yki (t)
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Estimation of β0

• ρki (t) is set to zero for subjects with incomplete data, eliminating
them from the estimation

• Cases and subjects in the marker subcohort have ρki (t) > 0

• Usually ρki (t) is set as the inverse estimated sampling probability
(Using the same idea as the weighted GEE methods of Robins,
Rotnitzky, and Zhao, 1994, 1995)

• Different estimators are formed by different choices of weights ρki (t)

• Two classes of estimators (case-cohort and 2-phase)
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Example CoR Analysis: RV144 HIV-1 VE Trial

Haynes et al. (2012, NEJM) assessed in vaccine recipients the association
of 6 immune response biomarkers measured at Week 26 with HIV-1
infection through 3.5 years

• 2-phase sampling design: Measured Week 26 responses from all
HIV-1 infected cases (n = 41) and from a stratified random sample of
controls (n = 205 by gender ×# vaccinations × per-protocol)

Immune Response Variable Est. HR (95% CI) 2-Sided P-value

IgA Magnitude-Breadth to Env 1.58 (1.07–2.32) 0.02
Avidity to A244 Strain 0.90 (0.55–1.46) 0.66
ADCC to 92TH023 Strain 0.92 (0.62–1.37) 0.67
Neutralization M-B to Env 1.46 (0.87–2.47) 0.15
IgG to gp70-V1V2 Env 0.57 (0.37–0.90) 0.014
CD4 T cell Magn to 92TH023 1.17 (0.83–1.65) 0.37

Borgan et al. (2000, Lifetime Data Analysis) Cox model estimator II
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Case-cohort Estimators (Called N-estimators in Kulich and
Lin, 2004)

• The subcohort is considered a sample from all study subjects
regardless of failure status

• The whole covariate history Z (t) is used for all subcohort subjects
• For cases not in the subcohort, only Z (Ti ) (the covariate at the failure

time) is used

• Prentice (1986, Biometrika): ρi (t) = εi/α for t < Ti and
ρi (Ti ) = 1/α

• Self and Prentice (1988, Ann Stat): ρi (t) = εi/α for all t
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Case-cohort N-estimators

• General stratified N-estimator

• ρki (t) = εi/α̂k(t) for t < Tki and ρki (Tki ) = 1

• α̂k(t) is a possibly time-varying estimator of αk

• αk is known by design, but nonetheless estimating αk provides greater
efficiency for estimating β0 (Robins, Rotnitzky, Zhao,1994)

• A time-varying weight can be obtained by calculating the fraction of
the sampled subjects among those at risk at a given time point
(Barlow, 1994; Borgan et al., 2000, Estimator I)
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Two-phase Sampling Estimators (Called D-estimators in
Kulich and Lin, 2004)

• Weight cases by 1 throughout their entire at-risk period

• D-estimators treat cases and controls completely separately

• αk apply to controls only, so that αk should be estimated using data
only from controls

• Nested case-control estimators are the special case with one covariate
sampling stratum K = 1
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Two-phase Sampling D-estimators

• General D-estimator

ρki (t) = ∆ki + (1−∆ki )εki/α̂k(t)

• Borgan et al. (2000, Estimator II) obtained by setting

α̂k(t) =
n∑
i

εki (1−∆ki )Yki (t)/
n∑
i

(1−∆ki )Yki (t),

i.e., the proportion of the sampled controls among those who remain at
risk at time t

• the cch package in R (by Thomas Lumley and Norm Breslow)
implements the Cox model for case-cohort (N-estimators) and 2-phase
sampling (D-estimators) (code for using cch to analyze a data set is
provided at http://faculty.washington.edu/peterg/SISMID2017.html)
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Main Distinctions Between N- and D- Estimators

• D-estimators require data on the complete covariate histories of cases

• N-estimators only require data at the failure time for cases

• E.g., for the Vax004 HIV VE trial, the immune responses in cases were
only measured at the visit prior to infection, so N-estimators are valid
while D-estimators are not valid
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Main Distinctions Between N- and D- Estimators

• For N-estimators, the sampling design is specified in advance,
whereas for D-estimators, it can be specified after the trial
(retrospectively)

• D-estimators more flexible
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Gaps of Both N- and D- Estimators

Does Not Need Allows Outcome-
Full Covariate Dependent

Estimator Histories in Cases Sampling

N (Prosp. case-cohort) Yes No
D (Retrosp. 2-phase) No Yes

• For time-dependent correlates, none of the partial-likelihood based
methods are flexible on both points

• All of the methods require full covariate histories in controls
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Outline

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (Price, Gilbert, van der Laan, 2017)
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Some Marker Sampling Questions to Consider Further

• Prospective or retrospective sampling?

• How much of the cohort to sample?

• Sampling design: Which subjects to sample?
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Prospective or Retrospective Sampling?

Prospective case-cohort sampling: Select a random sample for
immunogenicity measurement at baseline

• Advantages of prospective sampling
• Can estimate case incidence for groups with certain immune responses
• Can study correlations of immune response with multiple study

endpoints
• Straightforward to descriptively study the distribution of the immune

responses in the whole study population at-risk when the immune
responses are measured

• Practicality: The lab will know what subjects to sample as early as
possible, and there is one simple subcohort list
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Prospective or Retrospective Sampling?

