Stratified Tables 2) consondin

- Often, a third measure influences the relationship between the two primary measures (ie. disease and exposure).
- How do we "remove or control for the effect" of the third measure?
- Issues of causality

Example: Effect of seat belt use on accident fatality

	Seat Belt	
Driver	Worn	Not worn
dead	10	20
alive		
Total	40	30
Fatality Rate	$10 / 50(20 \%)$	50

$$
R D \quad-20 \%_{0}+
$$

Stratified Tables

But, suppose...

How does this affect your inference?
$>$ This is an example of "effect modification" or "interaction".
$R R$
.5
5

5%
2070

Stratified tables - Confounding (Simpson's Paradox)

Differences in surgical success between hospitals?

BUT ...

Explanation: Higher risk individuals are more likely to die AND are more likely to go to hospital A (perhaps it specializes in this type of surgery)

Confounding

"A confounding variable is a variable that is associated with both the disease and the exposure variable." Rosner (1995)
"Confounding is the distortion of a disease/exposure association brought about by the association of other factors with both disease and exposure, the latter associations with disease being causal." Breslow \& Day (1980)
"If any factor either increasing or decreasing the risk of a disease besides the characteristic or exposure under study is unequally distributed in the groups that are being compared with regard to the disease, this itself will give rise to differences in disease frequency in the compared groups. Such distortion termed confounding, leads to an nvalid comparison" Lilienfeld \& Stolley (1994)

$$
\text { true } R D=P(\text { death } A A)
$$

- P (death

Confounding

A confounder is associated with both the disease and exposure and is not in the causal path between disease and exposure

- The implicit assumption is that we want to know if E "causes" D
- A simple, common example from genetics is the linked gene: we discover a gene which appears to be associated with disease ... does it cause the disease or is it merely linked to the true causal gene?

Pictorially ...

An apparent
association between E and D is completely
explained by C . C is a confounder.

Adjusting the OR via Stratification

Basic idea

- Compute separate OR for each stratum
- Assess homogeneity of OR's across strata
- Pool OR's: used weighted average

- Global test of pooled OR =1 Hz: $\partial R=1$
- Different methods of pooling, testing have been proposed. We will focus on MantelHaenszel methods
- Same idea for RR and RD

Stratified Contingency Tables - Example

EXAMPLE:

Suppose we are interested in the relationship between lung-cancer incidence and heavy drinking (defined as ≥ 2 drinks per day). We conduct a prospective study where drinking status is determined at baseline and the cohort is followed for 10 years to determine cancer endpoints. We also measure smoking status at baseline.

Stratified Contingency Tables - Example

1) Pooled data, not controlling for smoking

	Heavy Drinker		
	Yes	No	
	33	27	60
Case	1667	2273	3940
Control	160	2300	4000

- cci 332716672273

Proportion Exposed

Total
\qquad -_------
0.5500
0.4231

3940
0.4250

Point estimate | [95\% Conf. Interval]

Odds ratio
Attr. frac. ex.
Attr. frac. pop |
.2199736
$.9677794 \quad 2.892948$
$-.0332934 .6543319$

Stratified Contingency Tables - Example

2) Stratified by smoking at baseline

Smokers

	Heavy Drinking		
	Yes	No	
Case	24	6	30
Control	776	194	970
	800	200	1000

cci 246776194

Stratified Contingency Tables - Example

Nonsmokers

	Heavy Drinking		
	Yes	No	
Case	9	21	30
Control	891	2079	2970
	900	2100	3000

. cci 9218912079

$\operatorname{chi2}(1)=0.00 \quad$ Pr>chi2 $=1.0000$

Stratified Contingency Tables

Q: How can we combine the information from both tables to obtain an overall test of significance that takes account of the stratification?

A: Mantel-Haenszel Methods - assesses association between disease and exposure after controlling for one or more confounding variables.

Notation:

	E	\bar{E}	
D	a_{i}	b_{i}	$\left(a_{i}+b_{i}\right)$
\bar{D}	c_{i}	d_{i}	$\left(c_{i}+d_{i}\right)$
	$\left(a_{i}+c_{i}\right)$	$\left(b_{i}+d_{i}\right)$	N_{i}

where $\mathrm{i}=1,2, \ldots, \mathrm{~K}$ is the number of strata.

