Probability Distributions

II

Multinomial Distribution - Motivation

Suppose we modified assumption (1) of the binomial distribution to allow for more than two outcomes.

For example, suppose that for the family with parents that are heterozygote carriers of a recessive trait, we are interested in knowing the probability of
\mathbf{Q}_{1} : One of their $n=3$ offspring will be unaffected (AA), 1 will be affected (aa) and one will be a carrier (Aa),
\mathbf{Q}_{2} :All of their offspring will be carriers,
\mathbf{Q}_{3} : Exactly two of their offspring will be affected (aa) and one will be a carrier.

$=$ 1

Multinomial Distribution - Motivation

For each child, we can represent these possibilities with three indicator variables for the i-th child as

A $Y_{i l}=1$ if unaffected (AA), \& 0 otherwise
B $\quad Y_{i 2}=1$ if carrier (Aa), \& 0 otherwise
C $Y_{i 3}=1$ if affected (aa), \& 0 otherwise
Notice only one of the three $Y_{i 1}, Y_{i 2}, Y_{i 3}$ can be equal to 1, so $\Sigma_{j} Y_{i j}=1$.

For the binomial distribution with 2 outcomes, there are 2^{n} unique outcomes in n trials. In the family with $n=3$ children, there are $2^{3}=8$ unique outcomes.

For the multinomial distribution with n trials and only 3 outcomes, the number of unique outcomes is 3^{n}. For our small family, that's $3^{3}=27$ outcomes.

Possible Outcomes

Combinations: As with the binomial, there are different ways to arrange possible outcomes from a total of n objects (trials) if order doesn't matter. For the multinomial distribution, the combinations are summarized as

$$
C_{k}^{n}=\frac{n!}{k_{1}!k_{2} \ldots k_{J}!}
$$

where the $k_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, \mathrm{~J})$ correspond to the totals for the different outcomes.
E.g. ($n=2$ offspring)

Child number

1	2	Outcomes
AA	AA	2 unaffected, 0 carrier, 0 affected

AA Aa 1 unaffected, 1 carrier, 0 affected
Aa AA 1 unaffected, 1 carrier, 0 affected

AA aa
aa AA
1 unaffected, 0 carrier, 1 affected
1 unaffected, 0 carrier, 1affected
Aa Aa
0 unaffected, 2 carrier, 0 affected
aa Aa 0 unaffected, 1 carrier, 1 affected
Aa
aa
0 unaffected, 1 carrier, 1 affected
0 unaffected, 0 carrier, 2 affected

For the case of $n=2$ offspring (i.e., trials), what are the probabilities of these outcomes?
E.g. $\left(n=2, k_{1}=\right.$ unaffected, $k_{2}=$ carrier, $k_{3}=$ affected $)$

Child number

1	2	Outcomes	\# ways
p_{1}	p_{1}	$k_{1}=2, k_{2}=0, k_{3}=0$	
p_{1}	p_{2}	$k_{1}=1, k_{2}=1, k_{3}=0$	
p_{2}	p_{1}	$k_{1}=1, k_{2}=1, k_{3}=0$	
p_{1}	p_{3}	$k_{1}=1, k_{2}=0, k_{3}=1$	
p_{3}	p_{1}	$k_{1}=1, k_{2}=0, k_{3}=1$	
p_{2}	p_{2}	$k_{1}=0, k_{2}=2, k_{3}=0$	
p_{3}	p_{2}	$k_{1}=0, k_{2}=1, k_{3}=1$	
p_{2}	p_{3}	$k_{1}=0, k_{2}=1, k_{3}=1$	
p_{3}	p_{3}	$k_{1}=0, k_{2}=0, k_{3}=2$	

For each possible outcome, the probability
$\operatorname{Pr}\left[Y_{1}=k_{1}, Y_{2}=k_{2}, Y_{3}=k_{3}\right]$ is

$$
\mathrm{p}_{1}{ }^{k 1} \mathrm{p}_{2}{ }^{k 2} \mathrm{p}_{3}{ }^{k 3}
$$

There are $\frac{n!}{k_{j}!}$ sequences for each probability, so in general...

Multinomial Probabilities

What is the probability that a multinomial random variable with \mathbf{n} trials and success probabilities p_{1}, p_{2},
\ldots, p_{J} will yield exactly $k_{1}, k_{2}, \ldots k_{J}$ successes?
$\mathrm{P}\left(Y_{1}=k_{1}, Y_{2}=k_{2}, \ldots, Y_{J}=k_{J}\right)=\frac{n!}{k_{1}!k_{2}!\ldots k_{J}!} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{J}^{k_{J}}$

Assumptions:

1) J possible outcomes - only one of which can be a success (1) a given trial.
2) The probability of success for each possible outcome, p_{j}, is the same from trial to trial.
3) The outcome of one trial has no influence on other trials (independent trials).
4) Interest is in the (sum) total number of "successes" over all the trials.

$$
n=\Sigma_{\mathrm{j}} k_{\mathrm{j}} \text { is the total number of trials. }
$$

Multinomial Random Variable

A multinomial random variable is simply the total number of successes in n trials.

