
Using Trees in Microbiome Analysis



• Phylogenetic (Evolutionary) Trees

• Tree-Building (“quick” overview)

• Tree formats (Newick, Ape’s “phylo")

• Manipulating Trees in phyloseq/ape

•  Tree plots (Examples, how to interpret)

• Using Trees and contingency tables together

• UniFrac and variants

• DPCoA

Using Trees in Microbiome Analysis



Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276(5313), 734–740.
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Nature Microbiology

Bacteria

Archaea

Eukaryota

Candidate 
Phyla 
Radiation
(mostly 
uncultivated)

Overwhelming majority of 
evolutionary diversity in 
bacteria; highly correlated 
with metabolic/functional 
diversity

2016 you are here



(1) Reconstructing evolutionary history from incomplete information

(2) Robust summary of the similarity of related biological sequences
     (a lot like hclust)

The data - biological sequences
- often proteins, sometimes DNA/RNA (16S rRNA), etc.

Phylogenetic Trees

Motivations:
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Phylogenetics

• The study of evolutionary relationships.

• Conversion of DNA or protein sequence data into a branching diagram 
(“tree”) that shows the relationships between the sequences.
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Phylogenetics
the anatomy of a tree

time
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Clades

Leaves
Tips

Most Recent Common Ancestor (MRCA) of A, B, C; but not D

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Nomenclature
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Phylogenetics
the many shapes of trees
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Phylogenetics
tree growth

Rotating internal nodes is not meaningful:

Adapted from N. Provart & D. Guttman

Phylogenetic Trees
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Phylogenetics
tree growth
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– have one node from which all other nodes descend
– imply direction corresponding to evolutionary time

Adapted from N. Provart & D. Guttman

Phylogenetic Trees example
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Rooting Trees
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Ancestral State
• a.k.a. plesiomorphy

Derived State

• a.k.a. apomorphy
o Autapomorphy = unique derived state
o Synapomorphy = shared derived state

Homoplasy

• Similarity due to parallel evolution, convergent evolution or 
secondary loss

Homology

• Similarity due to common ancestry

Phylogenetics
terminology

Using an “Outgroup”

Adapted from N. Provart & D. Guttman
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Phylogenetics
tree growth
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Adapted from N. Provart & D. Guttman
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Ancestral
Character

Derived
Character Homoplasy

Phylogenetics
terminology

Ancestral
State
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Parallel 
Evolution

Independent evolution of 
same character from 
same ancestral state

Convergent 
Evolution

Independent evolution of 
same character from 

different ancestral state

Secondary
Loss

Reversion to ancestral 
state

Phylogenetics
homoplasy

More Terminology

Homoplasy - Similarity due to parallel evolution, 
convergent evolution, or secondary loss

Homology - Similarity due to common ancestry

Adapted from N. Provart & D. Guttman
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Phylogenetics
terminology

Ancestral
State
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Parallel 
Evolution

Independent evolution of 
same character from 
same ancestral state

Convergent 
Evolution

Independent evolution of 
same character from 

different ancestral state

Secondary
Loss

Reversion to ancestral 
state

Phylogenetics
homoplasy

Forms of homoplasy...

E.g. Ni-Fe and Fe-only hydrogenases: highly-similar 
enzymatic activity, no detectable shared ancestry

Adapted from N. Provart & D. Guttman



7

CSB352 N. Provart & D. Guttman · CSB352 · Intro for Lab 4 · Slide 13

ACTGAACGTAACGC

A
C
T
G

T m C m A
A

G m C
G

A m T
A

T m C m A
C
G
C

A
C o A
T
G
A
A
C o A
G
T o A
A
A o T
C
G
C o T o C

Single substitution

Multiple substitution

Coincidental substitutions

Parallel substitutions

+Back sustitution

*

+

Ancestral Sequence

*

Phylogenetics
homoplasy

*Convergent substitution
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Taxa
• Sampling

Loci

• Homology
• Variation
• Independence

Analysis

• Data
• Sequence alignments
• Phylogenetic methods
• Statistical support

Phylogenetics
fundamental elements

ancestral sequence

Adapted from N. Provart & D. Guttman



Phylogenetic Tree Construction Methods



All tree-building begins 
with multiple-alignment
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– have one node from which all other nodes descend
– imply direction corresponding to evolutionary time

• Naïve multiple sequence alignment is NP-complete. 
• Students typically don’t want to spend time multiple alignment details.
• Just read about / use one of the following multiple-alignment algorithms:

Muscle

MAFFT

Mauve, Lagan, etc. Whole genome alignment...