Retrospective 2-phase sampling: At or after the final analysis, select a
random sample of control subjects for immunogenicity measurement

• Advantages of retrospective sampling
• Can match controls to cases to obtain balance on important covariates

• E.g., balanced sampling on a prognostic factor gains efficiency
(balanced sampling = equal number of subjects sampled within each
level of the prognostic factor for cases and controls)

• Can flexibly adapt the sampling design in response to the results of the
trial

• E.g., Suppose the results indicate effect modification, with VE >> 0 in
a subgroup and VE ≈ 0% in other subgroups. Could over-sample
controls in the ‘interesting’ subgroup.
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Prospective or Retrospective Sampling?

• For cases where there is one primary endpoint and it is not of major
interest to estimate absolute case incidence, retrospective sampling
may be typically referred
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How Many Controls to Sample?

• In prevention trials, for which the clinical event rate is low, it is very
expensive and unnecessary to sample all of the controls

• Vax004 trial vaccine recipients: 225 HIV infected cases; ≈ 3000
controls

• RV144 trial vaccine recipients: 41 HIV infected cases; ≈ 7000 controls

• Rule of thumb: Under the null hypothesis, a K : 1 Control:Case ratio
achieves relative efficiency of 1− 1

1+K compared to complete sampling

K Relative Efficiency
1 0.50
2 0.67
3 0.75
4 0.80
5 0.83
10 0.91

• Simulations useful for studying the trade-offs of different K under
alternative CoR hypotheses
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Which Controls to Sample?

Two-Phase Sampling

• Phase I: All N trial participants are classified into K strata on the
basis of information known for everyone: Nk in stratum k ;
N =

∑K
k=1 Nk

• Phase II: For each k , nk ≤ Nk subjects are sampled at random, and
the ‘expensive’ immune response biomarkers Z are measured for the
resulting n =

∑K
k=1 nk subjects
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Which Controls to Sample?

Principle: Well-powered CoR evaluation requires broad variability in the
biomarker and in the risk of the clinical endpoint

• Can improve efficiency by over-sampling the “most informative”
subjects

• Disease cases (usually sampled at 100%)
• Rare or unusual immune responses; or rare covariate patterns believed

to affect immune response (e.g., HLA subgroups)

• Auxiliary Phase I variables measured in everyone are most valuable
when they predict the missing data (i.e., the biomarker of interest)

• In general, optimal sampling obtained with sampling probabilities
proportional to the cost-adjusted square-root variance of the efficient
influence function (Gilbert, Yu, Rotnitzky, 2014, Stat Med)
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Outline

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (Price, Gilbert, van der Laan, 2017)
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Measurement Error Reduces Power to Detect a CoR

Illustrative Example

• ‘True’ CoR S∗ ∼ N(0, 1)

• ‘Measured CoR’ S = S∗ + ε, ε ∼ N(0, σ2)

• Infection status Y generated from Φ(α + βS∗)

with α set to give P(Y = 1|S∗ = 0) = 0.20 and β set to give
P(Y = 1|S∗ = 1) = 0.15

σ2 ranges from 0 to 2 (no-to-large measurement error)
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Measurement Error Reduces Power to Detect a CoR

Simple Simulation Study

• Consider a study with n = 500 participants

• Consider power of a logistic regression model to detect an association
between S and Y
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Measurement Error Reduces Power to Detect a CoR
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Deterioration of Power to Detect a CoR with Increasing Measurement Error
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Power Calculations for Assessing CoRs

• Ideally, the power/sample size calculations should explicitly account
for measurement error in the assay

• E.g., Gilbert, Janes, Huang (2016, Stat Med), implemented in the R
package CoRpower posted at
http://faculty.washington.edu/peterg/programs.html

• E.g., specify ρ ≡ σ2/σ2
obs , the proportion of inter-vaccinee variability of

the biomarker that is biologically relevant

• Rule of thumb: ρ =relative efficiency for estimating a CoR odds ratio
for the underlying perfect biomarker compared to the observed
biomarker (McKeown-Eyssen, Tibshirani, 1994, AJE)

• ‘Noise’ components of σ2
obs may be estimated, especially from

laboratory assay validation studies
• Within-vaccinee variability of replicates
• Between-vaccinee variability due to variability in the time from the last

immunization to marker sampling
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Power to Detect a CoR of HIV Infection in Vaccinees in
HVTN 505 (α = 0.05)

06/03/2014 • 20 

Method: 2-phase logistic regression (Holubkov and Breslow, 1997) 

V2 Benchmark 

V2 = magnitude of 

observed primary gp70-V1V2 

binding Ab Inverse CoR in  

RV144 (Haynes et al., 2012) 

 

rho = biologicallly relevant 

proportion of variance of the 

biomarker 

Power to Detect a CoR of HIV Infection                                    

in Vaccinees in HVTN 505 (alpha = 0.05) 
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Outline

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (Price, Gilbert, van der Laan, 2017)
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Typical Correlates Assessments are Inefficient

• Broadly in epidemiology studies, biomarker-disease associations are
commonly assessed ignoring much data collected in the study

• That is, only subjects with the biomarker measured are included in
the analysis

• Standard analyses use inverse probability weighting of the biomarker
sampled subcohort, including all of the methods discussed so far

• These ubiquitously-used methods are implemented in the R package
cch (Breslow and Lumley)
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Typical Correlates Assessments are Inefficient

• Breslow et al.∗ urge statisticians/epidemiologists to consider using the
whole cohort in the analysis of case-cohort/2-phase sampling data

• Baseline data on demographics and potential confounders are typically
collected in all subjects (the Phase I data measured in everyone)

• These Phase I data are most valuable when they predict “missing”
data

∗Breslow, Lumley et al. (2009, AJE, Stat Biosciences)
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How to Leverage All of the Data?

