
MCMC2: Lab Session 1: Simulation

Theo Kypraios and Phil O’Neill

Background

Preliminaries

In the first lecture we introduced the concept of simulation by which we meant the procedure of producing

a realisation of the model, or in other words a possible outcome. In this lab session we will be modifying

existing R functions and by the end of this session, among other things, we will

• draw samples from the distributions of the final size and the duration of the epidemic (see below for

definitions of these quantities);

• be able to simulate from an epidemic model where the infectious period follows a Weibull distribution;

• be able to simulate from a stochastic Susceptible-Exposed-Infective-Removed (SEIR) epidemic model.

Start by downloading the file simulation.R from http://www.maths.nott.ac.uk/personal/tk/files/

MCMC2-Seattle/Lab-Sessions/1/ and save it in your workspace. This file simulation.R contains four

di�erent functions which will enable us to simulate realisations from various stochastic epidemic models:

• simSIR.Markov: This function produces realisations from a Markovian SIR model with infection and

removal rate, —/N and “ respectively. The procedure (as described in Section 2 in the lecture) is the

following: i) first simulate the time to the next event and then ii) decide the type of the event (infection

or removal).

• simSIR.Markov.alternative: This function also produces realisations from a Markovian SIR model

with infection and removal rate, —/N and “ respectively but with a slightly di�erent algorithm to the

one described above. The procedure here is as follows: i) generate a possible time to the next infection

and the possible time to the next removal; then ii) the event which happens first determines the type of

the next event.

• simSIR.Non.Markov.constant and simSIR.Non.Markov.gamma: These two functions allows us to

simulate realisations from non-Markov SIR models; with constant and Gamma infectious period

respectively. The procedure is similar to the one used in simSIR.Markov.alternative based on

Section 5 in Lecture 1.

Definitions

In this section we give definitions of two quantities for which samples from their distribution will be drawn.

The threshold parameter R0

An appealing feature of an epidemic model is that it embodies a threshold parameter which can be utilised

as a severity measure of the outbreak. Stochastic models such as epidemics and branching processes typically

generate bimodal realisations where an epidemic may or may not die out quickly, depending on the value of a

threshold parameter R0 often referred to as the basic reproduction number.

This is the most important parameter in epidemic theory and it is defined as the expected number of infections

generated by a typical infective in an infinite susceptible population.
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In the case of a homogeneously mixing stochastic epidemic, it holds that

R0 = —E[I]

where E[I] denotes the expected infectious period. For instance, in the case of the Markovian SIR model,

R0 =

—

“

,

since the individuals remain infectious for an average period of length 1/“.

The final size of an epidemic

The final size of an epidemic is the total number of initial susceptibles who contracted the disease by the end

of the outbreak.

The duration of the epidemic

Another quantity of interest is the duration of the epidemic and this is defined as the time that elapsed from

the initial infection until the time of the last removal.

Exercises

Download the file simulation.R from http://www.maths.nott.ac.uk/personal/tk/files/MCMC2-Seattle/

Lab-Sessions/1/ and load all the functions into R by using the command source:

source("simulation.R")

Exercise 1

Go through the lines of each function and make sure that you follow the logic behind.

Exercise 2

Simulate realisations from a Markovian SIR using the function simSIR.Markov and make sure that you

understand the output. You may assume that size of the population size is N = 21 (i.e. 20 susceptibles and 1

initial infective). In addition, you could try di�erent values for (—, “), e.g. (0.9, 1), (2, 1) and (4, 1).

Exercise 3

Modify the existing functions in simulation.R to record the final size and the duration of the epidemic as

part of the functions’ output.

Exercise 4

Derive a simulation-based estimate of the distribution of the final size of a Markovian SIR model for di�erent

values of R0, e.g. R0 = 0.9, R0 = 1.5 and R0 = 4. Furthermore, do the same for the non-Markovian models,

e.g. for a constant and a Gamma infectious period. Hint: You may find it useful to write a loop which will

iterate the following steps for a number of times:
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a. Simulate a realisation from the epidemic model;

b. Store the final size

At the end you should have a collection of final sizes for which then you can plot a histogram as your estimate

of the true distribution of the final size.

Exercise 5

Repeat the above exercise but derive, by simulation, the distribution of the duration of the epidemic instead

of the final size.

Exercise 6

Write a function in R to simulate from a non-Markovian stochastic epidemic model where the infectious

period is assumed to follow a Weibull distribution. Hint: The probability density function (pdf) of the

Weibull distribution is as follows:

f(x) = (a/b)(x/b)

(a≠1)
exp(≠(x/b)

a
), x > 0, a > 0, b > 0

Type

?Weibull

to find out how to simulate from a Weibull distribution.