NOTE:  You will not create a meaningful tree from a meaningless alignment. 
Spending time selecting the appropriate alignment tools and checking your 
alignment is usually a worthwhile thing to do.

Katoh, Misawa, Kuma, Miyata 2002 (Nucleic Acids Res. 30:3059-3066)
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.

ClustalW Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of 
progressive multiple sequence alignment... Nucleic Acids Research, 22(22), 4673–4680.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5), 1792–1797.

Multiple Sequence Alignment:



Distance-based tree methods

Character-based (discrete) tree methods

UPGMA

Neighbor-Joining

Maximum Parsimony

Maximum Likelihood

Bad, don’t use. Implemented as guesses in better, more 
complex algorithms for m-alignment / tree construction

Also not very good, only use if other methods intractable,
or use as initial guess for parsimony or ML tree.

Bayesian Methods

Phylogenetic Tree Construction Methods



Distance Methods
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Distance methods
• UPGMA (Unweighted Pair Group Method with Arithmetic mean )

• Neighbour-joining

Character-based (discrete) methods

• Maximum parsimony
• Maximum likelihood

Phylogenetics and Recombination – how would recombination affect 
interpretation of a tree?

Phylogenetics
tree building methods
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Relationships based upon sequence similarity.

Advantages

• Computationally fast.

• Single “best tree” found.

Disadvantages

• Assumptions

o additive distances (always)

o molecular clock (sometimes)

• Information loss occurs due to data transformation

• Uninterpretable branch lengths

• Single “best tree” found.

Phylogenetics
distance-based methods

Phylogenetic Tree Construction Methods



UPGMA

Not much point in discussing. Not very good. 
You know how to do it from clustering lecture(s).

Details:

* Assumes rates of evolution are same among different lineages (severely unrealistic)
* Very sensitive to unequal evolutionary rates
* Tends to be reliable only if data/phylogeny is essentially ultrametric (severely unrealistic)

Phylogenetic Tree Construction Methods
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1. Calculate pairwise distances

2. Create distance matrix

3. Determine net divergence for each terminal node

4. Create rate-corrected distance matrix

5. Identify taxa with minimum rate-corrected distance

6. Connect taxa with minimum rate-corrected distance via a new node, and 
determine their distance from this new node 

7. Determine the distance of new node from rest of taxa or nodes

8. Regenerate distance matrix

9. Return to step 2

Neighbour-Joining
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Distance-Based Phylogenetic Methods
UPGMA vs. Neighbour-Joining
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B - 30 34 21
C - 28 39
D - 43
E -

Neighbor Joining

Adapted from N. Provart & D. Guttman

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for 
reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406–425.

Phylogenetic Tree Construction Methods
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Distance-Based Phylogenetic Methods
UPGMA vs. Neighbour-Joining
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Adapted from N. Provart & D. Guttman

UPGMA

NJ



Character-based (discrete) Methods

Maximum Parsimony

Maximum Likelihood

Bayesian Methods

These methods attempt to map the 
history of gene sequences onto a tree.
(And decide what the tree looks like)

Phylogenetic Trees



Models of Sequence Evolution

14

CSB352 N. Provart & D. Guttman · CSB352 · Intro for Lab 4 · Slide 27

Jukes-Cantor (JC)
Equal base freq    (pA = pC, = pG = pT) 

All subst equally likely (a = b)

Kimura 2 Parameter (K2P)
Equal base freq    (pA = pC, = pG = pT) 

Ts and Tv diff subst rates (a z b)

Felsenstein (F81)
Unequal base freq    (pA z pC, z pG z pT)