Mantel-Haenszel Methods

(1) Test of effect modification (beterogeneity, interaction)
$\mathrm{Ho}: \mathrm{OR}_{1}=\mathrm{OR}_{2}=\ldots=\mathrm{OR}_{\mathrm{K}}$

Ha: not all stratum-specific OR's are equal
(2) Estimate the common odds ratio

The Mantel-Haenszel estimate of the odds ratio assumes there is a common odds ratio:

$$
\mathrm{OR}_{\mathrm{pool}}=\mathrm{OR}_{1}=\mathrm{OR}_{2}=\ldots=\mathrm{OR}_{\mathrm{K}}
$$

To estimate the common odds ratio we take a weighted average of the stratum-specific odds ratios:

MH estimate:

(3) Test of common odds ratio
H_{o} : common odds ratio is 1.0
H_{a} : common odds ratio $\neq 1.0$

Mantel-Haenszel Methods - Example Lung Cancer data

. use "P:\Biostat513 06\drink.dta", clear list

- cc cancer drink [freq=number], by(smoke) bd

Smoker OR [95\% Conf. Interval] M-H Weight

Test that combined OR $=1$:

$$
\text { Mantel-Haenszel chi2(1) = } 0.00
$$

$$
\operatorname{Pr}>\operatorname{chi} 2=1.0000
$$

Stratified Contingency Tables - Example

EXAMPLE: (Rosner sec 13.5)
A 1985 study identified a group of 518 cancer cases and a group of age- and sex-matched controls by mail questionnaire. The main purpose of the study was to look at the effect of passive smoking on cancer risk. In the study passive smoking was defined as exposure to the cigarette smoke of a spouse who smoked at least one cigarette/day for at least 6 months. One potential confounding variable was smoking by the test subjects themselves since personal smoking is related to both cancer risk and having a spouse that smokes. Therefore, it was important to control for personal smoking before looking at the relationship between passive smoking and cancer risk.

Stratified Contingency Tables - Example

1) Pooled data, not controlling for personal smoking

	Passive smoking		
	Yes	No	
Case	281	228	509
Control	210	279	489
	491	507	998

cci 281228210279

Stratified Contingency Tables - Example

2) Stratified by personal smoking

Nonsmokers

	Passive smoking		
	Yes	No	
Case	120	111	231
Control	80	155	235
	200	266	466

. cci 12011180155

Stratified Contingency Tables - Example

Smokers

	Passive smoking		
	Yes	No	
Case	161	117	278
Control	130	124	254
	291	241	532

. cci 161117130124

Mantel-Haenszel Methods - Example Passive Smoking data

. use "M:\.MyDocs\b513\passive.dta"

- list

	case	passive	number	smoke
1.	1	1	120	0
2.	1	0	111	0
3.	0	1	80	0
4.	0	0	155	0
5.	1	1	161	1
6.	1	0	117	1
7.	0	1	130	1
8.	0	0	124	1

. cc case passive [freq=number], by(smoke) bd

Personal Smoking \|	OR	[95\% Conf. Interval]		M-H Weight	
01	2.094595	1.41754	3.097165	19.05579	(exact)
$\longrightarrow 1$ \|	1.312558	. 9184614	1.875813	28.59023	(exact)
Crude	740	1.265013	2.119599		(exact)
M-H combined \|	1.625329	1.263955	2.090024		
Test of homogeneity	(M-H)	i2 (1) =	3.27 Pr	$=0.0706$	
Test of homogeneity	($\mathrm{B}-\mathrm{D}$)	i2(1) =	3.27 Pr>	$=0.0704$	

Test that combined OR = 1:
Mantel-Haenszel chi2(1) = 14.42
Pr>chi2 = 0.0001

Stratified Data - Summary

1. Compute stratum-specific nleasures

Evaluate stratum-specific estimates by a test of homogeneity. Consider test results in light of sample
3. If the homogeneity test result is non-significant then consider a common estimate, pooling acress all strata (a) calculate an overall (common) summary (OR) (b) lest for significant associationo
(c) calculate confidence interval
4. If the homogeneity test result is significant then we are concerned that the ORs vary across strata. We may
(a) If the direction of association (\pm) is same and the difference is small in magnitude, then

- proceed as in 3 above (calculating average summary)
- report on the test of homogeneity.
(b) If the direction of the association is different, then
- report results from test of homogeneity
- report stratum-specific measures and confidence intervals.
- does the average make sense at all?

Review

- Rx C contingency table
o Test for homogeneity (Pearson chi-squared)
- Single 2×2 table
o Different sampling schemes

1. Cohort (row totals fixed)
2. Case-control (column totals fixed)
3. Cross-sectional (grand total fixed)
o Different measures of association
RD (Designs 1 \& 3)
RR (Designs 1 \& 3)
OR (Designs 1, $2 \& 3$)
o Test of association
Pearson chi-squared
McNemar's
Fisher exact

Review

- Series of 2×2 tables
o Mantel-Haenszel (combined) OR estimate
o Mantel-Haenszel test for association
H_{0} : OR = 1
H_{a} : OR constant, $\neq 1$
o Breslow-Day "Score" Test for Homogeneity (Interaction, Effect Modification)