Exercise 7

Write a function to simulate from an epidemic model which involves a fixed latent period, i.e. write a function

to simulate from a stochastic SEIR model.
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MCMC2: Lab Session 2: Coding and Output
Theo Kypraios and Phil O’Neill

Background

In Lecture 2 we discussed how Bayesian inference can be drawn for the parameters of a stochastic epidemic
model using Markov Chain Monte Carlo algorithms. In this lab session we will look at these algorithms in
more detail.

1. Start by downloading the file coding.R from http://www.maths.nott.ac.uk/personal/tk/files/
MCMC2-Seattle/Lab-Sessions/2/ and save it in your workspace. This file contains three functions
which are used to calculate the likelihood of the augmented data (infection and removal times). These
functions are needed to build an MCMC algorithm later on (see file mcmc-Markov.R):

count.no.inf: This function counts the number of infective individuals just before any (arbitrary) time t.
Note that an individual, labeled as i, is infective just before time t if (Ii < t < Ri) where Ii and Ri denote
their infection and removal time respectively. Therefore if we go through each (ever infected) individual and
count how many of them satisfy this condition then we have the desired number.

compute.total.pressure: This function computes the integral
∫
StIt dt by making use of the fact that it

can be re-written as a double sum as described in Lecture 2.

compute.log.prod: This function computes the product which is required for the calculation of the likelihood:

log

∏
j 6=a

Ii−
j


Note that Ii−

j
denotes the number of infected individuals just before the jth infection time (i−j ) and a denotes

the label of the initial infective. Note that this function uses the function count.no.inf.

2. Download the file mcmc-Markov.R from http://www.maths.nott.ac.uk/personal/tk/files/MCMC2-Seattle/
Lab-Sessions/2/ and save it in your workspace.

This file contains one function only, mcmcSIR.Markov, which is used to draw posterior samples of the parameters
a Markovian SIR model by making use of the functions in the file coding.R In brief, a pseudo-code of this
MCMC algorithm is given below:

i. Initialisation;
ii. Choose one infection and update it using a Metropolis-Hastings step;
iii. Update β and γ by drawing from their conditional distributions using a Gibbs step;
iv. Goto to Step (i);

Note that:

• the infection rate (β) and the removal rate (γ) are assumed to be independent and follow a priori
Gamma distributions with parameters (λβ , νβ) and (λγ , νγ), i.e.

π(β) ∝ βλβ−1 exp {−βνβ}
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• the infection times are updated using a M-H algorithm and in particular, using an independence sampler,
i.e. by proposing a candidate value, Icani ,

Ri − Icani ∼ Exp(γ)

Therefore, the q-ratio in the accept/reject probability in the M-H step is given by

(Ri − Icuri ) exp {−γ(Ri − Icuri )}
(Ri − Icani ) exp {−γ(Ri − Icani )}

where Icuri denote the current value of Ii.

Exercises

Start by loading the functions in the files coding.R and mcmc-Markov.R by using the command source, i.e.

source("coding.R")
source("mcmc-Markov.R")

The function mcmcSIR.Markov requires as input a data frame (or matrix) of size N × 2 where N is the size of
the population (including the initial infective!). The first column should contain the labels of the individuals
and the second column should contain their corresponding removal time. In other words, each row represents
an individual. Note that if an individual is known to be susceptible at the end of the epidemic, then their
removal and infection time are assumed to be ∞.

Excercise 1

Have a look at the function mcmc-Markov.R and make sure you understand what is going on.

Excercise 2

Download some simulated data from http://www.maths.nott.ac.uk/personal/tk/files/MCMC2-Seattle/
Lab-Sessions/2/ and read them into R by using the command:

data <- read.table("data.txt", header=TRUE)

Make sure that the data have been read properly and the format is appropriate such that they can be used
an an (input) argument to the function mcmcSIR.Markov.

Excercise 3

The purpose of this exercise is to fit a non-Markovian model to the observed data where the infectious period
is assumed to be Gamma distributed with parameters (α, γ), i.e.

Ri − Ii ∼ Gamma(α, γ)

with E[Ri − Ii] = α/γ. The parameter α is treated as fixed and known and assume that a priori β and γ
follow (independent) Gamma distributions as described in Section 1 above.