• Question: How can we use the Phase I data to improve the
assessment of CoRs?

• One Answer: One approach adjusts the sampling weights used in the
standard analyses described above to obtain approximately efficient
estimators (e.g., Breslow et al., 2009, AJE, Stat Biosciences)
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Some Lessons Learned from Breslow et al. (2009)

1 Obtain ‘worthwhile’ efficiency gain for the CoR assessment if baseline
covariates can explain at least 40% of the variation in the
immunological biomarker (R2 ≥ 0.40)

2 If interested in interactions (evaluation of whether a baseline covariate
measured in everyone modifies the association of the biomarker and
the clinical endpoint), can obtain worthwhile efficiency gain with a
lower R2

3 Even if no gain for the CoR assessment, will usually dramatically
improve efficiency for assessing the associations of the Phase I
covariates with outcome

4 Therefore it may often be the preferred method, and all practicioners
should have methods accounting for all of the data in their analytic
toolkit

5 Additional research needed to make these more-efficient methods
work well for multivariate markers and for time-dependent markers
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How to Leverage All of the Data?

• Question: How can we use the Phase I data to improve the
assessment of CoRs?

• Another Answer: Use an efficient and double-robust method:
Inverse probability of censoring weighted targeted minimum loss based
estimation (IPCW-TMLE) (Rose and Van der Laan, 2011, Int J Biost)

Right-Censored Data Structure for Fixed Follow-up Time t

• V = Phase I information: Covariates (Z ,V0), T̃ = min(T ,C ),
∆ = I (T ≤ C ), Y ∗ = I (T̃ ≤ t)∆, Phase II sampling probability ε

• S = (A,W ) = Phase II information: Immune response biomarkers
measured at τ

• Focus on the marker A of interest; W = all other markers
• Repeat the analysis taking each element of W as A
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Outline

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (Price, Gilbert, van der Laan, 2017)
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Introduction to an Optimal Surrogate∗

• Goal: Develop a most-promising surrogate outcome for a clinical
outcome so that future randomized studies can restrict themselves to
only collecting the surrogate outcome

• Data from a clinical trial for developing a surrogate: n iid
observations of O = (W ,A,S ,Y )

• W = Baseline covariates
• A = Treatment assignment (1=vaccine, 0=placebo)
• S = Response variables/markers measured by an intermediate time

point τ
• Y = Outcome of interest at a final time point τ1 after τ

• Assume A is randomized conditional on W

∗Price B, Gilbert PB, van der Laan MJ. Estimation of the Optimal
Surrogate Based on a Randomized Trial. Under Review.
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Optimal Surrogate = Valid Surrogate that Optimally
Predicts Y

• Define an optimal surrogate for the current trial as the function of
(W ,A,S) that satisfies the Prentice definition and that optimally
predicts Y

• A true parameter that is estimated

• Goal: Use the estimated optimal surrogate in future clinical trials
for estimation and testing of a mean contrast treatment effect on Y

• Tackles the transportability problem of inferring the causal treatment
effect in a new trial without measuring Y

• (also addressed by Pearl and Bareinboim, 2011, 2012)
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Optimal Surrogate Framework vs. Other Frameworks

• vs. controlled/natural effects and VE curve frameworks:
Departs by being based on average causal effects identified from
standard assumptions in randomized trials

• vs. Prentice/valid replacement endpoint framework: Aligns in
that the optimal surrogate satisfies the Prentice definition

• Partially aligns with the Prentice criteria
• The best optimal surrogate will have treatment and candidate

surrogate highly predictive of Y , similar to Prentice criteria 1 and 2
• The framework posits a conditional mean version of Prentice criterion 3

for licensing correct inferences on Y in a new trial
• It handles equally well the general case where S varies or is constant in

the placebo group

• vs. meta-analysis framework: Aligns in its objective of inference on
the clinical treatment effect in a future study without collecting Y in
that study (Gail et al., 2000, Biostatistics)

• Departs in being based on a single (or few) trials and different
transportability assumptions
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Optimal Surrogate Framework

• Departs from all previous frameworks by defining the optimal
surrogate as an unknown target parameter

• Predicted values from the estimated optimal surrogate are used as the
actual surrogate endpoint

• In large samples this resulting surrogate must satisfy the Prentice
definition (under the standard assumptions of an RCT)

• New approach in treating the surrogate endpoint problem as a
supervised targeted learning problem

• Previous methods evaluate a pre-selected univariable or
low-dimensional vector candidate surrogate

• the optimal surrogate approach is efficient in allowing all collected data
to potentially contribute to the optimal surrogate, through unbiased
machine learning

• The optimal surrogate approach is robust in that consistent estimates
of the clinical treatment effects in the current and future trials are
obtained without parametric modeling assumptions
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Introduction to an Optimal Surrogate

• This approach is about the search for promising surrogates based
on an efficacy trial(s) with (W ,A,S ,Y ) measured

