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Survival outcomes with censoring
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Survival Outcomes with Censoring

I Interested in time-to-event outcome.

I Observe independently and identically distributed training
data (Xi ,Ai ,Di ,Ωi ), i = 1, . . . , n.

X : baseline variables, X ∈ Rp,
A: binary treatment options, A ∈ {0, 1},
D: observed event time.
Ω: censoring indicator Ωi = I (Ti ≤ Ci ).

I D = min(T ,C ) : T survival time, C censoring time.

I Throughout assume:
I Conditionally independent censoring: T ⊥ C | A,X
I Positivity: within all strata of (A,X ), there is a positive

probability of observing individuals until the end of the study
(or, until the end of the time window of interest)
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Survival Outcomes with Censoring

I We focus on two possible objectives:

I Maximize the probability of surviving beyond a landmark time;

I Maximize restricted mean survival time.

I The different objectives can lead to different optimal rules

I Other objective functions may also be interesting – e.g., those
that incorporate quality-of-life measures
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Probability of surviving beyond a landmark time

Let T be the event time. Let D = I (T < t0) be an indicator that
the event occurs before a landmark time t0.

I Estimate E (D|A,X ) using a regression method suitable for
time-to-event outcomes, e.g., Cox regression with
treatment-by-covariate interactions (Cox 1972) or doubly
robust approaches (e.g., Rubin and van der Laan, 2007).

I Consider performing analyses for different choices of t0; often
X more weakly predicts treatment effect for larger t0.

Cox, JRSSB, 1972; Rubin & van der Laan, Int J Biostat, 2007
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Restricted mean survival time
I Regression modeling approach: inverse probability of

censoring weighted (IPW) Q-learning:

I E (D|A,X ) is modeled using treatment-by-covariate
interactions, accounting for the probability of being censored.

I Outcome weighted learning approach:

I Replace Di by ΩiDi/ŜC (Di |Ai ,Xi ) in the outcome weighted

learning for uncensored data, where ŜC (D|A,X ) is the
estimated conditional survival function of C given (A,X ).

I Can also extend the approach that directly estimates the
contrast function ∆(X ) = E [D|A = 0,X ]− E [D|A = 1,X ]

I Simply need to replace the outcome Di by the inverse
probability of censoring weighted outcome ΩiDi/ŜC (Di |Ai ,Xi )

Goldberg & Kosorok (Annals of Stat., 2012); Zhao et al (Biometrika, 2015)
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Evaluation in the censoring data setup

I Estimate performance measures empirically using
inverse-probability-of-censoring weights or doubly robust
approaches (e.g., Bang and Robins, Biometrics, 2005)

I Model-based estimates require no modification.
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Multicategory Treatment
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Multicategory Treatment
I More than two treatments of interest: A ∈ {1, . . . ,K}

I e.g., K = 3 in depression data

I d∗(x) = argmink=1,...,K µ(k , x).

I Can estimate E (D|A,X ) with µ̂(A,X )

I The estimator for the optimal treatment regime

d̂n(x) = argmin
k=1,...,K

µ̂(k, x).

I Contrast function estimation valid with almost no
modification if can choose a single reference treatment
assignment k ref and subsequently define

∆(k ,X ) = E [D|A = k ref ,X ]− E [D|A = k ,X ]

.
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Dynamic Treatment Regimes

5.10



Dynamic Treatment Regimes (DTRs)

I Motivation: treatment of chronic illnesses

I Some examples: HIV/AIDS, cancer, depression, schizophrenia,
drug and alcohol addiction, ADHD, etc.

I Multistage decision making problem

I Longer-term treatment requires consideration and tradeoff
between immediate and longer term benefit.

Murphy, JRSS-B (2003)
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Dynamic Treatment Regimes

I Operationalize multistage decision making via as sequence of
decision rules

I One decision rule for each time (decision) point

I A decision rule is a function inputs patient history and outputs
a recommended treatment

I Aim to optimize some cumulative clinical outcome

I Survival time

I Depression test scores

I Indicator of no myocardial infarction within 30 days ...

5.12



Dramatized Example

I Addiction management example inspired by the ExTENd and
COMBINE trials (Murphy et al, 2007)

I Devising two-time point treatment strategy for alcohol
dependent patients.

I Initial treatment choices Naltrexone (NTX) and Combined
Behavioral Intervention (CBI).

I At six-months responders classified as responders or
non-responders.

I For responders to initial treatment, followup treatment choices
are telephone monitoring (TEL) and telephone monitoring +
counseling (TEL+Counseling).

I For non-responders to initial treatment, followup treatment
choices are switch initial treatments (NTX ↔ CBI), or step-up
initial treatment CBI + NTX + Enhanced monitoring (CBI +
NTX +EM).
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Dramatized Example
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Dramatized Example

I Hj denote history at stage j .