All subst equally likely (a = b)

Hasegawa et al. (HKA85)
Unequal base freq    (pA z pC, z pG z pT)

Ts and Tv diff subst rates (a z b)

General Time-Reversible (GTR)
Unequal base freq    (pA z pC, z pG z pT)

All six pairs of subst have diff rates

Allow for ts / tv bias Allow base freq to vary

Allow base freq to vary Allow for ts / tv bias

Allow all six pairs of subst to have diff rates

Models of Sequence Evolution
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Phylogenetic Confidence
Bootstrapping

Original Sequence and Tree

seqA AGGCTCCAAA
seqB AGGTTCGAAA
seqC AGCCCCGAAA
seqD ATTTCCGAAC
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D
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B

C

D
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B

C

D
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B

C

D
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B

C

D

pseudo-replicate 1

seqA AGGGGTCAAA
seqB AGGGGUCAAA
seqC AGGGCCCAAA
seqD ATTTTCCACC

pseudo-replicate 2

seqA ATTCCCCAAA
seqB ATTCCGGAAA
seqC ACCCCGGAAA
seqD ACCCCGGCCC

pseudo-replicate 3

seqA GGGTTTTCAA
seqB GGGTTTTGAA
seqC GCCCCCCGAA
seqD TTTCCCCGAA

pseudo-replicate 1000

seqA AGTTCCAAAA
seqB AGTTCCAAAA
seqC ACCCCCAAAA
seqD ATCCCCAACC

...

Pseudo-Replicated Data and Trees

A

B

C

D

100

75

Bootstrapped Tree

pr1 1310110012
pr2 1000222003
pr3 0120401200
…

pr1000 1010220112

Adapted from N. Provart & D. Guttman



Farris (1983), has a justification for parsimony:
“minimizes requirements of ad hoc hypotheses of homoplasy”.

Analogy is made between homoplasies and residuals, (part of the data 
that the tree does not explain), minimizing homoplasies is akin to 
minimizing residuals in regression.

Based on the assumption that “evolution is parsimonious” which means 
that there should be no more evolutionary steps than necessary.

The best tree(s) minimize the number of changes between ancestors 
and descendants. 

Under independence of each of the characters, this has a clear 
combinatorial translation.

Maximum Parsimony Works under the principle of “Occam's razor”

Phylogenetic Trees



Maximum Parsimony
Implementation:

- In parsimony, the score is simply the minimum number of mutations that could possibly 
produce the data.
- Pro: There are fast algorithms that guarantee that any tree can be scored correctly
- Con: There are lots of possible trees to choose between...

Math people:
If you take it in terms of distance on a graph the inner points are what are known as Steiner 
points and the problem of finding the tree is equivalent to the Steiner tree problem...

 Drawbacks:   

• the score of a tree is completely determined by the minimum number of mutations 
among all of the reconstructions of ancestral sequences. 

• fails to account for the fact that the number of changes is unlikely to be equal on all 
branches in the tree.
• As a result, susceptible to “long-branch attraction”, in which two long branches that 

are not adjacent on the true tree are inferred to be closest relatives
• in practice this is still pretty good... ML/Bayesian better

Phylogenetic Trees
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Character-Based Phylogenetic Methods
Maximum Likelihood

Attempts to answer the question:  
• What is the probability of observing the data, given a particular model of evolution and 

evolutionary history?
o data = MSA
o model = transition probabilities, base frequencies, rate heterogeneity...
o evolutionary history = phylogenetic tree

Evaluates the likelihood of every substitution of every possible tree.

All possible trees are considered, and the number of substitutions that must have occurred are 
calculated.

