
Outline Introduction Transmission Probability Simple Gibbs sampler

MCMC I Methods
Introduction

Vladimir Minin, Kari Auranen, M. (Betz) Elizabeth Halloran

SISMID 2017
University of Washington

Seattle, WA, USA

July 13, 2017



Outline Introduction Transmission Probability Simple Gibbs sampler

Introduction
Bayesian inference
Motivating examples
Prior distributions

Transmission Probability
Full probability model
Varying data and prior information
Prediction

Simple Gibbs sampler
Chain binomial model
Full conditionals



Outline Introduction Transmission Probability Simple Gibbs sampler

Introduction
Bayesian inference
Motivating examples
Prior distributions

Transmission Probability
Full probability model
Varying data and prior information
Prediction

Simple Gibbs sampler
Chain binomial model
Full conditionals



Outline Introduction Transmission Probability Simple Gibbs sampler

Prior, likelihood, and posterior

• Let
• y = (y1, . . . , yn): observed data

• f (y |θ): model for the observed data, usually a probability
distribution

• θ: vector of unknown parameters, assumed a random quantity

• π(θ): prior distribution of θ

• The posterior distribution for inference concerning θ is

f (θ|y) =
f (y |θ)π(θ)∫
f (y |u)π(u)du

.
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Posterior and marginal density of y

• The integral
∫
f (y |u)π(u)du, the marginal density of the data

y , does not depend on θ.

• When the data y are fixed, then the integral can be regarded
as a normalizing constant C .

• In high dimensional problems, the integral can be very difficult
to evaluate.

• Evaluation of the complex integral
∫
f (y |u)π(u)du was a

focus of much Bayesian computation.
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Advent of MCMC Methods

• With the advent of the use of Markov chain Monte Carlo
(MCMC) methods,
−→ one could avoid evaluating the integral, making use of
the unnormalized posterior density.

f (θ|y) ∝ f (y |θ)π(θ).

• Equivalently, if we denote the likelihood function or sampling
distribution by L(θ), then

f (θ|y) ∝ L(θ)π(θ).

posterior ∝ likelihood × prior

• We will show how this works.
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Other Uses of MCMC Methods

• Can simplify otherwise difficult computations.

• Sometimes a likelihood would be easy to evaluate if some data
had been observed that was not observed or is unobservable.

• Examples:
• infection times,
• time of clearing infection,
• when someone is infectious,
• chains of infection.

• MCMC methods can be used to augment the observed data
to make estimation simpler.
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Likehood and Data Transforms Prior to Posterior

• Likelihood and data take prior to posterior:

Transformation
Prior −→ Posterior

–Likelihood
–Data

• Bayesian data analysis is a study of the transformation.
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Transmission probability

• p is the probability an infective infects a susceptible:
transmission probability

• q = 1− p is the probability a susceptible escapes infection
when exposed to an infective: escape probability

• Transmission versus escape ? which is the “success” and
which the ”failure”?

• Given there are n exposures, and y infections, what is the
estimate of the transmission probability?

• Given there are n exposures, and n − y escapes, what is the
estimate of the escape probability?
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Chain-binomial model

• Assume independent households

• One person in each household introduces the infection into
the household (index case).

• Infections occur within households in generations of infection
(discrete time).

• p is the probability an infective infects a susceptible in a
household in a generation

• q = 1− p is the probability a susceptible escapes infection
when exposed to an infective in a household
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Reed-Frost Chain Binomial Model

Figure : Independent exposures = independent Bernoulli trials
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Chain Binomial Model

Table : Chain binomial probabilities in the Reed-Frost model in N
households of size 3 with 1 initial infective and 2 susceptibles,
S0 = 2, I0 = 1

Final
Chain at at number

Chain probability Frequency p=0.4 p=0.7 infected

1 −→ 0 q2 n1 0.360 0.090 1
1 −→ 1 −→ 0 2pq2 n11 0.288 0.126 2
1 −→ 1 −→ 1 2p2q n111 0.192 0.294 3
1 −→ 2 p2 n12 0.160 0.490 3

Total 1 N 1.00 1.00
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Chain binomial model

• Data: The observations are based on outbreaks of measles in
Rhode Island 1929–1934.