• A promising surrogate is one that satisfies the Prentice definition and
is optimally predictive of Y in this original trial

• A best starting point for building a surrogate that is promising for
the ultimate objective of bridging/inference on the clinical treatment
effect in new settings based on (W ,A,S)
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Statistical Formulation of an Optimal Surrogate

Observed data: iid copies O = (W ,A, S ,Y ) ∼ P0

• W = baseline covariates

• A = binary treatment assigned at baseline

• S = vector of intermediate outcomes measured at time τ

• Y = final univariate outcome measured at time τ1 after τ

• Potential outcomes (S1, S0) and (Y1,Y0) under treatment assignment
A = 1 and A = 0

• Treatment A is randomized conditional on W
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A Nonparametric Approach

• X = (W , S0,S1,Y0,Y1) = full-data structure with distribution PX ,0

• O = (W ,A,S ,Y ) = observed data with distribution P0 determined
by PX ,0 and g0(a | X ) = g0(a |W )

• The statistical model M for P0 makes at most some assumptions
about g0

• Known in a randomized trial

• M puts no assumptions on the marginal distribution of W nor on the
conditional distribution of (S ,Y ) given A,W
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Candidate Surrogate Outcomes

• Any real-valued function (W ,A,S)→ ψ(W ,A, S) ∈ IR is a
candidate surrogate, representing a measurement one can collect by
time τ

• Question: How to define a good surrogate in terms of the true data
distribution P0?

• Starting point: Only consider Sψ ≡ ψ(W ,A,S) that are valid in the
actual study, according to the Prentice definition:

E0(Y1 − Y0) = 0 if and only if E0(Sψ1 − Sψ0 ) = 0,

where Sψa = ψ(W , a,Sa), for a ∈ {0, 1}
• Guarantees that an α-level test for Hψ

0 : E0(Sψ1 − Sψ0 ) = 0 is also an
α-level test for H0 : E0(Y1 − Y0) = 0
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Optimal Surrogate Outcome

• Criterion for ranking valid surrogates and defining a P0-optimal
surrogate: full-data mean squared error

ψ → MSEPX ,0
(ψ) ≡

∑
a

EPX ,0

{
g0(a |W )(Ya − ψ(W , a,Sa))2

}
• Goal: Minimize the weighted mean square prediction error for

predicting Ya across a ∈ {0, 1} subject to the Prentice definition
constraint

• Given a class Ψ of possible surrogate functions ψ(), the P0-optimal
surrogate in this class is defined as

ψF
0 = arg min

ψ∈Ψ
MSEPX ,0

(ψ)

• We focus on the nonparametric class– all functions of (W ,A,S)
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Optimal Surrogate Outcome

Theorem 1

The minimizer of ψ → MSEPX,0
(ψ) over all functions (W ,A,S)→ ψ(W ,A,S)

that satisfy the Prentice definition is:

S̄0 = ψ0(W ,A,S) ≡ E0(Y |W ,A,S)

Potential outcomes of this P0-optimal surrogate: S̄0,a = E0(Ya |W ,Sa),
a ∈ {0, 1} and

EP0 (S̄0,a |W ) = EP0 (Ya |W )

• Implications:
• The surrogate treatment effect has the same interpretation as the

clinical treatment effect
• Under P0, a 95% CI for the causal effect of treatment on the

P0-optimal surrogate is also a 95% CI for the causal effect of treatment
on Y
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Conditions for a New Study P Under which the
P0-Optimal Surrogate is also the P-Optimal Surrogate

Theorem 2

Consider a new study with iid observations O∗ = (W ∗,A∗,S∗,Y ∗) ∼ P, where
A∗ is randomized conditional on W ∗

Assumptions:

• Equal Conditional Means:
E [Y ∗|W ∗ = w ,A∗ = a,S∗ = s] = E [Y |W = w ,A = a,S = s] for all
(w , a, s) in a support of (W ∗,A∗,S∗)

• Contained Support: A support of (W ∗,A∗,S∗) is contained in a support
of (W ,A,S)

• Positivity: P(A∗ = a|W ∗) > 0 a.e. for a ∈ {0, 1}

Result: The P0-optimal surrogate equals the P-optimal surrogate: for all
(w , a, s) in a support of (W ∗,A∗,S∗)

EP(Y ∗ |W ∗ = w ,A∗ = a,S∗ = s) = EP0 (Y |W = w ,A = a,S = s)

= EP(Y ∗
a |W ∗ = w ,S∗

a = s) = EP0 (Ya |W = w ,Sa = s)
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Transportability Theorem Under a Prentice Criterion 3:
Application to a New Treatment A∗ 6= A

• If the new study considers a new treatment A∗ 6= A, then generally
the transportability theorem will not apply, because
E [Y ∗|W ∗ = w ,A∗ = a, S∗ = s] 6= E [Y |W = w ,A = a, S = s]
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Transportability Theorem Under a Prentice Criterion 3:
Application to a New Treatment A∗ 6= A

• Special case where the transportability assumptions may be reasonable

Theorem 3

• Same three assumptions as in Theorem 2

• Prentice criterion 3 assumption for both settings:

E [Y ∗|W ∗,A∗,S∗] = E [Y ∗|W ∗,S∗]

E [Y |W ,A,S ] = E [Y |W ,S ]