The tree with the highest likelihood is assumed to be the correct tree.
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Likelihood
coin example

Likelihood (L) =  Probability (dataobserved | model)

Data : HHTHTH

Model 1 : fair coin     Prob(H) = 0.5,  Prob(T) = 0.5
Model 2 : 2-head coin  Prob(H) = 1.0,  Prob(T) = 0.0
Model 3 : 2-tail coin   Prob(H) = 0.0,  Prob(T) = 1.0

L (Data|Model1)
= Prob(H|Model1) * Prob(H|Model1) * Prob(T|Model1) * Prob(H|Model1) * 

Prob(T|Model1) * Prob(H|Model1)
= 0.5 * 0.5 * 0.5 * 0.5 * 0.5 * 0.5 = 0.0156

L (Data|Model2) = 1.0 * 1.0 * 0.0 * 1.0 * 0.0 * 1.0 = 0.0

L (Data|Model3) = 0.0 * 0.0 * 1.0 * 0.0 * 1.0 * 0.0 = 0.0 

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Maximum 
Likelihood
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Maximum Likelihood

Advantages of ML methods
• Based on explicit evolutionary models.
• Permits statistical evaluation of the likelihood of specific tree topologies.
• Often returns many equally likely trees.
• Usually outperforms other methods.

Disadvantages
• Computationally very intensive.
• Often returns many equally likely trees.
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1 C…GGACACGTTTA…C
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(6)

Unrooted tree for 
the 4 taxa

Arbitrarily rooted tree 
for site j

Maximum Likelihood

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Maximum 
Likelihood
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Likelihood of the tree = product of the likelihoods for each site.

Usually evaluated as the sum of the log likelihoods.

Maximum Likelihood

ML evaluates: 
• all possible ancestral states 

• at all variable site
• in all possible tree topologies

oThe most likely (best) tree is the topology that has the highest 
overall likelihood.

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Maximum 
Likelihood
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Likelihood of the tree = product of the likelihoods for each site.
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Maximum Likelihood

ML evaluates: 
• all possible ancestral states 

• at all variable site
• in all possible tree topologies

oThe most likely (best) tree is the topology that has the highest 
overall likelihood.
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Phylogenetic Trees Maximum 
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Maximum Likelihood

Advantages of ML methods
• Based on explicit evolutionary models.
• Permits statistical evaluation of the likelihood of specific tree topologies.
• Often returns many equally likely trees.
• Usually outperforms other methods.

Disadvantages
• Computationally very intensive.
• Often returns many equally likely trees.
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Phylogenetic Trees Maximum 
Likelihood



Bayesian Approach to Phylogeny Estimation

Approach:

Uses the likelihood function

Typically implemented using same models of evolutionary change used in ML

Metropolis-Hastings - Metropolis-Coupled Markov Chain Monte Carlo (MC3)

Ronquist, F. and J.P. Huelsenbeck. (2003) MrBayes3: Bayesian phylogenetic inference... Bioinformatics, 19, 1572–1574.

Assumptions:

Same set of parameter choices for evolutionary model as for ML

Must also choose initial set of prior probabilities.

Holder, M., & Lewis, P. O. (2003). Phylogeny estimation: traditional and Bayesian approaches. Nature reviews Genetics, 4(4), 275–284.
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R E V I EW S

In short, NJ is an extremely fast estimator of phylo-
genetic trees that does relatively well on clean data (for
example, data from sequences that have diverged
recently). When the goal is to infer older relationships, it
can be difficult to arrive at reliable values for the dis-
tance matrix that is the input for NJ; obviously, if the
input into an algorithm is poor, the algorithm has little
chance of succeeding.

Tree searches under optimality criteria. The NJ tree is
often treated as the starting point for a computationally
intensive search for the best phylogeny (TABLE 2). To per-
form a tree search, a standard must be used for com-
paring trees — an optimality criterion, in the jargon of
phylogenetics. The most popular criteria are parsi-
mony, minimum evolution and ML. Minimum evolu-
tion (ME), like NJ, requires that the data be compressed
into a distance matrix; therefore, like NJ, its success is
dependent on the sequence divergences being ade-
quately corrected for multiple hits (or the tree being so
easy to infer that poor distance estimates are sufficient).

sequences). A potentially serious weakness for distance
methods such as NJ, is that the observed differences
between sequences are not accurate reflections of the
evolutionary distances between them. Multiple substitu-
tions at the same site obscure the true distance and
make sequences seem artificially close to each other. If
the rate of evolution is constant over the entire tree (that
is, if the ‘molecular clock’ hypothesis holds), correcting
for multiple substitutions on tree estimation might be
relatively unimportant9.

