Introduction to Microbiome Analysis

Objectives:
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nat is a microbiome?

nat 1s ‘culture independent technique’?
1y 1s it useful?

nat 1s amplicon sequencing?
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nat do people mean when they say “16S”?
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e What do we do with our microbiome
(amplicon) sequence data?
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Introduction to Microbiome Analysis

“All of the visible organisms that we’re familiar
with, everything that springs to mind when we
think of ‘nature’, are latecomers to life’s story.
They are part of the coda. For most of the tale,
microbes were the only living things on Earth.”

— I Contain Multitudes: The Microbes within Us and a Grander View of Life
Ed Yong 2016
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All of animal evolution and development has
occurred in the presence of microbes.

* In germ-free mice:
* grow slower,
* live shorter,
* have dysfunctional Gl and immune systems
* are more susceptible to stress and infections
* 1965 Dubious, repeated many times since
* This observation generalizes to virtually all animals, at varying degrees

* Without (synbiotic + commensal) microbes:
* Horrible maladies for most animals (esp. development, metabolism)
* Most animal species would become extinct within a year (estimate)
* There would be (almost) no oxygen in the atmosphere
* ocean microbes alone account for ~half of your O>
* We'd all quickly die of CO; poisoning (and later global warming)
* Most elemental cycles are predominantly microbe-driven



What are microbes? Cell structure
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Ribosome Wall
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What are microbes!?

Some key differences from eukaryota (e.g. humans, plants)

® Haploid genome

® Single circular chromosome, sometimes plasmids
® Genetic malleability, metabolic diversity

® Usually no nucleus (“prokaryotes”™)

® Relatively easy interspecies gene transfer



What is a2 microbiome?

The totality of microbes in a defined environment,

especially their genomes and interactions with each
other and surrounding environment.

® A population of a single species/strain is a culture,
extremely rare outside of lab, some infections

® A microbiome is a mixed population of different
microbial species (microbial ecosystem)

A mixed community is the norm!
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Discovery of Culture Independent Techniques

The great “plate count” anomaly

® Cultivation-based cell counts are orders of
magnitude lower than direct microscopic
observation.

® This is because microbiologists are able to
cultivate only a small minority of naturally
occurring microbes

® Our nucleic-acid derived understanding of
microbial diversity has rapidly outpaced our
ability to culture new microbes

- . ‘A e | - o
L Q Count colony forming units (CFUs).

p,( Sample organisrns from environment.

//\/

Culture sampie on agar. Microscopio cell counting.

J fr)'\t\ibrj e

&

Staley, |. T., & Konopka, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in
aquatic and terrestrial habitats. Annual Review of Microbiology, 39, 321-346.



Discovery of Culture Independent Techniques

Why Is microbiome research new! given...

® \We have a bacterial endosymbiont in all our cells!
® Humans have always coexisted with bacteria
® \We've known about bacteria for a few hundred years

* Historically prokaryotic biology has been focused on microbes that can be
grown 1o large quantities/densities in the lab, especially pathogens; or can be
distinguished under the microscope.

* An example of “searching where the light is". ..



Discovery of Culture Independent Techniques

Why Is microbiome research new! given...

Bias for cultivable microbes, especially pathogens

® Culture-based methods fail to detect most microbes
® Microbes are easy to miss (except pathogens)

® Most microbes are NOT pathogens (even the human-associated)

Availability of tools limited to last 3 decades

® Discovery of culture-independent techniques
® PCR,fast & cheap DNA sequencing, microarrays, etc

® Accessible computing and algorithms



Discovery of Culture Independent Techniques

1977 rRNA as evolutionary marker - Woese & Fox PNAS

| 985 Polymerase Chain Reaction (PCR) - K. Mullis Science

1985 “Universal” Primers for rRNA sequencing - N. Pace PNAS

1989 PCR amplification of 16S rRNA gene - Bottger FEMS Microbiol.
1996 Large, curated rRNA database (RDP) - Maidak Nuc.Acids Res

| 998 metagenome genomics of communities coined by Jo Handelsman

2001 microbiome coined by Joshua Lederberg



Discovery of Culture Independent Techniques

Woesewas originally-scorned atithe:discovery of archaea
via rRNA gene (dis)similarity.

History of modern metagenomics/microbiome research is
deeply tied to modern molecular ecology




Culture Independent Techniques
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of variants and
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https://www.gatc-biotech.com/en/expertise/targeted-sequencing/16s-rrna-analysis.html



Culture Independent Techniques

Why not jUSt always sequence entire (meta)genomes!?
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Identification of Phylogenetic view Identification Functional
species and relative of community of variants and information
frequencies composition polymorphisms

OTU = Operational Taxonomic Unit, a group of very similar 16S sequences

https://www.gatc-biotech.com/en/expertise/targeted-sequencing/16s-rrna-analysis.html



Culture Independent Techniques

Why not just always sequence entire (meta)genomes?