Example: family of 3 offspring.
\mathbf{Q}_{1} : child $1 \quad$ child 2 child 3 Total

$\mathbf{Q}_{2}:$| 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0 |
| 0 | 3 | 0 |

$\mathbf{Q}_{\mathbf{3}}:$| 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0 | 1 | 0 | |
| :--- | :--- | :--- | :--- |
| | 0 | 0 | 1 |
| 0 | 1 | 2 | |

Multinomial Probabilities - Examples

Returning to the original questions:
\mathbf{Q}_{1} : One of $n=3$ offspring will be unaffected (AA), one will be affected (aa) and one will be a carrier (Aa) (recessive trait, carrier parents)?

Solution: For a given child, the probabilities of the three outcomes are:

$$
\begin{aligned}
& p_{1}=\operatorname{Pr}[\mathrm{AA}]=1 / 4, \\
& p_{2}=\operatorname{Pr}[\mathrm{Aa}]=1 / 2, \\
& p_{3}=\operatorname{Pr}[\mathrm{aa}]=1 / 4 .
\end{aligned}
$$

We have

$$
\mathrm{P}\left(Y_{1}=1, Y_{2}=1, Y_{3}=1\right)=\frac{3!}{1!1!1!} p_{1}^{1} p_{2}^{1} p_{3}^{1}
$$

$$
=\frac{(3)(2)(1)}{(1)(1)(1)}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{4}\right)^{1}
$$

$$
=\frac{3}{16}=0.1875
$$

Exercises

\mathbf{Q}_{2} : What is the probability that all three offspring will be carriers?
\mathbf{Q}_{3} : What is the probability that exactly two offspring will be affected and one a carrier?

Solutions

\mathbf{Q}_{2} : What is the probability that all three offspring will be carriers?

$$
\begin{aligned}
\mathrm{P}\left(Y_{1}=0, Y_{2}=3, Y_{3}=0\right) & =\frac{3!}{0!3!0!} p_{1}^{0} p_{2}^{3} p_{3}^{0} \\
& =\frac{(3)(2)(1)}{(3)(2)(1)}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{4}\right)^{0} \\
& =\frac{1}{8}=0.125 .
\end{aligned}
$$

\mathbf{Q}_{3} : What is the probability that exactly two offspring will be affected and one a carrier?
$\mathrm{P}\left(Y_{1}=0, Y_{2}=1, Y_{3}=2\right)=\frac{3!}{0!1!2!} p_{1}^{0} p_{2}^{1} p_{3}^{2}$

$$
\begin{aligned}
& =\frac{(3)(2)(1)}{(2)(1)}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{4}\right)^{2} \\
& =\frac{3}{32}=0.09375 .
\end{aligned}
$$

Example - Mean and Variance

It turns out that the (marginal) outcomes of the multinomial distribution are binomial. We can immediately obtain the means for each outcome (i.e., the $\mathrm{j}^{\text {th }}$ cell)
MEAN: $\begin{aligned} E\left[k_{j}\right] & =E\left[\sum_{i=1}^{n} Y_{i j}\right]=\sum_{i=1}^{n} E\left[Y_{i j}\right] \\ & =\sum_{i=1}^{n} p_{j}=n p_{j}\end{aligned}$
VARIANCE:

$$
\begin{aligned}
V\left[k_{j}\right] & =V\left[\sum_{i=1}^{n} Y_{i j}\right]=\sum_{i=1}^{n} V\left[Y_{i j}\right] \\
& =\sum_{i=1}^{n} p_{j}\left(1-p_{j}\right)=n p_{j}\left(1-p_{j}\right)
\end{aligned}
$$

COVARIANCE:

$$
\operatorname{Cov}\left[k_{j}, k_{j^{\prime}}\right]=-n p_{j} p_{j^{\prime}}
$$

Multinomial Distribution Summary

Multinomial

1. Discrete, bounded
2. Parameters - $n, p_{1}, p_{2}, \ldots, p_{\mathrm{J}}$
3. Sum of n independent outcomes
4. Extends binomial distribution
5. Polytomous regression, contingency tables

Continuous Distributions

Continuous Distributions

For measurements like height and weight which can be measured with arbitrary precision, it does not make sense to talk about the probability of any single value. Instead we talk about the probability for an interval.

$$
\begin{gathered}
\mathrm{P}[\text { weight }=70.000 \mathrm{~kg}] \approx 0 \\
\mathrm{P}[69.0 \mathrm{~kg} \leq \text { weight } \leq 71.0 \mathrm{~kg}]=0.08
\end{gathered}
$$

For discrete random variables we had a probability mass function to give us the probability of each possible value. For continuous random variables we use a probability density function to tell us about the probability of obtaining a value within some interval.
E.g. Rosner - diastolic blood pressure in 35-44 year-old men (figure 5.1)

Diastolic bp (mm Hg)

For any interval, the area under the curve represents the probability of obtaining a value in that interval.