I At presentation: Baseline variables x1; accrued information
h1 = x1

I Decision point 1: Two treatment options {NTX, CBI}; rule 1:
d1(h1)⇒ d1 : h1 → {NTX, CBI}

I Between decisions 1 and 2: Collect additional information x2,
including responder status

I Accrued information h2 = {x1, treatment at decision 1, x2}

I Decision point 2: Four options
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Optimal Dynamic Treatment Regimes

I Examples of treatment regimes: Prescribe NTX initially; then
assign TEL to responders; and assign step-up to
non-responders.

I Optimal DTR d∗ leads to the lowest expected outcome
among all possible regimes
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Challenges in Estimating Optimal DTRs: Delayed Effects

I The therapy with the higher proportion of responders might
have other effects that render subsequent treatments less
effective in regard to the final response.

I The therapy with lower proportion of responders may not
appear best initially but may have enhanced long term
effectiveness when followed by a particular maintenance
treatment.

I Must consider the entire sequence of decisions

I Must accommodate intermediate information including prior
treatments into current treatment choice.
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Sequential Multiple Assignment Randomized Trial
(SMART)

I Due the the aforementioned challenges, it would be ideal to
adopt a particular design to best estimate the optimal DTRs

I SMART: designed for estimation of optimal DTRs

I Randomize subjects to the treatment options at each decision
point

I Take advantage of sequential randomization to eliminate
confounding

I Collect both initial and intermediate information on possible
tailoring variables

Murphy (Stat in Med, 2005)
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SMART Trial
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Data

I (X1,A1,X2,A2,D) for each individual
Xk : Observations available at stage k
Ak : Treatment at stage k
D: Primary outcome
Hk : History at stage k , H1 = X1, H2 = (X1,A1,X2)

I The regime, d = {d1, d2}, dk : Hk → Ak , should have the
lowest Ed(D), the expected outcome if all patients are
assigned treatment according to d
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Dynamic Programming
I Optimal regime d∗ can be derived using dynamic

programming (Bellman, 1957)

1. For a given history at the final time point, define the expected
mean outcome: Q2(h2, a2) = E

(
D
∣∣H2 = h2,A2 = a2

)
2. Let d∗2 (h2) denote the treatment decision that minimizes the

mean outcome given the history h2, i.e.
d∗2 (h2) = arg mina2∈{0,1}Q2(h2, a2)

3. At the first time point, the goal is to assign the best treatment
given that d∗2 will be followed in the second time point. So,
the expected outcome under treatment assignment a1 given
history h1 is:

Q1(h1, a1) = E [Q2(H2, d
∗
2 (H2))|H1 = h1,A1 = a1]

4. Define d∗1 (h1) as the treatment decision that minimizes the
mean outcome at time 1 given history h1, i.e.
d∗1 (h1) = arg mina1∈{0,1}Q1(h1, a1)
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Dynamic Programming as a Series of Single Time Point
Decisions

The dynamic programming scheme on the last slide allows us to
break the problem into a series of single time point treatment
decisions:

I Initialize DK+1 = D. (K is the number of time points at
which tx decisions are made)

I For t = {K ,K − 1, . . . , 1}
1. Let Qt(ht , at) = E [Dt+1|At = at ,Ht = ht ].

2. Let dt(ht) = argminat∈{0,1}Qt(ht , at).
3. For each individual with history Ht , let Dt = Qt(Ht , dt(Ht)).

The optimal rule definition in Step 2 has the same form as the
rules that we’ve studied throughout this course.

Consequently, everything we have learned in this course can now
be used in a recursive form to learn optimal treatment rules (the
next slide specializes this observation to Q-learning).

5.22



Constructing a DTR from Data: Q-learning

I When system dynamics are known dynamic programming
yields the optimal DTR, but we only have data

I Q-learning: data-driven analog of dynamic programming:
replaces conditional expectations with regression models

I Recursively estimates the Q-function, starting at the final
time point and progressing backwards in time.

I The estimated optimal sequence of decision rules

d̂j(hj) = argmin
aj∈{0,1}

Q̂j(hj , aj).

I An extension of regression to sequential treatments.
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Summary

I Data from SMART designs can be used to construct optimal
DTRs

I Q learning is a common method, though it has some
drawbacks, e.g., require correct specified models

I Many other methods have been developed.
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Concluding Remark on Observational Studies

We close by recalling that nearly everything that we discussed
during this course can also be applied in observational studies,
under the following conditions:

I Positivity: P(A = a|X = x) strictly positive for all x

I Consistency: D(a) = D whenever treatment a is actually
received

I No unmeasured confounders:

D(0) ⊥ A|X and D(1) ⊥ A|X

I X contains all information used to assign treatments
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