Unfortunately, the molecular clock assumption is
usually inappropriate for distantly related sequences. In
this situation, a correction of the pairwise distances that
accounts for multiple ‘hits’ to the same site should be
used. There are many models for how sequence evolution
occurs, each of which implies a different way to correct
pairwise distances (see REF. 10 for some suggestions), so
there is considerable debate on which correction to use
(see BOX 2 for a discussion of model selection).
Furthermore, these corrections have substantial variance
when the distances are large.

CONSENSUS METHOD

A summary of a set of trees in
which branches that are not in
most of the trees are collapsed to
indicate uncertainty.

AGREEMENT SUBTREES

A tree containing the largest
subset of sequences for which
the relationships among
sequences are invariant across all
the phylogenies included.

Box 2 | The phylogenetic inference process

The flowchart puts phylogenetic estimation (shown in the green box) into the context of an
entire study. After new sequence data are collected, the first step is usually downloading other
relevant sequences. Typically, a few outgroup sequences are included in a study to root the
tree (that is, to indicate which nodes in the tree are the oldest), provide clues about the early
ancestral sequences and improve the estimates of parameters in the model of evolution.

Insertions and deletions obscure which of the sites are homologous. Multiple-sequence
alignment is the process of adding gaps to a matrix of data so that the nucleotides (or amino
acids) in one column of the matrix are related to each other by descent from a common ancestral
residue (a gap in a sequence indicates that the site has been lost in that species, or that a base was
inserted at that position in some of the other species). Although models of sequence evolution
that incorporate insertions and deletions have been proposed55–58, most phylogenetic methods
proceed using an aligned matrix as the input (see REF. 59 for a review of the interplay between
alignment and tree inference).

In addition to the data, the scientist must choose a model of
sequence evolution (even if this means just choosing a family of
models and letting software infer the parameters of these models).
Increasing model complexity improves the fit to the data but also
increases variance in estimated parameters. Model selection60–63

strategies attempt to find the appropriate level of complexity on the
basis of the available data. Model complexity can often lead to
computational intractability, so pragmatic concerns sometimes
outweigh statistical ones (for example, NJ and parsimony are mainly
justifiable by their speed).

As discussed in BOX 3, data and a model can be used to create a sample
of trees through either Markov chain Monte Carlo (MCMC) or multiple
tree searches on bootstrapped data (the ‘traditional’ approach). This
collection of trees is often summarized using consensus-tree techniques,
which show the parts of the tree that are found in most, or all, of the
trees in a set. Although useful, CONSENSUS METHODS are just one way of
summarizing the information in a group of trees. AGREEMENT SUBTREES are
more resistant to ‘rogue sequences’ (one or a few sequences that are
difficult to place on the tree); the presence of such sequences can make a
consensus tree relatively unresolved, even when there is considerable
agreement on the relationships between the other sequences.
Sometimes, the bootstrap or MCMC sample might show substantial
support for multiple trees that are not topologically similar. In such
cases, presenting more than one tree (or more than one consensus of
trees) might be the only way to appropriately summarize the data.

Homo sapiens
Pan
Gorilla
Pongo
Hylobates

100
89

MCMC

Model selection

'Best' tree with measures of support

Traditional 
approaches

Bayesian
approaches

Hypothesis testing

Estimate
'best' tree 

Assess
confidence

C-TAC-T-GTAG-C-AG-TC
CTTA-ATCGTAG-CTAGATC
CTTACATCGTAGCCTAGATC

Multiple sequence 
alignment

CTACTGTAGCAGTCCGTAGA
GCTTAATCGTAGCTAGATCA
CTTACATCGTAGCCTAGATC

Retrieve homologous 
sequences

CTTACATCGTAGCCTAGATC

Collect data

begin characters;
 dimensions nchar=898;
 format missing=? gap=- 
matchchar=. 
interleave datatype=dna;
 options gapmode=missing;
 matrix
Lemur_catta AAGCTTCATAGGAGCAACCAT
Homo_sapiens AAGCTTCACCGGCGCAGTCAT
Pan          AAGCTTCACCGGCGCAATTAT
Gorilla AAGCTTCACCGGCGCAGTTGT
Pongo AAGCTTCACCGGCGCAACCAC