Result: The P-optimal surrogate equals the P0-optimal surrogate and

EP0 (Ya |W = w ,Sa = s) is constant in a

EP(Y ∗
a |W ∗ = w ,S∗

a = s) is constant in a
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Estimation of the P0-optimal Surrogate

• Estimation of the P0-optimal surrogate is a standard prediction
problem

• Estimate E0(Y |W ,A,S) by a minimizer of the risk of a loss
• Use MSE loss (matched to the optimality criterion for defining the

optimal surrogate)

• Loss-based super-learning∗: yields an optimal estimator among any
given class of candidate estimators

• Oracle inequality for the cross-validation selector: the estimator is
asymptotically at least as good as any candidate in the set of candidate
estimators

• CV-R2 ∈ [0, 1] provides a universal measure of the strength of the
estimated optimal surrogate, allowing comparisons of different
candidate surrogate estimators across studies and within a study

∗Leo Breiman (1984); van der Laan, Polley, and Hubbard (2007); van der Laan

and Rose (2011) textbook
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Targeted Estimate of the Optimal Surrogate

• Let ψn be the super-learner estimator of

ψ0(W ,A, S) = E0(Y |W ,A,S)

• ψn may be updated to be a TMLE of ψ0, ψTMLE
n

TMLE = targeted minimum loss-based estimation (e.g., van der Laan and
Rose, 2011)
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The Targeted Estimated Optimal Surrogate Provides an
Efficient Estimator of θ0 = E (Y1 − Y0)

Use ψTMLE
n (W ,A, S) in place of the final outcome Y

• Based on the reduced data (Wi ,Ai , ψ
TMLE
n (Wi ,Ai , Si )), i = 1, . . . , n,

compute the TMLE θTMLE
n of the data adaptive target parameter

θψn = E0

[
ψTMLE
n (W , 1, S1)− ψTMLE

n (W , 0, S0)
]

• θTMLE
n is an asymptotically efficient estimator of θψn based on the

reduced data

• It is also an asymptotically efficient estimator of θ0 based on
O = (W ,A,S ,Y ) in the statistical model M!
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Inference on θ0 = E (Y1 − Y0) Based on θTMLE
n

• θTMLE
n based on the reduced data model is asymptotically linear with

influence curve equal to that of the TMLE θ̃TMLE
n of

θ0 = E0(Y1 − Y0) based on the data (Wi ,Ai ,Yi ), i = 1, . . . , n

• Thus a Wald (1− α)% CI for θψn based on θTMLE
n is also a (1− α)%

CI for θ0 and is as narrow as a CI based on an efficient estimator of θ0

using (W ,A,Y )

• Conclusion: The optimal surrogate has the perfect properties
for the original study
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Inference on θ∗P = EP(Y ∗1 − Y ∗0 ) based on θTMLE
n

Now suppose we have built θTMLE
n based on (Wi ,Ai , Si ,Yi ) ∼ P0 from an

original efficacy trial(s) and a second trial is done with
(W ∗

i ,A
∗
i , S
∗
i ,Y

∗
i ) ∼ P only measuring (W ∗

i ,A
∗
i , S
∗
i )

1 Calculate the ψTMLE
n (W ∗

i ,A
∗
i ,S
∗
i ) surrogate outcome values,

i = 1, · · · , n∗

2 Estimate the treatment-specific surrogate means

θaψn
(P) = EP

[
EP(ψTMLE

n (W ∗, a,S∗) | A∗ = a,W ∗)
]

Estimate by θTMLE ,a
ψn

(P) = 1
n∗
∑n∗

i=1 ψ
TMLE
n (W ∗

i , a,S
∗
i ), a = 0, 1

3 Estimate θψn(P) = θ1
ψn

(P)− θ0
ψn

(P)

4 Compute Wald-based CIs for θ1
ψn

(P), θ0
ψn

(P), θψn(P) based on the
influence functions
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Inference on θ∗P = EP(Y ∗1 − Y ∗0 ) based on θTMLE
n

Under Theorem 2, θTMLE ,1
ψn

(P), θTMLE ,0
ψn

(P), θTMLE
ψn

(P) are consistent
estimators of EP(Y ∗1 ), EP(Y ∗0 ), θ∗P = EP(Y ∗1 − Y ∗0 )

• The CI for θψn(P) is correct for θ∗P for an infinite sample sized original
P0-study n =∞

• Future work is needed to obtain correct CIs for θ∗P for finite n

• This problem is readily solved if the surrogate means θaψn
(P) were

estimated using a parametric model

• However, obtaining a CI when estimating θaψn
(P) nonparametrically

through super-learning is much harder, because ψ0 = E (Y |W ,A, S)
is a function that is not estimable at root-n rate

• E.g., the nonparametric bootstrap theoretically fails
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Dengue Phase 3 Trial Example

• Two randomized, double-blinded, placebo-controlled, multicenter,
Phase 3 trials of a recombinant, live, attenuated, tetravalent (4
serotypes) dengue vaccine (CYD-TDV)

• CYD14: Asia-Pacific region (Capeding, et al., 2014, The Lancet)
• CYD15: Latin America (Villar et al, 2015, NEJM)

Trial Designs

• 2:1 randomization to vaccine:placebo

• Immunizations at months 0, 6, 12

• Primary follow-up from Month 13 to Month 25 (active phase of
follow-up)