Before writing any R code we need to do write down the density of the posterior distribution we want to
draw samples from:
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i. Derive the density of the (joint) posterior distribution of the parameters and the infection times given
the removal times up to proportionality,

π(β, γ, I|R) ∝ π(I,R|β, γ)× π(β)× π(γ)

ii. Derive the densities of the full conditional distributions for the parameters and the unobserved infection
times up to proportionality, i.e. π(β|γ, I,R), π(γ|β, I,R) and π(I|R, β, γ). To do this, simply look at
the density of joint posterior distribution, and for example, to derive the density of the full conditional
distribution of β then only put together the terms that involve β. What you end up with is the full
conditional density you are after (up to proportionality).

Excercise 4

Write a function in R which will draw samples from the posterior distribution of interest, π(β, γ, I|R), using
MCMC and by making use of the function in the file coding.R.

Hint 1: Your code should iterate the following steps

i. Choose one infection time and update it using a M-H algorithm;
ii. Update β;
iii. Update γ;
iv. Goto Step (i);

Hint 2: Note that you do not have to write this function from scratch but you can modify the existing
function mcmcSIR.Markov. However, it might be better to create a new file called mcmcSIR.gamma and
copy-paste the parts which you can use straight away from mcmcSIR.Markov.

Excercise 5

Use the function that you have written in Exercise 4 and use it to fit the above SIR model with Gamma
distributed infectious periods to the observed data and draw 10,000 samples from the posterior distribution
of the parameters using the function you wrote in part 2).

Assume that α = 2. In addition, we assume that we have weak prior information for the parameters and
therefore we choose λβ = λγ = 1 and νβ = νγ = 10−3.

• Look at the output by plotting the trace plots of the parameters β, γ and the sum of the infection
times

∑
i Ii.

• Look at the posterior correlation between β and γ by drawing a scatter plot of the samples against
axes β and γ. Furthermore, look at the correlation between the (sum of the) infection times and γ.

• How does the mixing of β and γ compare with the mixing of R0 = βα/γ? Why?
• Draw a histogram of the posterior distribution of R0
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MCMC2: Lab Session 3: SIR-Topics
Theo Kypraios and Phil O’Neill

Background

In Lecture 3 we discussed different topics with regards to the SIR models and in particular we focused on
aspects such as what can or cannot be estimated from the data as well as different techniques to improve the
mixing of standard MCMC algorithms.

In this lab session we will see in more detail how the inference of the model parameters is affected by the
number of removal times which are observed. In addition, we will also implement MCMC algorithms in which
we have integrated out the model parameters and investigate if such a strategy improves the mixing of this
MCMC algorithm.

Exercises

Exercise 1

Start by downloading from http://www.maths.nott.ac.uk/personal/tk/files/MCMC2-Seattle/Lab-Sessions/3/
two different datasets:

dataset_min.txt
dataset_max.txt

The first dataset refers to an outbreak where none of the initially susceptible individuals become infected.
The second dataset refers to an outbreak where all the initially susceptible individuals became infected some
time during the outbreak.

Exercise 2

Fit an SIR model to these datasets assuming that the infectious period follows a Gamma(2, γ) as we did in
“Lab Session 3”. In addition, assume that a priori:

β ∼ Gamma(1, 10−3)

γ ∼ Gamma(1, 10−3)

Draw samples from the posterior distribution of the parameters β and γ. What do you observe? How do
your posterior inferences differ from your prior knowledge in both cases? Comment on your results.

What happens if we assume that a priori β ∼ Exp(1)?

Exercise 3

We saw in the lecture that by integrating both parameters out and having this distribution as our target
(i.e. the distribution we want to draw samples from), this could lead into a more efficient MCMC algorithm.

i. Derive an expression for π(I|R) where

π(I|R) ∝
∫

β

∫
γ

π(β, γ, I|R) dγ dβ
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ii. Write a function in R which first draws samples from the above target density π(I|R) using MCMC.
Then modify this function in order to derive posterior samples from π(β|R) and π(γ|R).

iii. Fit an SIR model with Gamma infectious period to the same dataset that we used in Lab Session 2
(Questions 4 and 5). Compare the posterior samples with the samples obtained in Lab Session 2. The
answers (eg. the posterior distributions) should be the same. Why?

iv. Does such a strategy improve mixing as compared to the algorithm which does not involve integrating
the parameters out? Hint: One way to compare the efficiency is to compare the ACF plots of the
samples obtained by two different algorithms.
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MCMC2: Lab Session 4: Households
Phil O’Neill and Theo Kypraios

Background

In Lecture 4 we were concerned with models for disease transmission which incorporate households. Although
we looked at two distinct cases with regards to what sort of data are available, in this lab session we will
focus on the case where there is only final outcome data available. In other words, the available data consist
only of the final number of cases in each household.

The main objective of this lab session is to draw Bayesian inference for the model parameters by implementing
a Markov Chain Monte Carlo algorithm. Below, there is a brief description of the model (see the lecture
notes for more details).

