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SIS models for recurrent infections

SISMID/July 17–19, 2017
Instructors: Kari Auranen, Elizabeth Halloran, Vladimir Minin
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Outline

I Background: recurrent infections

I Binary Markov processes and their generalizations

I Counting process likelihood
I Incomplete observations

I discrete-time transition models
I Bayesian data augmentation and reversible jump MCMC

I A computer class exercise



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background

I Many infections can be considered recurrent, i.e., occurring as
an alternating series of presence and absence of infection

I Nasopharyngeal carriage of Streptococcus pneumoniae (Auranen et

al.; Cauchemez et al.; Melegaro et al.)

I Nasopharyngeal carriage of Neisseria menigitidis
I multi-resistant Staphylococcus aureus (Cooper et al.)

I some parasitic infections (e.g. Nagelkerke et al.)

I Observation of these processes requires active sampling of the
underlying epidemiological states

I Acquisition and clearance times often remain unobserved ⇒
incompletely observed data
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A binary Markov process

A simple model for a recurrent infection is the binary Markov
process:

I The state of the individual alternates between “susceptible”
(state 0) and “infected” (state 1)

I The hazard of acquiring infection is β:

P(acq. in [t, t + dt[| susceptible at time t−) = βdt

I The hazard of clearing infection is µ:

P(clearance in [t, t + dt[|infected at time t−) = µdt
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The complete data

I For each individual i , the complete data include
the times of acquisition and clearance during the observation
period [0,T ]:

I Denote the ordered acquisition times for individual i during
]0,T [ by t

(i) = (ti1, . . . , tiN(i)
01
)

I Denote the ordered clearance times for individual i during
]0,T [ by r

(i) = (ri1, . . . , riN(i)
10
)

I Denote the ordered acquisition and clearance times together as
ui1 = 0, ui2, . . . , ui,N(i) = T

I Note: these include times 0 and T
(so that N(i) = N

(i)
01 + N

(i)
10 + 2)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Keeping track who is susceptible

I The indicators for individual i to be susceptible or infected at
time t are denoted by Si (t) and Ii (t), respectively

I Both indicators are taken to be predictable, i.e., they values at
time t are determined by the initial value Si (0) and the
complete data observed up to time t−

I Note that Ii (t) = 1− Si (t) for all times t ≥ 0
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The process of acquisitions

I In each individual, acquisitions occur with intensity βSi (t)
I The intensity is β when the individual is in state 0

(susceptible) and 0 when the individual is in state 1 (infected)

I The probability density of the acquisition events is
proportional to

N(i)∏
k=1

[
β1(uk is time of acq.) exp−βSi (uk )(uk−uk−1)

]

∝ βN
(i)
01 × exp

−β

total time susceptible︷ ︸︸ ︷
N(i)∑
k=1

Si (uk)(uk − uk−1)
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The process of clearances

I In each individual, the clearances occur with intensity µIi (t)
I The intensity is µ when the individual is in state 1 (infected)

and 0 when then individual is in state 0 (susceptible)

I The probability density of the clearance events is proportional
to

N(i)∏
k=1

[
µ1(uk is time of clearance) exp−µIi (uk )(uk−uk−1)

]

= µN
(i)
10 × exp

−µ

total time infectd︷ ︸︸ ︷
N(i)∑
k=1

Ii (uk)(uk − uk−1)
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The complete data likelihood

I The likelihood function of parameters β and µ, based on the
complete data from individual i :

f (t (i),r (i)|β,µ)︷ ︸︸ ︷
Li (β, µ; t

(i), r (i))

= βN
(i)
01 µN

(i)
10 × exp −

∑N(i)

k=1 (βSi (uk )+µIi (uk ))(uk−uk−1)

= βN
(i)
01 µN

(i)
10 × exp

(
−
∫ T

0
{βSi (u) + µIi (u)}du

)
I Likelihood for all M individuals is

∏M
i=1 Li (β, µ; t

(i), r (i))
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More complex models

I In the following six slides, the binary model is formulated as a
process of counting transitions “0 → 1” (acquisitions) and
“1 → 0” (clearances)

I More complex models can then be defined, allowing e.g.
I different (sero)types/strains of infection
I taking into account exposure from other individuals in the

relevant mixing groups, e.g., modelling transmission in
households
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A counting process formulation

I For individual i , the binary process can be described in terms
of two counting processes (jump processes):