• The analysis is restricted to N = 334 families with three
susceptible individuals at the outset of the epidemic.

• Assume there is a single index case that introduces infection
into the family.

• The actual chains are not observed, just how many are
infected at the end of the epidemic.

• So the frequency of chains 1 −→ 1 −→ 1 and 1 −→ 2 are not
observed.

• MCMC can be used to augment the missing data, and
estimate the transmission probability p.
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Chain Binomial Model

Table : Rhodes Island measles data: chain binomial probabilities in the
Reed-Frost model in N = 334 households of size 3 with 1 initial infective
and 2 susceptibles, N3 = n111 + n12 = 275 is observed

Final
Chain Observed number

Chain probability Frequency frequency infected

1 −→ 0 q2 n1 34 1
1 −→ 1 −→ 0 2pq2 n11 25 2
1 −→ 1 −→ 1 2p2q n111 not observed 3
1 −→ 2 p2 n12 not observed 3

Total 1 N 334
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General epidemic (SIR) model

• The population of N individuals

• Denote the numbers of susceptible, infective, and removed
individuals at time t by S(t), I (t), and R(t).

• The process can be represented by the compartmental diagram

S(t) −→ I (t) −→ R(t)

• Thus, S(t) + I (t) + R(t) = N for all t.

• Initially, (S(0), I (0),R(0)) = (N − 1, 1, 0)
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General epidemic model

• Each infectious individual remains so for a length of time
TI ∼ exp(γ).

• During this time, infectious contacts occur with each
susceptible according to a Poisson process of rate β/N

• Thus, the overall hazard of infection at time t is βI (t)/N

• The two model parameters of interest are β and γ
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General epidemic model

• In a well-known smallpox data set, the removal times are
observed. That is, when the people are no longer infectious
for others.

• However, the infection times are not observed.

• Thus, estimating the two model parameters is difficult.

• The missing infection times are treated as latent variables.

• MCMC methods are used to augment the missing infection
times and estimate the parameters β and γ.
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Susceptible-infected-susceptible (SIS) model

• Background: Many infections are recurrent, occurring as an
alternating series of presence and absence of infection

• Nasopharyngeal carriage of Streptococcus pneumoniae
(Auranen et al 2000; Cauchemez et al; Melegaro et al)

• Nasopharyngeal carriage of Neisseria meningitidis (Trotter and
Gay 2003)

• Malaria (Nagelkerke et al,)

• multi-resistant Staphylococcus aureus (Cooper et al)
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Susceptible-infected-susceptible (SIS) model

• The population of N individuals

• Denote the numbers of susceptible and infected individuals at
time t by S(t) and I (t).

• The process can be represented by the compartmental diagram

S(t)↔ I (t)

• Thus, S(t) + I (t) = N for all t.

• Acquisition and clearance times often remain unobserved

• Active sampling of the population to determine the current
status of being infected or susceptible in individuals.
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Susceptible-infected-susceptible (SIS) model

• Could be formulated as an infectious disease transmission
process, as the general epidemic model.

• Too complicated for this introductory course

• We consider here the simple transition process, with rate
parameters λ for acquisition and µ for clearance.

• The acquisition and clearance times are treated as latent
variables.

• MCMC methods are used to augment the missing infection
and clearance times, and estimate the parameters λ and µ.
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Conjugate prior distribtions

• Conjugacy: the property that the posterior distribution follows
that same parametric form as the prior distribution.

• Beta prior distribution is conjugate family for binomial
likelihood: posterior distribution is Beta

• Gamma prior distribution is conjugate family for Poisson
likelihood: posterior distribution is Gamma
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Conjugate prior distributions

• Simply put, conjugate prior distributions in tandem with the
appropriate sampling distribution for the data have the same
distribution as the posterior distribution.

• Conjugate prior distributions have computational convenience.

• They can also be interpreted as additional data.

• They have the disadvantage of constraining the form of the
prior distribution.



Outline Introduction Transmission Probability Simple Gibbs sampler

Nonconjugate prior distributions

• Nonconjugate prior distributions can be used when the shape
of the prior knowledge or belief about the distribution of the
parameters of interest does not correspond to the conjugate
prior distribution.