(similar motivation to RADSeq in pop-gen):
o still prohibitively expensive (inefficient)
« for many biological questions a full sequence isn’t needed

 For low-abundance microbes, or high numbers of samples,
amplicon sequencing might be the only feasible option

« This is a different kind of “Reduced representation sequencing”

 Use restricton-enzyme-digestion PCR amplification to focus sequencing of

multiple samples on [one] homologous regions across the genomes

 Cost is a fraction of the cost of re-sequencing the metagenomes



Costs of Culture Independent Techniques

. Number of
Metagenomics  Species Counted

® Universal Gene census

® Shotgun Metagenome Sequencing
® Transcriptomics (shotgun mRNA) @
® Proteomics (protein fragments)

® Metabolomics (excreted chemicals)



Amplicon Sequencing

Sounds great.
What should we amplify and sequence!



The Small Subunit “16S” ribosomal RNA
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The Small Subunit “16S” ribosomal RNA

ribosome

® rRNA has both catalytic and
structural function.

® The small and large subunits have
different lengths, 2nd-structure, 3D
shape; but must work together.

® All of the catalytic activity of the
ribosome is carried out by the RNA;

the proteins reside on the surface
and stabilize the structure.

Peptide Synthesis




The Small Subunit“16S” ribosomal RNA

Small subunit "16S” rRNA
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Escherichia coli
small subunit ribosomal RNA

Ubiquitous - present in all
known life (viruses don’t count

Functionally constant
translation, 2°-structure

Evolves slowly - mutations
more rare than for protein-
coding genes

Large - information for
evolutionary inference

No exchange - Limited
examples of rRNA gene-sharin
between organisms

Feasibility - The right size for
available sequencing technology
(e.g. Sanger)



The Small Subunit “16S” ribosomal RNA

16S rRNA phylogeny, Known Bacteria genome phylogeny
1987 1997
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The Small Subunit “16S” ribosomal RNA

oy 200 400 600 |/ 800 1000 1200 1400 1542 bp

Conserved region
Strategy a_R: Variable region
~  5-ACTGCTGCCTCCCGTAGGAGT-3' Strategy y_R: 5-CACRACACGAG CTGACGACA-3'

Strategy B_R:

Strategy 6_R: 5'-CACGACACGAGCTGACGACA-3'

16S rBNA gene as target for amplicon sequencing

Int. J. Mol. Sci. 2014, 15(11), 21476-21491; doi:10.3390/ijms151121476



Amplicon Sequencing

. . . Environmental samples
Single microbiome
|.  Break all cells, extract all DNA (gDNA) LRk SdEchon
2. PCR-amplify a universal gene from gDNA \
Genomic DNA
3. DNA sequencing from pool of amplified genes
PCR and sequencing
4.  Cluster sequences according to species
5. Count each species and make a tree ’Zr’r'rcmm--rcncacmm‘.\f: 16S rRNA sequencing
TTTGTCAAGTCTTTGGTGAA. . .
TTTGTCAAGTCTTTGGTGAA. . .
Sequence comparison

A J
Phylogenetic trees

Tringe, S. G., & Rubin, E. M. (2005). Metagenomics: DNA sequencing of
environmental samples. Nature Reviews Genetics, 6(11), 805-814.




Amplicon Sequencing

Many microbiomes in parallel

Break all cells, extract all DNA (gDNA)

PCR-amplify a universal gene from gDNA
using bar-coded primers, diff code for each sample

DNA sequencing from pool of amplified genes
4a.“De-multiplex” barcode, ID source sample

Cluster sequences according to species

Count each species and make a tree

g :I‘TTGTAM-TC'I'I‘CAGATAA. .
TTTGTCAAGTCTTTGGTGAA. . .
TTTGTCAAGTCTTTGGTGAA. . .

-

Bacteria JI- '
*“Archaea

Environmental samples

DNA extraction

Y

Genomic DNA

baricoded
PCR and sequencing

Y

16S rRNA sequencing

Sequence comparison

Y

Phylogenetic trees



Divisive Amplicon-sequence Denoising Algorithm
(DADA)



You just generated amplicon seq data...

You have a big pile of sequences that were amplified from the same
genetic locus, simultaneous from the genomic DNA of many organisms...

- Separate real from error-containing sequences
» Count the abundances
- True sequence + its errors

For many years now, the common practice was to solve this by UPGMA-
style clustering at a fixed sequence distance (97% similarity).

