
Practical: Hierarchical chain binomial model

Instructors: Kari Auranen, Elizabeth Halloran, Vladimir Minin
July 17 – July 19, 2017

Background

In this computer class, we re-analyze the data about outbreaks of measles
in households. The analysis is restricted to households with 3 susceptible
individuals at the onset of the outbreak. We assume that there is a single
index case that introduces infection to the household. The possible chains of
infection then are 1, 1 → 1, 1 → 1 → 1, and 1 → 2.

In this example, the probabilities for a susceptible to escape infection when
exposed to one infective in the household are allowed to be different in dif-
ferent households. These probabilities are denoted by qj (and pj = 1 − qj),
j = 1, . . . , 334. The following table expresses the chain probabilities in terms
of the escape probability qj. The observed frequency is the number of house-
holds with the respective chain.

chain prob. frequency observed frequency

1 q2j n1 34
1→1 2q2jpj n11 25
1→1→1 2qjp

2
j n111 not observed

1→ 2 p2j n12 not observed

The frequencies n111 and n12 have not been observed. Only their sum N3 =
n111 + n12 = 275 is known.

The hierarchical model was defined in the lecture notes. The joint distribu-
tion of parameters α and β, the household-specific escape probabilities and
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the chain frequencies is
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qj|α, β ∼ Beta(α, β),

(α, β) ∝ (α + β)−5/2.

N.B. The household-specific chain frequencies are vectors in which only one
of the elements is 1, all other elements being 0.

N.B. The joint prior distribution of the parameters of the Beta distribution,
α and β, is proportional to (α + β)−5/2. This is derived on the basis of
assuming independent uniform priors for α/(α + β) (the expectation of the
Beta distribution) and 1/(α + β) (an approximation to the the standard
deviation of the Beta distribution). See Chapter 5.3 in Gelman et al.

We index the households with chain 1 as 1,...,34, and households with chain
1 → 1 as 35,...,59, and households with chain 1 → 1 → 1 or 1 → 2 as
60,...,334. The model unknowns are α, β, frequencies n

(j)
111 for j = 60, . . . , 334

(i.e., for all 275 households with the final number of infected 3) and qj for
j = 1, . . . , 334 (all households).

In this exercise we apply a combined Gibbs and Metropolis algorithm to draw
samples from the posterior distribution of the model unknowns. Before that,
we explore the fit of the simple model with qj = q for all j.

Exercises

1. The simple chain binomial model. Using R routine chainGibbs.R
(or mychainGibbs), i.e., repeating the earlier exercise, realize an MCMC
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sample from the posterior distribution of the escape probability q in the
simple model in which this probability is the same across all households.

2. Model checking (simple model). Based on the posterior sample
of parameter q, draw samples from the posterior predictive distribution of
frequencies (n1, n11). Compare the sample to the actually observed value
(34,25). The algorithm to do this is as follows:

(a) Discard a number of “burn-in” samples in the posterior sample of param-
eter q, as realised in exercise (1) above.

(b) When the size of the retained sample is K, reserve space for the Kx4
matrix of predicted frequencies for n1, n11, n111 and n12.

(c) Based on the retained part of the posterior sample, take the kth sample
q(k).

(d) Draw a sample of frequencies (n
(k)
1 , n

(k)
11 , n

(k)
111, n

(k)
12 )

fromMultinomial(334,((q(k))
2
, 2(q(k))

2
p(k), 2q(k)(p(k))

2
, (p(k))

2
)) using the rmulti-

nom() function in R.

(e) Repeat steps (c) and (d) K times, storing the sample of frequencies after
each step (d).

(f) Plot the samples of pairs (n
(k)
1 , n

(k)
11 ), k = 1, ..., K, and compare to the

observed point (34,25).

The R routine covering steps (a)-(f) is provided in the script checkmodel reduced.R,
except for step (d). Complete step (d) and check the model fit:

mcmc.sample = chainGibbs(5000,1,1)

checkmodel reduced(mcmc.sample,1000)

The complete R routine (checkmodel.R) will be provided once you have
tried writing your own code.