• Noninformative prior distributions carry little population
information and are generally supposed to play a minimal role
in the posterior distribution.
−→They are also called diffuse, vague, or flat priors.

• Computationally nonconjugate distributions can be more
demanding.
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Data and Sampling Distribution

• Goal: Inference on the posterior distribution of the
transmission probability

• Suppose that n people are exposed once to infection

• y become infected (“successes”)
• n − y escape infection (“failures”)

• Let
• p = transmission probability
• 1− p = q = escape probability

• Binomial sampling distribution

L(y |p) = Bin(y |n, p) =

(
n

y

)
py (1− p)n−y =

(
n

y

)
pyqn−y
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Specify the Prior Distribution of p

• To perform Bayesian inference, we must specify a prior
distribution for p.

• We specify a Beta prior distribution:

p ∼ Beta(α, β)

Beta(p|α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1, α > 0, β > 0.

• Mean: E (p|α, β) = α
α+β

• Variance: αβ
(α+β)2(α+β+1)

= E(p|α,β)[1−E(p|α,β)]
α+β+1
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Specify the Prior Distribution of p

• We specify a Beta prior distribution:

p ∼ Beta(α, β)

π(p) = Beta(p|α, β)

Beta ∝ pα−1(1− p)β−1.

• Looks similar to binomial distribution

• α > 0, β > 0, “prior sample sizes”
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Posterior distribution of p

• The posterior distribution of the transmission probability p,
f (p|y):

f (p|y) ∝ py (1− p)n−ypα−1(1− p)β−1

posterior likelihood × prior

= py+α−1(1− p)n−y+β−1

= Beta(p|α + y , β + n − y)

• The role of α and β as prior sample sizes is clear.
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Posterior mean of θ

• Posterior mean of p
−→ posterior probability of success (transmission) for a future
draw from the population:

E (p|y) =
α + y

α + β + n

• posterior mean always lies between the prior mean α/(α + β)
and the sample mean y/n.

• Posterior variance of p:

var(p|y) =
E (p|y)[1− E (p|y)]

α + β + n + 1
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Uniform prior distribution

• The uniform prior distribution on [0,1] corresponds to α = 1,
β = 1. Essentially no prior information on p.

f (p|y) = Beta(p|y + 1, n − y + 1)

• Let’s see how the posterior distribution of the transmission
probability depends on the amount of data given a uniform
prior distribution (Sample mean y/n = 0.40).

n, number exposed y , number infected

5 2
20 8
50 20

1000 400
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Figure : R program: Posterior distribution with differing amounts of
data. Uniform Beta prior, Binomial sampling distribution.
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Prediction

• After the data have been observed, we can predict a future
unknown observable yn+1.

• For example, we may observe n people who were exposed to
infection, and whether they became infected.

• We may want to predict the probability that the next person
to be observed would become infected.

• Posterior predictive distribution:
−→ posterior because conditional on the observed y
−→ predictive because it is a prediction for an observable
yn+1.
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Prediction

• Posterior predictive distribution of unknown observable
yn+1:

f (yn+1|y) =

∫
f (yn+1, p|y)dp

=

∫
f (yn+1|p, y)f (p|y)dp

=

∫
f (yn+1|p)f (p|y)dp

• The last line follows because y and yn+1 are conditionally
independent given p in this model.

• Useful in model checking.
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Chain Binomial Model

Table : Rhodes Island measles data: chain binomial probabilities in the
Reed-Frost model in N = 334 households of size 3 with 1 initial infective
and 2 susceptibles, N3 = n111 + n12 = 275 is observed

Final
Chain Observed number

Chain probability Frequency frequency infected

1 −→ 0 q2 n1 34 1
1 −→ 1 −→ 0 2pq2 n11 25 2
1 −→ 1 −→ 1 2p2q n111 not observed 3
1 −→ 2 p2 n12 not observed 3

Total 1 N 334
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Complete data likelihood for q

• The multinomial complete data likelihood for q:

f (n1, n11,N3, n111|q)

=

(
334

n1, n11, n111,N3 − n111

)
(q2)n1(2q2p)n11(2qp2)n111(p2)N3−n111

= constant × q2n1+2n11+n111pn11+2N3

• The observed data are (n1, n11,N3), but we do not observe
n111.