“Operational Taxonomic Unit” - OTU
This was believed to approximate a species similarity, while also

conveniently similar to the typical error rate from 454 sequencing, the
popular platform at the time these methods proliferated...



Motivation: Lingering problems with “OTU”

Imagine sequencing reads
streaming from a single true
seguence...




Motivation: Lingering problems with “OTU”

r=3%

The deeper you
sequence, the more
you expect to find
reads outside the
radius by chance.




Motivation: Lingering problems with “OTU”

* False Positives - e.g. 1000s of OTUs when only 10s of sequences present
« Consequently, richness appears to depend on library size
- Microbiome distances that appear to depend on library size
« Poor Seqg/Taxonomic Resolution - defined by arbitrary similarity radius
« Accuracy - Abundance estimates biased and noisier than necessary.
« Cost - Poor data efficiency ~ larger costs to achieve same inference.
+ Cost - Computational scaling is quadratic (~N2). Becomes costly or intractable as datasets
get larger, or more numerous (meta analysis)
« Unstable - OTU sequence and count depend on input
- must re-run clustering if any data added/removed, or
- if you want to compare against an external dataset
« Recent open-source methods seem to focus on speed, are analytically worse than UPARSE
(a 2012 OTU method)...
« OTU results appear to plateau/degrade with larger library
- DADAZ2 improves with more data

"if getting the wrong answer as quickly as possible is important... then there
are a number of options..."
—Jon Bentley (as conveyed by R. Gentleman, BioC 2016)



Typical “OTU” performance
on validation data (“mock community”)

Kopylova, et al (2016). mSystems
Open-source sequence clustering methods improve the state of

4000 -
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http://benjjneb.github.io/dada2/R/SotA.html

Correct
—— answer



Typical “OTU” performance
on validation data (“mock community”)

Kopylova, et al (2016). mSystems
Open-source sequence clustering methods improve the state of
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Method
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Inferred abundance

200 300 400

100

Typical “OTU” performance
on simulated data

mothur (an)
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True abundance

TP: 978
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Inferred abundance

150 250

50

DADA2

I
0

I I I I
50 100 200
True abundance

TP: 1042
FP: 0
FN: 13
cor: 0.999

I
300




Anecdotal example of mitigated dependence of
observed richness on sequencing eftort

Observed Features v. Library Size

2000 -

1500 -

Method
DADA2

1000 - SHO-UPARSE

500 -

Number of Features (OTU or Seq) Observed

2(')0 4('30 6(I)O
Library Size (thousands seq reads)



sample amplicon reads

Sequences
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Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



sample amplicon reads _ OTUs
~
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Goal: Infer original sequences from noisy reads

sample amplicon reads OTUs
- e
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Goal: Infer original sequences from noisy reads

sample amplicon reads _ OTUs
sequences ’ £ .
\
o ° ] l
® \ v N
@ o®. \ !, N
-] o \ V4 [ \
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@ s /
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Errors -
e—— Make OTUs
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DADA2
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(OTUs are not strains)

OTUs: Lump similar sequences together
DADAZ2: Statistically infer the sample sequences (strains)

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



The shape of amplicon sequencing errors

25 .
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(number of substitutions
from parent/reference)

Slide adapted from Benjamin Callahan



DADAZ2 algorithm cartoon

Input: unique sequences, their quality values, and abundances

Unique sequences

(with mean-Q) apundance

100
50

By
Q
é:
By
®
Q
Q
w

dereplicate

N N W b~ O N

DADA2 Input



DADAZ2 algorithm cartoon

Initial guess: one real sequence + errors



DADAZ2 algorithm cartoon

>

Infer initial error model under this assumption.

A C G T

A 097 102 102 102

Pr(i - J) = c| 102 0.97 102 10-2
G 10-2 10-2 0.97 10-2

T | 102 102 102 | 097



DADAZ2 algorithm cartoon

®.

Reject unlikely error under model. Recruit errors.

A C G T
A | 097 10-2 10-2 10-2
C 10-2 0.97 10-2 10-2
G 102 102 0.97 102
T 10-2 10-2 10-2 0.97

not an error



DADAZ2 algorithm cartoon

5

Update the model.
A C G T
A 10.997 103 103 103
C 103 0.997 103 103
103 103 0.997 103
103 103 103 0.997