3. A hierarchical chain binomial model. Samples from the joint pos-
terior distribution of the unknowns in the hierarchical (beta-binomial) chain
model can be sampled using the following algorithm, applying both Gibbs
and Metropolis-Hastings updatings steps (superscript k refers to the kth
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MCMC step):

(a) Reserve space for all model unknowns (parameters α and β as well as the

275 unknown frequencies n
(j)
111).

(b) Initialize the model unknowns.

(c) Update all household-specific escape probabilities from their full condi-
tionals:

q
(k)
j |α(k−1), β(k−1) ∼ Beta(2 + α(k−1), β(k−1)), j = 1, . . . , 34

q
(k)
j |α(k−1), β(k−1) ∼ Beta(2 + α(k−1), 1 + β(k−1)), j = 35, . . . , 59

q
(k)
j |α(k−1), β(k−1), n

(j,k−1)
111 ∼ Beta(n

(j,k−1)
111 +α(k−1), 2+β(k−1)), j = 60, . . . , 334

(d) Update the unknown binary variables n
(j)
111 (j = 60, . . . , 334) from their

full conditionals:

n
(j,k)
111 |q(k)j ∼ Binomial(1, 2q

(k)
j /(2q

(k)
j + 1))

(e) Sample α(k) using a Metropolis-Hastings step (see the program code)

(f) Sample β(k) using a Metropolis-Hastings step (see the program code)

(g) Repeat steps (b)–(f) K times (in the R code, K=mcmc.size).

The above algorithm is written in the R script chain hierarchical reduced.R,
except for parts of step (c). Complete the code and draw a posterior sample
of all model unknowns. Note that the data set and the prior distributions
are hardwired within the given program code.

The complete routine (chain hierarchical.R) will be provided once you
have tried your own solution.
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4. Posterior inferences. Plot the marginal posterior distributions of the
parameters α and β. You can also check how their joint posterior distribution
looks like. Draw a histogram of the posterior distribution of α/(α + β), the
expected escape probability (= the expectation of the Beta distribution).

Using output from program chain hierarchical.R, the above plots can be
done as follows (based on 2000 samples with the first 500 as burn-in samples):

mcmc.size = 10000

mcmc.sample = chain_hierarchical(mcmc.size)

mcmc.al = mcmc.sample$al

mcmc.be = mcmc.sample$be

burn.in = 2000

mcmc.al = mcmc.al[(burn.in+1):mcmc.size]

mcmc.be = mcmc.be[(burn.in+1):mcmc.size]

# The marginal posterior distributions of parameters alpha and beta

par(mfrow=c(1,2))

hist(mcmc.al,xlab=’alpha’,main=’’)

hist(mcmc.be,xlab=’beta’,main=’’)

# The joint posterior distribution of alpha and beta

par(mfrow=c(1,1))

plot(mcmc.al,mcmc.be,xlab=’alpha’,ylab=’beta’)

# The posterior distribution of the expected escape probability

hist(mcmc.al/(mcmc.al+ mcmc.be),breaks=20,

xlab=’expected escape probability’,main=’’,xlim=c(0.1,0.35))

You can still plot the posteriori predictive distribution of the escape proba-
bility: see the programme code.

qpost = rbeta((mcmc.size-burn.in),mcmc.al,mcmc.be)

hist(qpost,main="posterior predictive distribution of the escape probability",

cex.main=1,xlab="predictive q",breaks=20)
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5. Model checking (hierarchical model). Check the fit of the hierarchi-
cal model with the R program check hierarchical.R. The program draws
samples from the posterior predictive distribution of the chain frequencies
and plots the these samples for frequencies n1 and n11 with the actually
observed point (34,25).

check hierarchical(mcmc.sample,mcmc.burnin=500)

N.B. Unlike we pretended in the preceding exercises, the original data actu-
ally record the frequencies n12 = 239 and n111 = 36. You can now check the
model fit with respect to these frequencies.
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