• Primary endpoint: Symptomatic, virologically confirmed dengue
(VCD)
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Results on Vaccine Efficacy (Proportional Hazards Model)

CYD14: V̂E = 56.5% (95% CI 43.8–66.4) CYD15: V̂E = 64.7% (95% CI 58.7–69.8)

CYD15 Trial (Villar et al., 2015, NEJM)CYD14 Trial (Capeding et al., 2014, The Lancet)
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Illustration of Estimated Optimal Surrogate Approach

Analysis carried out by Brenda Price

• Based on pseudo CYD14 and CDY15 simulated data sets

• Treat CYD14 as the current trial; CYD15 as the future trial

Notation and Variables

• A = Vaccination status (1=vaccine; 0=placebo)

• Y = Disease outcome (1=VCD endpoint between Month 13 and 25;
0 = no VCD endpoint by Month 25)

• W = Baseline covariates: age, sex, baseline PRNT50 neutralization
titers to the 4 vaccine strains (serotypes 1–4)

• S = Month 13 PRNT50 neutralization titers to the 4 vaccine strains
(serotypes 1–4)
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Illustration: Inference on VE0 in CYD14

1 Obtain ψTMLE
n (W ,A, S) from the CYD14 data (Wi ,Ai ,Si ,Yi ),

i = 1, · · · , n, yielding estimates of

E0(ψTMLE
n (W , 1, S1)), E0(ψTMLE

n (W , 0,S0)),

VE0(ψTMLE
n ) = 1− E0(ψTMLE

n (W , 1,S1))

E0(ψTMLE
n (W , 0,S0))

2 Compute Wald-based CIs for the above parameters based on the
influence functions

3 Compare these point and interval estimates to direct estimates of
E0(Y1), E0(Y0), and VE0 based on (Wi ,Ai ,Yi ) from CYD14
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Illustration: Inference on VE ∗P in CYD15 Based on the
Surrogate Built from CYD14

1 Calculate the ψTMLE
n (W ∗

i ,A
∗
i ,S
∗
i ) surrogate values for CYD15

participants, i = 1, · · · , n∗

2 Estimate the surrogate mean parameters in CYD15

θaψn
(P) = EP

[
EP(ψTMLE

n (W ∗, a,S∗) | A∗ = a,W ∗)
]

θTMLE ,a
ψn

(P) =
1

n∗

n∗∑
i=1

ψTMLE
n (W ∗

i , a,S
∗
i ), a = 0, 1

θTMLE
ψn

(P) = VETMLE
ψn

(P) = 1−
θTMLE ,1
ψn

(P)

θTMLE ,0
ψn

(P)

3 Compute Wald-based CIs for the above parameters

4 Compare these point and interval estimates to direct estimates of
EP(Y ∗1 ), EP(Y ∗0 ), and VE ∗P based on (W ∗

i ,A
∗
i ,Y

∗
i ) from CYD15
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Super-learner to Estimate the Optimal Surrogate [CYD14]

• Use the MSE loss function for the super-learner cross-validation
selector (matched to the optimality criterion for a surrogate)

Table: Input Variables for the Learning Algorithms

Input Variables

W : Baseline demographics age (range 2–14 years), sex,
Baseline neutralization titers to the 4 vaccine strains,
average, min, max of the 4 titers, interactions with age

S : Month 13 neutralization titers to the 4 vaccine strains,
average, min, max of the 4 titers, interactions with age
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Super-learner to Estimate the Optimal Surrogate

Run super-learner separately for each treatment group a ∈ {0, 1}

Table: Learning Algorithms Employed

SL.mean E0(Y |W , A = a, S)∗ = βa for a ∈ {0, 1}
SL.glm Logistic regression with all input variables
SL.step Best logistic regression model by AIC through a step-wise search
SL.gam gam for W & S inputs; all titer variables each with 2 df
SL.gam.3 gam for W & S inputs; all titer variables each with 3 df
SL.gam.4 gam for W & S inputs; all titer variables each with 4 df
M13 Sk SL.glm, SL.gam, SL.gam.3, SL.gam.4

with only Month 13 serotype k titers
M13 Avg SL.glm, SL.gam, SL.gam.3, SL.gam.4

with only Month 13 average titers
M13 Min, Max SL.glm, SL.gam, SL.gam.3, SL.gam.4

with only Month 13 Min or Max titers
M13 Sk + AG SL.glm, SL.gam, SL.gam.3, SL.gam.4

with Month 13 serotype k titers + (age, gender)
M13 Avg + AG SL.glm, SL.gam, SL.gam.3, SL.gam.4

with Month 13 average titers + (age, gender)
M13 Min, Max + AG SL.glm, SL.gam, SL.gam.3, SL.gam.4

with Month 13 Min or Max titers + (age, gender)
Discrete SL van der Laan, Polley, and Hubbard (2007)
Super Learner (SL) van der Laan, Polley, and Hubbard (2007)
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Cross-Validated Mean-Squared Errors (CV-MSEs): CYD14
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Empirical RCDFs for the Estimated Optimal Surrogate
Values: CYD14
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Estimated Optimal Surrogate (EOS) TMLEs of Target
Parameters: CYD14

Parameter TMLE Based on EOS TMLE Based on (W ,A,Y )
E0(Y1) 0.018 (0.014–0.023) 0.017 (0.014–0.019)
E0(Y0) 0.037 (0.023–0.060) 0.040 (0.036–0.045)

VE0 = 1− E0(Y1)
E0(Y0) 52% (41–66) 59% (54–65)

• The point estimate results have to be similar by construction!