• We could estimate q using a marginal model, but won’t.
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Gibbs sampler for chain binomial model

• The general idea of the Gibbs sampler is to sample the model
unknowns from a sequence of full conditional distributions and
to loop iteratively through the sequence.

• To sample one draw from each full conditional distribution at
each iteration, it is assumed that all of the other model
quantities are known at that iteration.

• In the theoretical lectures, it will be shown that that the Gibbs
sampler converges to the posterior distribution of the model
unknowns.

• In the Rhode Island measles data, we are interested in
augmenting the missing data n111 and estimating the
posterior distribution of q, the escape probability.



Outline Introduction Transmission Probability Simple Gibbs sampler

Gibbs sampler for chain binomial model

• The joint distribution of the observations (n1, n11,N3) and the
model unknowns (n111, q) is

f (n1, n11,N3, n111, q) = f (n1, n11,N3, n111|q)× f (q)

complete data likelihood × prior

• We want to make inference about the joint posterior
distribution of the model unknowns

f (n111, q|n1, n11,N3)

• This is possible by sampling from the full conditionals (Gibbs
sampling): f (q|n1, n11,N3, n111) and f (n111|n1, n11,N3, q)
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Algorithm for Gibbs sampler for chain binomial model

1. Start with some initial values (q(0), n
(0)
111)

2. For t = 0 to M do

3. Sample q(t+1) ∼ f (q|n1, n11,N3, n
(t)
111)

4. Sample n
(t+1)
111 ∼ f (n111|n1, n11,N3, q

(t+1))

5. end for

6. How to get the two full conditionals in this model?
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Full conditional of chain 1 −→ 1 −→ 1

• Assume q is known

• Compute the conditional probability of chain 1→ 1→ 1 when
outbreak size is N = 3:

Pr(1→ 1→ 1|N = 3, q) =
Pr(N = 3, 1→ 1→ 1|q)

Pr(N = 3|q)

=
Pr(N = 3|1→ 1→ 1, q) Pr(1→ 1→ 1|q)

Pr(N = 3|1→ 1→ 1, q) Pr(1→ 1→ 1|q) + Pr(N = 3|1→ 2, q) Pr(1→ 2|q)

=
2p2q

2p2q + p2
=

2q

2q + 1
, (0 ≤ q < 1)
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The full conditional of n111

• We have found that

Pr(1→ 1→ 1|N = 3, q) =
2q

2q + 1

• So the full conditional distribution of n111 is

n111|(n1, n11,N3, q) ∼ Binomial(275, 2q/(2q + 1))
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The full conditional of q

• Assume that n111 is known, that is, assume we know the
complete data (n1, n11,N3, n111)

• Assume a prior distribution for q: q ∼ Beta(α, β),

f (q) ≡ f (q|α, β) ∝ qα−1(1− q)β−1

• The full conditional distribution of q :

f (q|n1, n11,N3, n111, α, β) ∝ f (n1, n11,N3, n111|q, α, β)f (q|α, β)

∝ q2n1+2n11+n111pn11+2N3 × qα−1(1− q)β−1

complete data likelihood × prior
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The full conditional of q

• The full conditional distribution of q is thus a Beta
distribution

q|complete data, α, β ∼ Beta(2n1 + 2n11 + n111 + α, n11 + 2N3 + β)

• A uniform prior on q corresponds to α = 1, β = 1.

• With the complete data, a natural point estimate of the
escape probability would be the mean of the Beta distribution,
i.e., the proportion of “escapes” out of all exposures:

2n1 + 2n11 + n111 + α

2n1 + 3n11 + 3n111 + 2n12 + α + β



Outline Introduction Transmission Probability Simple Gibbs sampler

Algorithm for Gibbs sampler for chain binomial model

1. Start with some initial values (q(0), n
(0)
111)

2. For t = 0 to M do

3. Sample q(t+1) ∼ Beta(2n1 + 2n11 + n
(t)
111 + α, n11 + 2N3 + β)

4. Sample n
(t+1)
111 ∼ Binomial(275, 2q(t+1)/(2q(t+1) + 1))

5. end for

6. Get summaries of the marginal posterior distributions.



Outline Introduction Transmission Probability Simple Gibbs sampler

Posterior distributions of q and n111
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