Probability density function

1. A function, typically denoted $f(x)$, that gives probabilities based on the area under the curve.
2. $f(x) \geq 0$
3. Total area under the function $\mathrm{f}(\mathrm{x})$ is 1.0 .

The cumulative distribution function, $\mathrm{F}(\mathrm{t})$, tells us the total probability less than some value t .

$$
F(t)=P(x \leq t)=P r\left(x<t_{I}^{I}\right.
$$

This is analogous to the cumulative relative frequency.

$\operatorname{Prob}[\mathrm{wgt}<80]$ Area under the curve

ح

 m we \cdots

Normal Distribution

- A common probability model for continuous data
- Can be used to characterize the Binomial or Poisson under certain circumstances
- Bell-shaped curve
\Rightarrow takes values between $-\infty$ and $+\infty$
\Rightarrow symmetric about mean
\Rightarrow mean=median=mode
- Examples
bithweights
lies

CDa cerr counts (bernams tansformed)

Normal Distribution

Specifying the mean and variance of a normal distribution completely determines the probability distribution function and, therefore, all probabilities.

The normal probability density function is:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

where

$$
\pi \approx 3.14 \text { (a constant) }
$$

Notice that the normal distribution has two parameters:

$$
\begin{aligned}
& \mu=\text { the mean of } \mathrm{X} \\
& \sigma=\text { the standard deviation of } X
\end{aligned}
$$

We write $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$. The standard normal distribution is a special case where $\mu=0$ and σ $=1$.

Figure 3.6.3
Three Normal Distributions with Different Means

Figure 3.6.4
Three Normal Distributions with Different Standard Deviations

Figure 3.6.5
The Unit Normal Distribution

Normal Distribution -

Calculating Probabilities

Example: Rosner 5.20
Serum cholesterol is approximately normally distributed with mean $219 \mathrm{mg} / \mathrm{mL}$ and standard deviation $50 \mathrm{mg} / \mathrm{mL}$. If the clinically desirable range is $<200 \mathrm{mg} / \mathrm{mL}$, then what proportion of the population falls in this range?
$\mathrm{X}=$ serum cholesterol in an individual.

$$
\begin{array}{ll}
\mu= & 219 \\
\sigma= & 50
\end{array}
$$

$$
P[x<200]=\int_{f^{-\infty}}^{200} \frac{1}{\frac{1}{50 \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{(x-219)^{2}}{50^{2}}\right)} d x
$$

negative values for cholesterol - huh?

Standard Normal Distribution Calculating Probabilities

First, let's consider the standard normal $\mathrm{N}(0,1)$. We will usually use Z to denote a random variable with a standard normal distribution. The density of Z is

$$
f(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right)
$$

and the cumulative distribution of Z is:

$$
P(Z \leq x)=\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right) d z
$$

Any computing software can give you the values of $f(z)$ and $\Phi(z)$

Standard Normal Distribution Calculating Probabilities

Google

cdf normal distribution calculator
४ 0

All Videos Images News Shopping More Settings Tools

About 69,900 results (0.84 seconds)
Free Cumulative Distribution Function (CDF) Calculator for the Normal ... www.danielsoper.com/statcalc/calculator.aspx?id=53
This calculator will compute the cumulative distribution function (CDF) for the normal distribution (i.e., the area under the normal distribution from negative infinity ...

曲 Cumulative Distribution Function (CDF) Calculator for the Normal Distribution

This calculator will compute the cumulative distribution function (CDF) for the normal distribution (i.e., the area under the normal distribution from negative infinity to x), given the upper limit of integration x, the mean, and the standard deviation.

Please enter the necessary parameter values, and then click 'Calculate'.

Cumulative distribution function: 0.69146246

$$
\operatorname{Pr}(Z \leq 0.5)=0.69146
$$

Facts about probability
 distributions

$$
\begin{aligned}
& P[Z \leq z]=a \\
& \Rightarrow P[Z>z]=1-a
\end{aligned}
$$

$$
\begin{aligned}
& P[Z \leq x]=b, P[Z \leq y]=c \\
& \Rightarrow \operatorname{Pr}[x<Z \leq y]=c-b
\end{aligned}
$$

Facts about the standard normal distribution

Because the $\mathrm{N}(\Theta, 1)$ distribution is symmetric around 0 ,

$$
\operatorname{Pr}[Z \leq-y]=\operatorname{Pr}[Z \geq y]
$$

Exercises

$$
\begin{aligned}
& P[Z \leq 1.65]= \\
& P[Z \geq 0.5]= \\
& P[-1.96 \leq Z \leq 1.96]= \\
& P[-0.5 \leq Z \leq 2.0]=
\end{aligned}
$$