P. Gilbert (U of W) Session 5: Evaluating CoRs and Optimal Surrogates 07/2017 69 / 87



Using the Estimated Optimal Surrogate (EOS) in CYD15

How well do the EOS values ψTMLE
n (W ∗,A∗,S∗) predict Y ∗ in CYD15?
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How Well Does the Surrogate-Based Estimator Estimate
VE∗P in CYD15?

Table: Estimation in CYD15 based on the EOS built in CYD14 (not using
outcome data Y ∗ in CYD15) vs. TMLE estimation using (W ∗,A∗,Y ∗) in CYD15

TMLEs of TMLEs of
Surrogate Parameters1 Clinical Parameters2

θ1
ψn

(P) 0.017 (0.014–0.020) EP(Y ∗
1 ) 0.017 (0.014–0.019)

θ0
ψn

(P) 0.053 (0.040–0.069) EP(Y ∗
0 ) 0.040 (0.036–0.045)

VEψn(P) 68% (58–81) VE∗
P VE∗

P = 61% (54–67)

1Based

on (Wi ,Ai , θ
TMLE
n (Wi ,Ai ,Si )) and (W ∗

i ,A
∗
i ,S
∗
i )

2Based on (W ∗
i ,A

∗
i ,Y

∗
i ) [use the actual clinical data]
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Compare Predictive Ability of Input Variable Sets

Table: Cross Validated AUCs∗ with 95% CIs

Input Set CYD14 Vaccine CYD14 Placebo CYD15 Vaccine CYD15 Placebo
(1) Demographics 0.61 (0.57, 0.66) 0.6 (0.55, 0.65) 0.54 (0.5, 0.58) 0.5 (0.47, 0.54)
(2) All baseline 0.89 (0.86, 0.92) 0.79 (0.76, 0.83) 0.58 (0.54, 0.61) 0.55 (0.51, 0.58)
(3) Month 13 titers 0.71 (0.67, 0.75) 0.63 (0.58, 0.68) 0.65 (0.62, 0.69) 0.57 (0.54, 0.61)
(4) All data 0.89 (0.86, 0.91) 0.76 (0.72, 0.8) 0.78 (0.76, 0.8) 0.6 (0.57, 0.64)

∗Cross-valided area under the ROC-curves (Van der Laan, Hubbard, and
Pajouh, 2013)

• The user can judge the tradeoff of accuracy and simplicity of the
estimated optimal surrogate

P. Gilbert (U of W) Session 5: Evaluating CoRs and Optimal Surrogates 07/2017 72 / 87



Distributions of Month 13 Titers within (W ,A) Strata

Placebo, Female, Age: 2−5 Placebo, Female, Age: 6−11 Placebo, Female, Age: 12+

Placebo, Male, Age: 2−5 Placebo, Male, Age: 6−11 Placebo, Male, Age: 12+

Vaccine, Female, Age: 2−5 Vaccine, Female, Age: 6−11 Vaccine, Female, Age: 12+

Vaccine, Male, Age: 2−5 Vaccine, Male, Age: 6−11 Vaccine, Male, Age: 12+
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Checking Assumptions of the Transportability Theorem for
Randomized Trials

Transportability Assumptions

1 E [Y ∗|W ∗ = w ,A∗ = a, S∗ = s] = E [Y |W = w ,A = a, S = s] for all
(w , a, s) in a support of (W ∗,A∗,S∗)

2 A support of (W ∗,A∗, S∗) is contained in a support of (W ,A,S)

3 Positivity: P0(A = a|W ) > 0 and P(A∗ = a|W ∗) > 0 a.e. for
a ∈ {0, 1}

• Condition 1 Examine by comparing estimates of
E [Y ∗|W ∗ = w ,A∗ = a, S∗ = s] = E [Y |W = w ,A = a, S = s]

• Condition 2 Examine by comparing distributions of (W ,A, S) and
(W ∗,A∗,S∗)

• Condition 3 Examine by comparing distributions of W and of W ∗

between treatment groups
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Two Simulation Studies

• Objective of First Study: Simple illustration that the estimated
optimal surrogate will always provide unbiased estimation of
θ0 = E0(Y1 − Y0) in the original trial, for any distribution of
(W ,A,S ,Y )

• Objective of Second Study: Illustrate how well the estimated
optimal surrogate built from one trial works for inference on
θ∗P = EP(Y ∗1 − Y ∗0 ) in a second trial, when Equal Conditional Means
fails
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Data Generating Distribution

• 10 candidate surrogates S i , each taking values 0, 1, 2

• For each S i :

P(S i
1 = 0,S i

0 = 0) = P(S i
1 = 1, S i

0 = 1) = P(S i
1 = 2, S i

0 = 2) = 0.1

P(S i
1 = 1,S i

0 = 0) = 0.5,P(S i
1 = 1, S i

0 = 2) = 0.2

Y =
3∑

i=1

[
0.1 ∗ i ∗ I (S i = 1) + I (S i = 2)

]
+ εY , εY ∼ N(0, 0.12)

θ0 = E0(Y1 − Y0) = −0.18 and E0(S i
1 − S i

0) = 0.3

(surrogate paradox occurs)
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Comparator: Proportion of Treatment Explained Type
Method

