Lecture:

Mixture Models for Microbiome data

Lecture 3:
 Mixture Models for Microbiome data

Outline:

- Sequencing thought experiment
- Mixture Models (tangent)
- (esp. Negative Binomial)
- Differential abundance testing
- Multiple Testing reminder
- DESeq2 / Don't Rarefy. Ever.

Model Uncertainty in NGS Count Data

Model Uncertainty in NGS Count Data

Model Uncertainty in NGS Count Data

- Repeat simulation (resampling) many times and different library sizes
- Uncertainty depends (inversely) on number of reads

Model Uncertainty in NGS Count Data

- This simulation mirrors technical sequencing replicates well

- What about biological replicates? How do you think that would look in this plot?

Model Uncertainty in NGS Count Data

Est. Variance NGS Count Data

Model Uncertainty in NGS Count Data

- The observed variance among biological replicates exceeds the mean (sometimes by a lot).
- The amount it exceeds the mean is usually still a strong smooth positive function of the mean, like the light blue line
- One way to model this is with the Negative Binomial distribution

Est. Variance NGS Count Data

Model Uncertainty in NGS Count Data

 Negative Binomial:Variance $=u_{i c} s_{j}+\phi_{i c} s_{j}^{2} u_{i c}^{2}$
Poisson Overdispersion
Est. Variance NGS Count Data

Mean Count

Model Uncertainty in NGS Count Data

Negative Binomial

Variance $=u_{i c} s_{j}+\phi_{i c} s_{j}^{2} u_{i c}^{2}$
Poisson Overdispersion

- How do you fit this many parameters?
- Share information across genes/features/ASVs in a joint inference of $f \sim$ phi(count)
- "fitting this curve is much easier than fitting a thousand phis"

Est. Variance NGS Count Data

Mean Count

Model Uncertainty in NGS Count Data

- Negative Binomial is an infinite mixture of Poisson R.V.
- Intuition: relevant when we have (almost) as many different distributions (poisson means) as observations
- Borrow from RNA-Seq analysis implementations? (Yes)

- McMurdie \& Holmes (2014). Waste Not Want Not... PLoS Computational Biology
- Robinson, Oshlack (2010). A scaling normalization... RNA-Seq data. Genome Biology
- Anders, \& Huber (2010). Differential expression ... sequence count data. Genome Biology

Tangent: Mixture Models

Technical details in: mixture-model-Holmes-mathy-details.pdf

Finite Mixture Model

Example: Finite mixture of two normals

Flip a fair coin.
If it comes up heads
Generate a random number from a Normal with mean 1 and variance 0.25 . R: `rnorm` function.

If it comes up tails
Generate a random number from a Normal with mean 2 and variance 0.25 .

This is what the resulting histogram would look like if we did this 1^{n} nnn times.

$$
f(x)=\frac{1}{2} \phi_{1}(x)+\frac{1}{2} \phi_{2}(x)
$$

Finite Mixture Model

Example: Finite mixture of two normals

However in many cases the separation is not so clear.

Challenge: Here is a histogram generated by two Normals with the same variances.

Can you guess the two parameters for these two Normals?

$$
f(x)=\frac{1}{2} \phi_{1}(x)+\frac{1}{2} \phi_{2}(x)
$$

Finite Mixture Model

Here we knew the answer
(the source every data point)

In practice, this information is usually missing, and we call it a latent variable

Discovering the hidden class: EM
For simple parametric components, can use EM (ExpectationMaximization) algorithm to infer the value of the hidden variable.

$$
f(x)=\frac{1}{2} \phi_{1}(x)+\frac{1}{2} \phi_{2}(x)
$$

Expectation Maximization (EM)

Very popular iterative procedure
Lots of implementations. E.g. FlexMix
http://cran.r-project.org/web/views/Cluster.html
http://cran.r-project.org/web/packages/flexmix/index.html
I. First, initialize θ to some random values.
2.Compute best value for U.
3. Use the just-computed values of U to compute a better estimate for θ.
Parameters associated with a particular value of U only use data points whose associated latent variable has that value. 4. Iterate steps 2 and 3 until convergence

http://en.wikipedia.org/wiki/Expectation-maximization_algorithm

Infinite Mixture Model

Sometimes mixtures can be useful without us having to find who came from which distribution.

This is especially the case when we have (almost) as many different distributions as observations.

In some cases the total distribution can still be studied, even if we don't know the source of each component distribution.
e.g. Gamma-Poisson a.k.a. Negative Binomial
I. Generate a whole set of Poisson parameters: $\lambda_{1}, \lambda_{2}, \ldots \lambda_{90}$ from a Gamma(2,3) distribution.
2. Generate a set of Poisson $\left(\lambda_{i}\right)$ random variables.

Infinite Mixture Model - N.B.

Generative Description:
I. Generate a whole set of Poisson parameters: $\lambda_{1}, \lambda_{2}, \ldots \lambda_{90}$ from a $\operatorname{Gamma}(2,3)$ distribution.
2. Generate a set of Poisson $\left(\lambda_{i}\right)$ random variables.