The model, the data and the likelihood

We assume that a population of N individuals is partitioned into households. Each individual in the population
has, independently, a constant “risk” per unit time of becoming infected from the community. In addition,
within a household, the disease spreads according to the mechanism of an SIR model.

Suppose that the data consist of the set of numbers n = {n(j, k)} where $n(j,k) = $ number of households in
which j out of k initial susceptibles become infected. Therefore, the likelihood takes the form

π(n|α, p) =
∏
j

∏
k

q(j, k)n(j,k)

where q(j, k) is the probability that in a household of size k the number of individuals who ever become
infected is j.

In the lecture we have derived an expression for the probability q(j, k) and showed that it depends on two
parameters:

• p which is the probability that an individual avoids infection from outside the household and
• α which is the person-to-person infection rate between individuals within the same household.

Preliminaries

Download the file households.R from http://www.maths.nott.ac.uk/personal/tk/files/MCMC2-Seattle/
Lab-Sessions/4/

The file contains two functions:

• compute.conditional.prob which computes the probability that j susceptibles become infected in an
SIR model with constant infectious period of length c, a initial infectives and m initial susceptibles.

# this is a function to compute the final size P(T=k|Y=y) = probability
# that k-y susceptibles become infected with $y$ initial infetctives
# and n-y susceptibles

# m initial susceptibles
# a initial infectives
# alpha infection rate
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# the length of the fixed infectious period
compute.conditional.prob <- function(m, j, a, alpha, c){

if (j==0) {
res <- (exp(-alpha*m*c))^a

}
else {

part.one <- exp(-alpha*(m-j)*c)^(j+a)
part.two <- choose(m, j)

sum <- 0;
for (k in 0:(j-1)) {

sum <- sum + choose(m-k, j-k)*compute.conditional.prob(m,k,a,alpha,c)/(exp(-alpha*(m-j)*c)^(k+a))
}
res <- part.one*(part.two - sum)

}
return(res)

}

• compute.marginal.probab which computes the probability that in a household of size n the number
of individuals who ever become infected is k.

# We wish to compute P(T = k), for k = 0, ..., n
# "n" is the size of the household
# "alpha" is the person to person infection rate
# "c" is the length of the (fixed) infectious period
compute.marginal.prob <- function(k, n, c, alpha, p) {

prob <- 0;
for (y in 0:n) {

if (k >= y) {
cond.prob <- compute.conditional.prob(n - y, k - y, y, alpha, c)

}
else {

cond.prob <- 0
}
prob <- prob + cond.prob*dbinom(y, n, 1 - p)

}
prob

}

In addition, Table 1 presents some Asian influenza epidemic household data taken from Longini & Koopman
(1982). There is a community which consists of 42 households each of them of size 3.
cases <- c(0,1,2,3)
households <- c(29,9,2,2)
mat <- matrix(NA, nrow=4, 2)
mat[,1] <- cases
mat[,2] <- households
mat <- as.data.frame(mat)
colnames(mat) <- c("No.of.Cases", "No.of.Households")
mat

## No.of.Cases No.of.Households
## 1 0 29
## 2 1 9
## 3 2 2
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## 4 3 2

Exercises

Exercise 1

Go through each of the functions in the file households.R and make sure that you understand what is going
on.

Exercise 2

Write a function in R which computes the log-likelihood of the data given the parameters p and α assuming
that the infectious period is constant and of length one unit.

Exercise 3

Suppose that we are interested in drawing Bayesian inference for the model parameters and therefore, we
could employ an MCMC algorithm to draw samples from the posterior distribution:

π(p, α|n) ∝ π(n|α, p)× π(p)× π(α).

Assume that a priori
p ∼ Beta(µp, νp)

and
α ∼ Gamma(µα, να).

What values should we choose for the hyper-parameters µp, νp, µα and να such that we end up with fairly
uninformative priors for the model parameters p and α?

Exercise 4

Write a function in R which draws samples from π(p, α|n) using MCMC and by adopting uninformative
priors for the parameters of interest p and α.

Hint: In the lecture we discussed two different ways to update the parameter p. Either using an independence
sampler or a random walk Metropolis. For the purposes of this exercise, update p by an independence
sampler.

Exercise 5

Investigate how correlated the posterior samples of α and p are.

Exercise 6

Draw samples from the posterior distribution of the probability that a susceptible individual avoids infection
from one infected household member.
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Exercise 7

In the current version of your MCMC algorithm the parameter p is updated via an independence sampler.
Modify your code such that p is now updated using a random walk Metropolis. Does the mixing of your
algorithm improve?
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