• For each S i , estimate the Proportion of the Treatment Effect
Captured (PCS)∗ based on a linear model

E [Y |S i = s,A = a] = β0 + β1 ∗ I [s = 1] + β2 ∗ I [s = 2]

(true PCS = 0.87, 0.2, 0.002 for i = 1, 2, 3; PCS = 0 for
i = 4, · · · , 10)

• Select the “best surrogate” i , SPCSopt = S i , as the one most
frequently with greatest P̂CS over 100 bootstrap data sets

• Estimate θ0 by the difference (a = 1 minus a = 0) in average
predicted Y ’s in the fitted model

Ê [Y |SPCSopt = s,A = a] = β̂0 + β̂1 ∗ I [s = 1] + β̂2 ∗ I [s = 2]

∗Kobayashi and Kuroki (2014, Stat Med)
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Simulation 1 Results: n = 2000 subjects
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a) Concordance of Estimates (Study D1)
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b) Concordance of Estimates (Study D2)

• Surrogate paradox: θPCSoptn > 0 (vs. θ0 = −0.18)
• Occurs in 96% of 200 generated data sets for the PCS approach (0%

for SL-TMLE)
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Simulation 2: Bridging to a Second Trial

• Simulate pairs of data sets (D1, D2) for the original and second trial
• Original trial (As in Simulation 1):

Y =
3∑

i=1

[
0.1 ∗ i ∗ I (S i = 1) + I (S i = 2)

]
+ εY , εY ∼ N(0, 0.12)

• New trial:

Y ∗ =
4∑

i=1

[
0.1 ∗ i ∗ I (S∗i = 1) + I (S∗i = 2)

]
+ εY ∗ , εY ∗ ∼ N(0, 0.12)

• Equal Conditional Means fails because Y depends on (S1,S2, S3) and
Y ∗ depends on (S∗1, S∗2, S∗3,S∗4)
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Equal Conditional Means Fails

● ● ●
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 s

]
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A = 1
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Model

● D1: Y = f (S1,S2,S3)

D2: Y* = f (S1,S2,S3,S4)

Violation of the Equal Conditional Means Assumption:

Differences in Ya/Ya
*  by Sa

4
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Data Analysis

• The optimal surrogates ψTMLE
n (A, S) and SPCSopt

n are estimated from
D1 as in Simulation 1

• Based on the (A∗,S∗) values in the paired data set D2, obtain
surrogate-based estimates of θ∗P = EP(Y ∗1 − Y ∗0 )

• TMLE: θTMLE
ψn

(P) as above
• PCS:

θPCSopt
n (P) =

1

n∗1

n∗∑
i=1

A∗
i Ê [Y |S∗PCSopt

i ,A∗
i = 1]

− 1

n∗0

n∗∑
i=1

(1− A∗
i )Ê [Y |S∗PCSopt

i ,A∗
i = 0]
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Simulation 2 Results: n∗ = 2000
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b) Concordance of Estimates (Study D2)

• Surrogate paradox: = θPCSopt
n (P) > 0 (vs. θ∗P = −0.18)

• Occurs in 95% of 200 generated data sets for the PCS approach (0%
for SL-TMLE)
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Conclusion from Simulation 2

• Demonstrates that the Equal Conditional Means assumption is
necessary for valid inference of θ∗P in a new setting

• When Equal Conditional Means is majorly violated, the estimated
optimal surrogate can still preserve some accuracy in bridging the
clinical treatment effect to a new setting
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Discussion

Start at the Right Place

• VanderWeele (2013, Biometrics) and discussants Joffe (2013) and
Pearl (2013) suggest that a minimal requirement for an intermediate
endpoint to be a useful surrogate endpoint is that it avoids the
surrogate paradox

• VanderWeele (2013) shows that commonly used methods for
surrogate endpoint evaluation generally do not guarantee avoiding
this paradox

• The optimal surrogate approach starts at this minimal requirement,
defining the optimal surrogate in a way guaranteed to satisfy the
Prentice definition of a valid surrogate

• Responds to Pearl’s (2013) question:
“If we take the negation of the “surrogate paradox” as a
criterion for “good” surrogate, why cannot we create a new,
formal definition of “surrogacy” that will automatically avoid the
paradox?...”
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Discussion

Nonparametric Supervised Learning Approach

• Using super-learner + TMLE seeks to minimize assumptions and use
all of the information in the data

• Main application is when many candidate surrogates are measured,
and the objective is supervised learning of most promising surrogate
endpoints that may depend on baseline covariates as well as
intermediate response endpoints

• This framework also applies for generating promising candidate
surrogates based on observational studies, with all of the results
holding under the additional assumption that all confounders W of
treatment assignment are measured and included in the super-learner
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Discussion

Elaborations

• Missing data on O = (W ,A, S ,Y )
• E.g., case-cohort or nested case-control sampling of S
• Happenstance missingness

• Some participants experience Y before S is measured at τ

• Right-censoring of Y (failure time endpoint), competing risks
outcomes

• Tailoring the super-learner to contextual features [sample size, event
rate, dimensionality of (W , S)]

• Confidence intervals about the clinical treatment effect
θ∗P = E (Y ∗1 − Y ∗0 ) in a new setting accounting for the error in
estimating the optimal surrogate
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