Input for phylogenetic
estimation

Holder, M., & Lewis, P. O. (2003). Phylogeny estimation: traditional and Bayesian approaches. Nature reviews Genetics, 4(4), 275–284.
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Consider using a phylogenetic analysis to determine
whether an unknown virus belongs to ‘group A’ or
‘group B’. A tree with representatives of both candidate
groups and the unknown sample is constructed, and
the unknown sequence is intermingled with those
from group A. Is it possible that the unknown sample
was incorrectly placed because the data set is too small?
After all, even if the data are equivocal, the unknown
will be placed somewhere on the tree. The traditional
approach to answering such a question involves find-
ing the best tree in which the unknown sample clusters
with the group B viruses, and then assessing how
much worse this tree is compared to the best tree
found in the original search. If the placement of the
unknown with group B scores much worse than the
optimal solution, then the data reject the possibility of

used to overcome an inappropriate analysis of the data.
It might be said that high bootstrap proportions are a
necessary, but not sufficient, condition for having high
confidence in a group.

The chief drawback of bootstrapping is the compu-
tational burden: the computational effort needed for
the original analysis must be repeated several hundred
times (once for each bootstrap replicate data set). This
is not a concern when a fast analysis (like NJ) is
employed, but it can be an obstacle when ML is used.
BOX 3 summarizes the process of collecting a group of
trees by bootstrapping.

Hypothesis testing. Bootstrapping gives coarse estimates
of which parts of the tree are supported. Often, a
researcher is interested in rejecting a specific hypothesis.

PRIOR PROBABILITY

(The ‘prior’). The probability of
a hypothesis (or parameter
value) without reference to the
available data. Priors can be
derived from first principles, or
based on general knowledge or
previous experiments.

Box 3 | Bootstrapping and Markov chain Monte Carlo generate a sample of trees 

The number of times a particular group of sequences occurs in the trees from this sample can be used as a measure of
how strongly the data supports that group. The bootstrapping approach (a) involves the generation of pseudo-
replicate data sets by re-sampling with replacemtent the sites in the original data matrix. When optimality-criterion
methods are used, a tree search (green box) is performed for each data set, and the resulting tree is added to the final
collection of trees. A wide variety of tree-search strategies have been developed, but most are variants of the same basic
strategy. An initial tree is chosen, either randomly or as the result of an algorithm — such as neighbour joining (NJ) or
stepwise addition. Changes to this tree are proposed; the type of move can be selected randomly or the search can
involve trying every possible variant of a particular type of move (TABLE 2; REF. 6). The new tree is scored and possibly
accepted. Some search strategies are strict hill-climbers — they never accept moves that result in lower scores; others
(genetic algorithms64–66 or simulated annealing67) occasionally accept worse trees in an attempt to explore the tree
space more fully. Making searching more accurate and faster is an active area of research66,68. For methods that use a
tree-building algorithm, such as NJ, bootstrapping involves the application of the algorithm to each of the pseudo-
replicate data sets instead of the tree-searching procedure.

The Markov chain Monte Carlo (MCMC) methodology (b) is similar to the tree-searching algorithm, but the rules
are stricter. From an initial tree, a new tree is proposed. The moves that change the tree must involve a random choice
that satisfies several conditions43,44. The MCMC algorithm also specifies the rules for when to accept or reject a tree.

Note that MCMC yields a much larger sample of trees in the same computational time, because it produces one
tree for every proposal cycle versus one tree per tree search (which assesses numerous alternative trees) in the
traditional approach. However, the sample of trees produced by MCMC is highly auto-correlated. As a result,
millions of cycles through MCMC are usually required, whereas many fewer (of the order of 1,000) bootstrap
replicates are sufficient for most problems.