I N
(i)
01 (t) counts the number of acquisitions for individual i from

time 0 up to time t
I N

(i)
10 (t) counts the number of clearances for individual i from

time 0 up to time t

I Specify the initial state: (e.g.) N
(i)
01 (0) = N

(i)
10 (0) = 0

I Denote H
(i)
t the history of the processes up to time t:

H
(i)
t = {N(i)

01 (s),N
(i)
10 (s); 0 ≤ s ≤ t}
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Stochastic intensities

I The two counting processes can be specified in terms of their
stochastic intensities:

P(dN
(i)
01 (t) = 1|H(i)

t−) = α
(i)
01 (t)Y

(i)
0 (t)dt

P(dN
(i)
10 (t) = 1|H(i)

t−) = α
(i)
10 (t)Y

(i)
1 (t)dt

I Here, Y
(i)
j (t) is indicator for individual i being in state j at

time t−
I In the simple Markov model, α

(i)
01 (t) = β, α

(i)
10 (t) = µ,

Y
(i)
0 (t) = Si (t), and Y

(i)
1 (t) = Ii (t)
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Several types of infection

I The infection can involve a “mark”, e.g. the serotype of the
infection

I N
(i)
0j (t) counts the number of times that individual i has

acquired infection of type j from time 0 up to time t
I N

(i)
j0 (t) counts the number of times that individual i has

cleared infection of type j from time 0 up to time t
I Stochastic intensities can be defined accordingly for all possible

transitions between the states. For example, for K serotypes,

α
(i)
rs (t)Y

(i)
r (t), r , s = 0, . . . ,K



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Modelling transmission

I The hazard of infection may depend on the presence of
infected individuals in the family, day care group, school class
etc.

I The statistical unit is the relevant mixing group

I Denote H
(i ,fam)
t the joint history of all members in the mixing

group (e.g. family) of individual i :

P(dN(i)(t) = 1|H(i ,fam)
t− ) = α

(i)
01 (t)Si (t)dt ≡

βC (i)(t)

M
(i)
fam − 1

Si (t)dt

where C (i)(t) =
∑M

(i)
fam

j=1 I
(i)
j (t) is the number of infected individuals

in the family of individual i at time t−
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The counting process likelihood

I For M individuals followed from time 0 to time T , the
complete data record all transitions between states 0 and 1
(equivalent to observing all jumps in the counting processes):

ycomplete = {T (ik)
rs ; r , s = 0, 1 (r ̸= s), k = 1, . . . ,N

(i)
rs (T ), i = 1, . . . ,M}

I The likelihood of the rate parameters θ, based on the
complete (event-history) data

f (ycomplete|θ)︷ ︸︸ ︷
L(θ; ycomplete) =

N∏
i

∏
r ̸=s

N
(i)
rs (T )∏
k

[
α
(i)
rs (T

(ik)
rs )×exp

(
−
∫ T

0
α
(i)
rs (u)Y

(i)
r (u)du

)]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

I The likelihood is valid even when the individual processes are
dependent on the histories of other individuals, e.g. in the
case of modelling transmission (cf. Andersen et al)

I The likelihood is correctly normalized with respect to any
number of events occurring between times 0 and T (cf. Andersen et

al)
I This is crucial when performing MCMC computations through

data augmentation with an unknown number of events
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Incomplete observations

I Usually, we do not observe complete data

I Instead, the status y
(i)
j of each individual is observed at

pre-defined times t
(i)
j

I This creates incomplete data: the process is only observed at
discrete times (panel data)

I The observed data likelihood is now a complicated function of
the model parameters

I How to estimate the underlying continuous process from
discrete observations?

I a discrete-time Markov transition model
I Bayesian data augmentation
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Markov transition models

I Treat the problem as a discrete-time Markov transition model

I This is parameterized in terms of transition probabilities
P(X (i)(t) = s|X (i)(u) = r) for all r , s in the state space χ,
and for all times t ≥ u ≥ 0

I In a time-homogeneous model the transition probabilities
depend only on the time difference:

prs(t) = P(X (i)(t) = s|X (i)(0) = r)

I This defines a transition probability matrix Pt with entries
[Pt ]rs = prs(t), where

∑
s prs(t) = 1 for all r and all t ≥ 0
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The likelihood

I When observations y
(i)
j are made at equal time intervals (∆),

the likelihood is particularly simple

L(P∆) =
∏
r ,s

[prs(∆)]Nrs(T ) =
∏
r ,s

[P∆]
Nrs(T )
rs

I When observation are actully made at intervals k∆ only (e.g.
∆ = day and k = 28), the likelihood is

L(P∆) =
∏
r ,s

[Pk
∆]

Nrs(T )

rs
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Modeling transmission

I In a mixing group of size M, the state space is
χ1 × χ2 × . . . χM

I For example, in a family of three the states then are: (0,0,0),

(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)

I For M individuals, the dimension of the state space is 2M

I Application to pneumococcal carriage in families (Melegaro et al.)