DADAZ2 algorithm cartoon
not an error \ : /not an error

Reject more sequences under new model

A C G T

A 10.997 103 103 103
C 103 0.997 103 103
103 103 0.997 103

103 103 103 0.997




DADAZ2 algorithm cartoon

o
Update model again
A C G T

A 0.998 1x104 2x10-3 Px10-4

C ¢x10s 0999 3x10-6 1x10-3

G Ix103 3x10-6 0.999 pHx10-5

T [2x10-4 2x[10-3 1x10-4[ 0.998



DADAZ2 algorithm cartoon

Convergence: all errors are plausible

A C G T

A 0.998 1x104 2x10-3 Px10-4

C ¢x10s 0999 3x10-6 1x10-3

G Ix103 3x10-6 0.999 pHx10-5

T [2x10-4 2x[10-3 1x10-4[ 0.998



A2A A2C A2G A2T
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selfConsist mode for DADA?2 includes joint inference of error rates as function of quality score.
red line is expected error rate if Q-scores were exactly correct

black line is DADA2’s empirical model (smooth)

Notice especially overestimate of errors at high values, Q >30

For illumina these differences are specific to sequencing run and read direction

» for small lib sizes, can aggregate estimate across libraries from the same run/direction



DADA?2 algorithm assumptions



DADA?2 algorithm assumptions

DADAZ Error Model

e Errors independent b/w different sequences

e Errors independent b/w sites within a sequence

® Sequence /is produced from parent sequence j
with probability equal to the product of site-wise
substitution probabilities:

Nisi = [1op((1) — i(1),q()))

e Each substitution probability depends on original nt,
substituting nt, and quality score at position in |



DADA?2 algorithm assumptions

DADAZ2 Abundance Model

e Errors are independent across reads

e Abundance of reads w/ sequence / produced from more-
abundant parent sequence jis poisson distributed

¢ Expectation of abundance equals error rate, Aj»i, multiplied by the
abundance of sequence |

¢ jhas count greater than or equal to one

e “Abundance p-value” for sequence Jis thus:

o0

PA(J = 1) = D q—q; Ppois(NjAj—i, a)/(1 — ppois(njAj—i, 0))

¢ “Probability of seeing an abundance of sequence jthat is equal to
or greater than observed value, by chance, given sequence
J.” (Bonferroni-corrected)

e A low pa indicates there are more reads of sequence /than can
be expected given n;



Compute performance

* Inferred sequences are intrinsically comparable
® between samples
e between experiments
e A major departure from OTU clustering methods

e Computation on each specimen independently
e Embarrassingly parallel
e Much faster, accessible for large projects
e Can use cheap commodity hardware (e.g. your laptop)
e rather than $$ high-memory clusters
® Robust: results don’t change with new samples/projects
e Artifact sample cannot affect others



Applications

* Any amplicon-seq data, not just 165 rBRNA or even microbiome
e Sequence variants unique to an individual host
e Seguence variants associated with a clinical outcome
* mproved meta-genomic inference (e.g. PICRUST)
e Mitigate ambiguity of representative genome(s) to use
¢ Detecting pathogens (special cases)



Real example, exact sequence resolution

Lactobacillus crispatus sampled from
vaginal microbiome 42 pregnant women

OTU Method DADA2
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Data: Maclntyre et al. Scientific Reports, 2015.

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Other relevant articles:

Perspective

Exact sequence variants should replace operational
taxonomic units in marker-gene data analysis
OPEN

Benjamin J Callahan?, Paul J McMurdieZ and Susan P Holmes?

1Department of Population Health and Pathobiology, NC State University, Raleigh NC, USA

2Whole Biome Inc, San Francisco CA, USA
3Department of Statistics, Stanford University, Stanford CA, USA

The ISME Journal 21 July 2017, doi: 10.1038/ismej.2017.119
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Multidisciplinary Journal of Microbial Ecology

UNOISE2 — bioRxiv Oct 2016 081257
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DA1 — BMC bioinformatics 2012 13(1), 283 Slow
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Where things are headed: “Culturomics”



Where things are headed: “Culturomics”

“Bacterial culture was the first method used to describe the human microbiota
[after the microscope], but this method is considered outdated by many researchers
... however, a ‘dark matter’ of prokaryotes, which corresponds to a hole in our
knowledge and includes minority bacterial populations, is not elucidated by
[metagenomic] studies...”

Lagier, J.-C., et al (2015). The Rebirth of Culture in Microbiology... Culturomics...
Clinical Microbiology Reviews, 28(1), 237-264.
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Browne, H. P, et al. (2016). Culturing of “unculturable” human microbiota... Nature, 533(7604), 543-546.



Where things are headed: “Culturomics”

Present work
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Lagier, J.-C., et al. (2016). Culture of previously
uncultured... Nature Microbiology, |(12), -8

Ma, L, et al. (2014). Gene-targeted microfluidic
cultivation... PNAS, I 11(27),9768-9773.



Next Up: Lab Ol

We are going to run DADA2 on “raw”
amplicon sequence data

Any lingering questions!?