Tree 
search

Aligned data matrix
and model

Generate pseudo-replicate
 data matrix

Bootstrap
the data

Current 
tree

Score the
new tree

Accept or reject
new tree

Propose a 
new tree

Stop after
many cycles

Add final tree to
the sample

a
Choose a 

starting
tree and model

Randomly propose
a new tree

Stop after
many cycles

Add tree to
the sample

Current 
tree

Accept or reject
the proposal

Calculate the 
posterior 

for proposal

bML-bootstrap Bayesian MC3



phangorn - MP, ML, and Bayesian tree estimation
ape      - tree-handling in R, tree-build, graphics
picante  - 
phyloseq - integrated tree-abundance and graphics
ggtree - ggplot2-specific for trees

RAxML

MrBayes

NJ, UPGMA, PAUP*, PhyML, RaxML, MrBayes
(including “cloud” MrBayes)

Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics (Oxford, England), 17(8), 754–755.

BEAUti / BEAST 1.7 Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). 
Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular biology and evolution.
http://beast.bio.ed.ac.uk/

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics (Oxford, England), 22(21), 2688–2690.

http://en.wikipedia.org/wiki/List_of_phylogenetics_software

Recommended 
SoftwarePhylogenetic Tree Construction Methods



But we’re not going to build trees in this workshop…

Why we won’t:
- There are many manually-curated public trees
- Optimal tree is not really known, lots to argue over
- For our purposes small differences should not matter

Why you might want to calculate a new tree:
- You have counts from non-16S rRNA gene
- Have concatenated whole genome sequence data
- Basically any time you have new biological sequence 

data for which a public reference tree is not available

Phylogenetic Tree Construction Methods



Tree file format, data representation: Newick
Green Genes Tree in Newick format:
((((((((836:0.06877,
((549322:0.00892,522457:0.01408)1.000:0. ,
314761:0.09977)0.161:0.01566)0.882:0.00924,
(((311539:0.0484 (((174835:0.01627,
(34207:0.00082,45996:0.00334)0.863:0.00433 
1.000.3:0.09792)1.000.4:0.04652,(((((945:0.08077, 
(178877:0.01342,
(29928:0.00726,35548:0.00187)0.748:0.01216) 
1.000.5:0.05924)0.975:0.01729, ...;

A simple Newick tree with branch lengths is noted:
((1 : 1, 4 : 1) : 3, ((2 : 1, 3 : 1), 5 : 2) : 1);

http://evolution.genetics.washington.edu/phylip/newick_doc.html



Tree file format, data representation: phylo (ape) 

Terminology and Notations:

branch: edge, vertex
node: internal node
degree: the number of edges that meet at a node
tip: terminal node, leaf, node of degree 1
n: number of tips
m: number of nodes

http://ape-package.ird.fr/misc/FormatTreeR_24Oct2012.pdf



Tree file format, data representation: phylo (ape) 
Definition of the Class "phylo"
The class "phylo" is used to code “acyclical” phylogenetic trees. These trees
have no reticulations, and all their internal nodes are of degree 3 or more, except 
the root (in the case of rooted trees) which is of degree 2 or more. An object of 
class "phylo" is a list with the following mandatory elements:

1.  A numeric matrix named edge with two columns and as many rows as
there are branches in the tree;
2.  A character vector of length n named tip.label with the labels of the tips;
3.  An integer value named Nnode giving the number of (internal) nodes;
4.  An attribute class equal to “phylo”.

In the matrix edge, each branch is coded by the nodes it connects: tips are
coded 1, . . . , n, and internal nodes are coded n+ 1, . . . , n+m (n+ 1 is the root).
Both series are numbered without gaps.

edge.length, node.label, root.edge are optional annotation slots in “phylo” list

http://ape-package.ird.fr/misc/FormatTreeR_24Oct2012.pdf



The “ape::phylo” edge-matrix has the following properties:

1. The first column has only values greater than n (thus, values less than or 
equal to n appear only in the second column).

