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Practical session:
Chain binomial model I: Gibbs sampler

Background

In this computer lab, we apply Gibbs sampling to incompletely observed data in a chain binomial

model. The observations are based on outbreaks of measles in Rhode Island during the years

1929–1934 [1]. We restrict the analysis to families with 3 susceptible individuals at the onset of

the outbreak. This example is based on references [1]-[4].

We assume that there is a single index case that introduces infection to the family. Thus,

possible epidemic chains are 1, 1 → 1, 1 → 1 → 1 and 1 → 2. Denote the probability for a

susceptible to escape infection when exposed to one infective in the family by q (and p = 1 − q).
The following table lists chain probabilities, with the actually observed frequencies of the size of

epidemic:

chain prob. frequency observed frequency

1 q2 n1 34
1→1 2q2p n11 25
1→1→1 2qp2 n111 not observed
1→ 2 p2 n12 not observed

In this exercise, we assume that frequencies n111 and n12 have not been observed. Only their

sum N3 = n111 + n12 = 275 is known.

The estimation problem concerns the escape probability q, so that there is basically only one

unknown parameter in the model. However, the fact that not all frequencies have been observed

creates a computational problem that can be solved by Bayesian data augmentation and Gibbs

sampling [2].

Marginal likelihood. The joint probability of the complete data (n1, n11, N3, n111) is pro-

portional to a multinomial probability:

f(n1, n11, N3, n111|q) = (q2)
n1(2q2p)

n11(2qp2)
n111(p2)

N3−n111

= constant× q2n1+2n11+n111pn11+2N3 . (1)

The marginal likelihood f(n1, n11, N3|q) would be obtained by summing up expressions (1) with

n111 running from 0 to N3.

The Bayesian approach. Instead of using the marginal likelihood, we will treat frequency

n111 as a model unknown in addition to parameter q. The joint distribution of the observations
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(n1, n11, N3) and the model unknowns (n111, q) is

f(n1, n11, N3, n111, q) = f(n1, n11, N3, n111|q)f(q). (2)

The first term in is the complete data likelihood (see (1)), based on the augmented data (i.e. the

data are augmented with the unknown frequency n111).

The second term is the prior density of probability q. We choose a Beta prior for parameter q:

q ∼ Beta(α, β) so that f(q) ∝ qα−1(1− q)β−1. With the choice α = β = 1, this is uniform prior

on [0,1].

The joint posterior distribution of the model unknowns is f(q, n111|n1, n11, N3).

Gibbs sampling. In the lecture we demonstrated that the joint posterior distribution of

the model unknowns n111 and q can be investigated by Gibbs sampling. This means making a

numerical sample from the posterior distribution by drawing samples of n111 and q in turn from

their full conditional posterior distributions:

f(q|n1, n11, N3, n111) and f(n111|n1, n11, N3, q).

These were found to be

q|n1, n11, N3, n111 ∼ Beta(2n1 + 2n11 + n111 + α, n11 + 2N3 + β) (3)

and

n111|n1, n11, N3, q = n111|N3, q ∼ Binomial(N3, 2q/(2q + 1)). (4)

Exercises

1. Gibbs sampling. The R program (chainGibbs.R) contains a function chainGibbs(mcmc.size,α, β)

that draws samples from the joint posterior distribution of q and n111. The function has

this particular data set “hardwired” within the program. Using Gibbs sampling, the pro-

gram draws samples in turn from distributions (3) and (4). Starting with the initial values

(q(1), n
(1)
111) = (0.5, 275 ∗ (2 ∗ 0.5)/(2 ∗ 0.5 + 1)), it iterates between sampling

q(i)|n1, n11, N3, n
(i−1)
111 and

n
(i)
111|n1, n11, N3, q

(i), i = 2, . . . ,mcmc.size.

This creates a sample (q(i), n
(i)
111), i = 1, . . . ,mcmc.size.

2. Write your own Gibbs sampler Before running chainGibbs.R, you might like to try

writing your own Gibbs sampler for the chain binomial problem. Assume you will run

mcmc.size iterations.

(a) Reserve space for the mcmc.size-vector of q and n111 values.
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(b) Initialize the model unknowns q[1] and n111[1] (round the n111[1])

(c) Enter the data n1, n11, N3

(d) Draw the MCMC samples 2:mcmc.size using the rbeta() and rbinom() functions

3. Posterior inferences. By discarding a number of ”burn-in” samples, you can use the rest

of the numerical sample to explore the posterior of escape probability q. It is enough to

discard a few hundred first samples, say 500, in this simple model.

(a) Make a histogram of the samples 501:mcmc.size of q and n111.

(b) Use the summary() function to get summaries the samples 501:mcmc.size of q and n111.

4. Writing a Gibbs sampler function You can now convert your R program to a func-

tion that can be called. It could be similar to the function in the file chainGibbs.R

chainGibbs(mcmc.size,α, β).

(a) However, you might prefer to write a function mychainGibbs(n1,n11,N3,mcmc.size,α, β)

that allows you to do inference on other data sets with observed (n1, n11, N3).

(b) If you write such a function, try altering the value of N3. How do larger and smaller

values alter the posterior distribution of q?

5. Sensitivity to the choice of prior. Assess how the choice of the prior distribution affects

estimation of the escape probability. Use the Beta(α, β) prior with different values of α and β.

Note that both parameters can be given as input to the function chainGibbs(mcmc.size,α, β)

in chainGibbs.R or hopefully your own new function.
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