Summarized Mathematically:
variance: $\quad u_{i c} s_{j}+\phi_{i c} s_{j}^{2} u_{i c}^{2}$.
Poisson Overdispersion
Negative Binomial is useful for modeling:

- Overdispersion (in Ecology)
- Simplest Mixture Model for Counts
- Different evolutionary mutation rates
- Throughout Bioinformatics and Bayesian Statistics
- Abundance data

Summary of Mixture Models

Finite Mixture Models

Mixture of Normals with different means and variances.
Mixtures of multivariate Normals with different means and covariance matrices

Decomposing the mixtures using the EM algorithm.

Common Infinite Mixture Models

Gamma-Poisson (Negative Binomial) for read counts Dirichlet-Multinomial (Birthday problem and the Bayesian setting).

Differential Abundance

Scientific Question:
Which taxa have proportions that are different between the sample classes?

Hypothesis Tests - reminder

- A hypothesis is a precise disprovable statement.
- "Null hypothesis" - the default position."Nothing special"
- Alternative/Rejection: Evidence disagrees with the Null
- Null hypothesis cannot be confirmed by the data.

Scientific Question:
Which taxa have proportions that are different between the sample classes?
Null Hypothesis:
The proportions of a taxa in the two sample classes are the same

Hypothesis Tests - some examples

test R functiont.test
Mann-Whitney U-testcorrelation testcor.test
Chi-Square test chisq.testNeg-Binom Wald test DESeq2: :nbinomWaldTest

There are obviously a lot more available in R...

Multiple Testing

- In "Big Data", we often want to test many hypotheses in one batch.
- p-values are distributed uniformly when null hypothesis is true
- The expected number of rejections by chance is $\mathrm{m}^{*} \alpha$

P-values under Null hypothesis with 100 trials

Differential Abundance

Mortazavi, et al (2008). Mapping \& quantifying ... transcriptomes by RNA-Seq. Nature Methods

Inefficient Normalization by "rarefying"

- Modern sequencing creates libraries of unequal sizes
- Early analyses focused on library-wise distances:
paradigm: rarefy - UniFrac - PCoA -Write Paper
- This approach has "leaked" into formal settings, still quite a bit of inertia to maintain the practice

Inefficient Normalization by "rarefying"

 the original idea...
rarefaction curves

- Sanders 1968
- non-parametric richness
- estimate coverage
- Normalize? - No.

Sanders, H. L. (1968). Marine
benthic diversity: a comparative study. American Naturalist

Inefficient Normalization by "rarefying"

1. Select a minimum library size $N_{L, \text { min }}$

> Library Sizes (column sums)
2. Discard libraries (samples) that are smaller than $N_{\text {L, min }}$

Hughes \& Hellmann (2005) Methods in Enzymology
Gotelli, \& Colwell (2001) Ecology Letters

Inefficient Normalization by "rarefying"

1. Select a minimum library size $N_{L, \text { min }}$

Hughes \& Hellmann (2005) Methods in Enzymology
Gotelli, \& Colwell (2001) Ecology Letters

Differential Abundance Simulation

Differential Abundance - Simulation

Differential Abundance - Simulation - False Positive Rates

Issues with rarefying - Differential Abundance

I. Rarefied counts worse sensitivity in every analysis method we attempted.
2. Rarefied counts also worse specificity (high FPs)

- No accounting for overdispersion
- Added noise from subsampling step

Issues with rarefying - clustering

- Loss of Power:
I. Microbiome samples that cannot be classified because they were discarded ($<\mathrm{N}_{\mathrm{L}, \mathrm{min}}$).

2. Samples that are poorly distinguishable because of the discarded fraction of the original library.

- Arbitrary threshold:
I. Choice clearly affects performance

2. Optimum value, ${ }^{*} \mathrm{~N}_{\mathrm{L}, \text { min }}$, can't be known in practice

Transition: Lab

Negative Binomial mixture model for differential abundance multiple testing using DESeq2, etc.

Further details performance degradation of clustering results by rarefying...

samples

Microbiome
 Clustering Simulation

$\stackrel{\sim}{2}$	15	15	161:	0	0	0	0
	87	4	72 .	0	0	0	0
	10	148	15;	0	0	0	0
	0	0	0	82	244	7	24
	0	0	0	354	452	92	1
	0	0	0	14	9	33	251
Ocean							

Microbiome count - data from the GlobalPatterns dataset

1. Sum rows. A multinomial for each sample class.

Microbiome Clustering - Simulation

Normalization Method:

Z
$\stackrel{11}{\prime \prime}$
$\stackrel{\rightharpoonup}{8}$
8

$0002=7 \times \sim$

Microbiome Clustering - Simulation Performance Depends on $\widetilde{\mathrm{N}}_{\mathrm{L}}$

$$
\text { Distance Method: } \square \text { Bray-Curtis } \square \text { PoissonDist } \square \text { top-MSD } \square \text { UniFrac-u } \square \square \text { UniFrac-w }
$$