2. All nodes appear in the first column at least twice.
3. The number of occurrences of a node in the first column is related to the 

nature of the node: twice if it is dichotomous (i.e., of degree 3), three 
times if it is trichotomous (degree 4), and so on.

4. All elements, except the root n + 1, appear once in the second column.

Tree file format, data representation: phylo (ape) 



Example Tree Plots: “How to Read a Tree”

Exercise: 
Determine species names of unlabeled Lactobacillus 
species in the GreenGenes database

Research Motivation: 
Does the region of 16S rRNA gene in my data 
actually discriminate Lactobacillus species?



Full Length 16S database and type strains

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database



Full Length 16S database and type strains

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database



Does the sequenced 
region of 16S rRNA 
actually discriminate 
Lactobacillus species?

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database



GGOTUID - Species
129798  - L. iners
4428313 - L. gasseri
31171   - L. jensenii
4447432 - L. crispatus / acidophilus
137043  - L. reuteri / vaginalis
338757  - L. mucosae
4441804 - L. brevis
4463108 - L. ruminis
4480189 - L. zeae
586141  - ??
577716  - ??
3851582 - ??
1757845  - ??
4416659 - ??
137043  - ??

L. mucosae UPARSE/USEARCH

L. brevis UPARSE/USEARCH

L. ruminis UPARSE/USEARCH
L. salivarius UPARSE/USEARCH

L. zeae UPARSE/USEARCH

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database



Manipulating Trees in phyloseq
• Trees are automatically pruned to match data operations 

on other parts of phyloseq object

• Use standard taxa functions

• prune_taxa(), filter_taxa(), subset_taxa()

• Agglomeration 

• tip_glom()

• tax_glom()

• ape functions after accession:

• plot.tree(phy_tree(physeq))

• root(phy_tree(physeq), …)



(Tree-based) Distances 
between microbiomes



Community Distance

Communities are a vector of abundances: 
x = {x1, x2, x3, …}

E. coli:  
P. fluorescens: 

B. subtilis: 
P. acnes: 

D. radiodurans: 
H. pylori: 

L. crispatus:

x = {3,1,1,0,0,7,0}

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Community Distance Properties

• Range from 0 to 1
• Distance to self is 0
• If no shared taxa, distance is 1
• Triangle inequality (metric)
• Joint absences do not affect distance (biology)
• Independent of absolute counts (metagenomics)

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



The Distance Spectrum

Jaccard Unifrac

Bray-Curtis Weighted
Unifrac

Presence/
Absence

Quantitative
Abundance

Categorical Phylogenetic

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Unifrac

Lozupone and Knight (2008)

+
+

+Dist(x, y) =

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Unifrac

Intuition: Fraction of shared tree unique to 
one of the communities

Lozupone and Knight (2008)

+
+

+Dist(x, y) =

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Weighted Unifrac

Lozupone et al. (2007)
Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Weighted Unifrac

Intuition: The cost of turning one distribution into the 
other; where the cost is the amount of “dirt” moved 

times the distance by which it is moved.

Lozupone et al. (2007)Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Weighted UniFrac Distance
A modification of (unweighted) UniFrac
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Lozupone et al., 2007



Jaccard:
Bray:

Unifrac:
W-Unifrac:

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 
d=0 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 
Similar 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 
Distant 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 
d=0 
Distant

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 
Similar 
Similar

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 
Distant 
Similar

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



The Distance Spectrum

Jaccard Unifrac

Bray-Curtis Weighted
Unifrac

Presence/
Absence

Quantitative
Abundance

Categorical Phylogenetic
phyloseq distances
manhattan 
euclidean 
canberra 
bray 
kulczynski 
jaccard 
gower 
altGower 
morisita-horn 
mountford 
raup 
binomial 
chao 
cao 
jensen-shannon 
unifrac 
weighted-unifrac 
...



That’s great, Joey… What do we do 
with these distances???

Alex is going to go over ordination methods for 
interpreting the distance matrix derived from 
comparing all the samples in your data…

What we learned here was…
• A survey about how to think about trees
• How trees are represented and interact with 

phyloseq
• An introduction about different definitions for a 

distance between two microbiomes



End