Solutions to Exercises

$$
\begin{aligned}
& \mathrm{P}[\mathrm{Z} \leq 1.65]=0.9505 \\
& \mathrm{P}[\mathrm{Z} \geq 0.5]=1-0.6915=0.3085 \\
& \mathrm{P}[-1.96 \leq \mathrm{Z} \leq 1.96]=0.975-0.025=0.95 \\
& \mathrm{P}[-0.5 \leq \mathrm{Z} \leq 2.0]=0.9772-0.3085=0.6687
\end{aligned}
$$

Converting to Standard Normal

This solves the problem for the $\mathrm{N}(0,1)$ case. Do we need a special table for every (μ, σ) ? No!

Define: $X=\sim \sigma$ where $Z \sim N(0,1)$

1. $\mathrm{E}(\mathrm{X})=\mu+\sigma \mathrm{E}(\mathrm{Z})=\mu$
2. $V(X)=\sigma^{2} V(Z)=\sigma^{2}$.
3. X is normally distributed!

Linear functions of normal RV's are also normal.

If $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ and $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$ then

$$
Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

Converting to Standard Normal

How can we convert a $N\left(\mu, \sigma^{2}\right)$ to a standard normal?

Standardize:

$$
Z=\frac{X-\mu}{\sigma}
$$

What is the mean and variance of Z ?

1. $E(Z)=(1 / \sigma) E(X-\mu)=0$
2. $V(Z)=\left(1 / \sigma^{2}\right) V(X)=1$

Normal Distribution -

Calculating Probabilities

Return to cholesterol example (Rosner 5.20)
Serum cholesterol is approximately normally distributed with mean $219 \mathrm{mg} / \mathrm{mL}$ and standard deviation $50 \mathrm{mg} / \mathrm{mL}$. If the clinically desirable range is $<200 \mathrm{mg} / \mathrm{mL}$, then what proportion of the population falls in this range?

$$
\begin{aligned}
P(X<200) & =P\left(\frac{X-\mu}{\sigma}<\frac{200-219}{50}\right) \\
& =P\left(Z<\frac{200-219}{50}\right) \\
& =P(Z<-0.38)
\end{aligned}
$$

$$
\ddot{X}<2.0 .3520
$$

Normal Approximation to Binomial

Example

Suppose the prevalence of HPV in women 18 -22 years old is 0.30 . What is the probability that in a sample of 60 women from this population 9 or fewer would be infected?

Random variable?

Distribution?

Parameter(s)?

Question?

Binomial

graph X [weight $=P X]$ if $(X<37)$, hist bin(37) normal gap(3) yscale(0,.12)

Normal Approximation to Binomial

Binomial

- When $\mathbf{n p}(\mathbf{1}-\mathbf{p})$ is "large" the normal may be used to approximate the binomial.
- $\mathrm{X} \sim \operatorname{bin}(\mathrm{n}, \mathrm{p})$

$$
\begin{aligned}
& E(X)=n p \\
& V(X)=n p(1-p)
\end{aligned}
$$

- X is approximately $\mathrm{N}(\mathrm{np}, \mathrm{np}(1-\mathrm{p}))$

Normal Approximation to
 Binomial

Example

Suppose the prevalence of HPV in women 18 -22 years old is 0.30 . What is the probability that in a sample of 60 women from this population that 9 or less would be infected?

Random variable?

$$
\Rightarrow X=\text { number infected out of } 60
$$

Distribution?

\Rightarrow Binomial
Parameter(s)?

$$
\Rightarrow \mathrm{n}=60, \mathrm{p}=.30
$$

Question?

$$
\begin{aligned}
& \Rightarrow \mathrm{P}(\mathrm{X} \leq 9)= \\
& \Rightarrow \text { normal approx. }=
\end{aligned}
$$

Binomial CDF and Normal Approximation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \leq 9, \mathrm{n}=60, \mathrm{p}=.3)=0.0059 \\
& \mathrm{P}\left(\frac{X-n p}{\sqrt{n p(1-p)}} \leq \frac{9-60 * .3}{\sqrt{60 * .3 * .7}}\right)=\mathrm{P}(\mathrm{Z} \leq-2.535)=0.0056
\end{aligned}
$$

$$
\begin{array}{r}
X \sim \operatorname{Bin}(60,0.3) \\
\text { so } \mu=n p=60 \times 0.3=18, \\
\sigma^{2}=n p(1-p)=60 \times 0.3 \times 0.7=12.6 \\
\rightarrow X \sim N\left(18, \sigma^{2}=12.6\right) \text { approximately }
\end{array}
$$