I The transition probability matrix in a family of 3 (next page),
assuming the same probabilities (per day) for each family
member

I Notation: qii = 1 - the sum of the ith row
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Transition probability matrix

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

P∆ =



q11 κ κ κ 0 0 0 0
µ q22 0 0 β/2 + κ β/2 + κ 0 0
µ 0 q33 0 β/2 + κ 0 β/2 + κ 0
µ 0 0 q44 0 β/2 + κ β/2 + κ 0
0 µ µ 0 q55 0 0 β + κ
0 µ 0 µ 0 q66 0 β + κ
0 0 µ µ 0 0 q77 β + κ
0 0 0 0 µ µ µ q88
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Potential problems

I The dimension of the state space
I With M individuals and K + 1 types of infection, the

dimension of the state space is (K + 1)M

I With 13 serotypes and 25 individuals (see Hoti et al.), the
dimension is ∼ 4.5× 1028

I Non-Markovian sojourn times
I e.g. a Weibull duration of infection may be more realistic than

the exponential one

I Handling of varying observation intervals and individuals with
completely missing data are still cumbersome
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Bayesian data augmentation

I Retaining the continuous-time model formulation, the
unknown event times are taken as additional model unknowns
(parameters)

I Statistical inference on all model unknowns (θ and ycomplete)

observation model︷ ︸︸ ︷
f (yobserved|ycomplete)

complete data likelihood︷ ︸︸ ︷
f (ycomplete|θ)

prior︷︸︸︷
f (θ)

I The observation model often only ensures agreement with the
observed data (as an indicator function)

I The computational problem:
how to sample from f (ycomplete|yobserved, θ)?
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The sampling algorithm

I Initialize the model parameters and the latent processes
I For each individual, update the latent processes

I Update the event times using standard MH
I Add/delete episodes using reversible jump MH

I with 0.5 probability propose to add a new episode
I with 0.5 probability propose to delete an existing episode

I Update the model parameters using single-step MH
I Iterate the updating steps for a given number of MCMC

iterations
I See the computer class exercise
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Adding/deleting episodes

I Choose one interval at random from among the K sampling
intervals (see page+2)

I Choose to add an episode (delete an existing episode) within
the chosen interval with probability πadd = 0.5 (πdelete = 0.5)

I If ’add’, choose random event times t̄1 < t̄2 uniformly from ∆
(= the length of the sampling interval). These define the new
episode.

I If ’delete’, delete the two event times

I The ’add’ move is accepted with probability (“acceptance
ratio”)

min

(
f (yobserved|y∗complete)f (y

∗
complete|θ)q(ycomplete|y∗complete)

f (yobserved|ycomplete)f (ycomplete|θ)q(y∗complete|ycomplete)
, 1

)
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Adding/deleting episodes cont.

I The ratio of the proposal densities is

q(ycomplete|y∗complete)

q(y∗complete|ycomplete)
=

πdelete

1

K

1

L

πadd

1

K

1

L

2

∆2

=
∆2

2

I The ratio of the proposal densities in the ’delete’ move is the
inverse of the expression above

I Technically, the add/delete step relies on so called reversible
jump MCMC (see page+2)

I Reversible jump types should be devised to assure
irreducibility of the Markov chain

I For a more complex example, see Hoti et al.
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Adding/deleting latent processes cont.

0
T

observation 1 observation 2 observation 3

t t1 2

The number of sampling intervals K= 4
The number of ’sub−episodes’ within the second interval L = 2

end of follow−up
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Reversible jump MCMC

I “When the number of things you don’t know is one of the
things you don’t know”

I For example, under incomplete observation of the previous
(Markov) processes, the exact number of events is not
observed

I This requires a joint model over ’sub-spaces’ of different
dimensions

I And a method to do numerical integration (MCMC sampling)
in the joint state space
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