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1. Introducing simulation 
 

 Suppose we have a stochastic epidemic 

model  

(e.g. the general stochastic epidemic  

  = Susceptible-Infective-Removed model  

  = SIR model) 

 By simulation we mean “producing a 

realisation of the model”, i.e. a possible 

outcome. 



1. Introducing simulation 
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1. Introducing simulation 
 

 For the SIR model, simulation means 

producing a set of infection and removal 

times according to the correct distributions 

inherent in the model. 

 In general, it means producing an outcome 

from the model according to the correct 

distribution of all possible outcomes. 



1. Introducing simulation 
 

Why is simulation useful? 

 1. In general it helps us understand model 

behaviour. 

 2. For inference it is useful for testing our 

inference procedure. Specifically we can 

validate our method against data from 

simulations, where we know the “truth”. 

 

 



1. Introducing simulation 
 

Why is simulation useful? 

 Specifically, suppose we perform N 

simulations (e.g. N=1000) from a model 

with parameter vector  fixed at T, say.  

   For each simulation we estimate the model 

parameters to get estimates 1 ,..., N  

   (e.g. estimates might be posterior means). 

  

 



1. Introducing simulation 
 

Why is simulation useful? 

 Then the average of 1 ,..., N  

   should be close to the true value T. 

 If it is not, then our method (or its 

implementation) might be wrong. 

  

 



1. Introducing simulation 
 

Why is simulation useful? 

 3. Simulation is also useful for model 

checking. 

 Suppose we estimate a parameter . Here 

 might be a fixed value (e.g. posterior 

mean), or we might have a sample from 

the posterior density of .  

  

 



1. Introducing simulation 
 

Why is simulation useful? 

 Next, for each value of  we can perform a 

(large) number of simulations. 

 For each simulation, we see whether or not 

the output is “similar” to the actual data. 

 In other words: if I put my best guess(es) 

for  back into the model and simulate it, 

do I get something like the data or not? 

  

 



1. Introducing simulation 
 

Why is simulation useful? 

 Example: Observe x1, x2,…. xn from a 

mixture model: 

      xk  N(0,1) with probability 0.5 

           N(10,1) with probability 0.5 

Data might look like this: 
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1. Introducing simulation 
 

Why is simulation useful? 

 If we fit a N(,1) model we would estimate 

 = (x1+ x2 + … + xn ) / n  

 Simulations from our model using our best 

guess for  would never look like the data. 
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1. Introducing simulation 
 

Why is simulation useful? 

 4. Simulation can be used for prediction. 

 Example - suppose we estimate 

parameters of an epidemic model based on 

observations up to time T. 

   We can then simulate the epidemic model, 

using the estimates as model parameters, 

to see what the model predicts after time T. 
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2. Simulating Markov models 
 

Continuous-time Markov Chain 

 

Define a continuous-time Markov chain as 

follows.  

Let the state-space be denoted  

                S = {1, 2, 3, …, n}.  

S is the set of states that the MC can visit. 

Note each “state” might be multi-dimensional. 

 

 



2. Simulating Markov models 
 

Let X(t) denote the position (= state) of the 

chain at time t, where t  0. 

For i , j  S, define qij as the “rate” at which 

the chain jumps from state i to state j. 

 

This means: 

     P( X(t+dt) = j | X(t) = i) = qij dt + o(dt) 

 

 



2. Simulating Markov models 
 

Important facts 

1.The chain stays in state i for time Ti, where 

         Ti  Exp(ji qij ) 

 

( Exp(a) denotes exponential distribution with 

mean 1/a ) 

 

 So e.g.  P(Ti > t) = exp(- ji qij )      



2. Simulating Markov models 
 

2. When it leaves state i, the chain jumps to 

state j with probability 

                        qij  / (ji qij) 

 

3. The time spent in state i and the choice of 

where to jump to are independent, and they 

are also independent of the same quantities 

in other states and at other times. 

 

 

 



2. Simulating Markov models 
 

Next Event Simulation (Gillespie Algorithm) 

These facts lead naturally to a method of 

simulating a continuous-time Markov chain.  

 

All that is needed is to generate the time 

spent in a state, and the next state that is 

visited. 

 



2. Simulating Markov models 
 

Algorithm 

 

Initialise (t=0, X(0) = x0 ) 

 



2. Simulating Markov models 
 

Loop:  Current state is i, say. 

   Set L =  ji qij    

   Generate Ti  Exp(L) 

   Generate u  U(0,1) 

   if u < ( j1, ji qij )/L then k = 1 

   else if u < (j2, ji qij )/L then k = 2 

   else …..(etc) 

    



2. Simulating Markov models 
 

   … 

   Update current time: t = t + Ti   

   Record t and k 

End loop  

 

    Note that Time of next event = t + Ti 

       State jumped to is k 

 



2. Simulating Markov models 
 

The output of the algorithm is a sequence of 

times t0, t1, t2, ... and a corresponding 

sequence of states x0, x1, x2, …  

 

Here tk is the time of the kth event, and xk is 

the state of the Markov chain at that point 

(i.e. immediately after the jump).  
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3. General epidemic model 
 

Model Definition 

 Population of N individuals 

 At time t there are: 

  St susceptibles 

    It infectives 

    Rt recovered / immune individuals 

  Thus   St + It + Rt = N    for all t. 

  Initially (S0, I0 ,R0 ) = (N-1,1,0). 

 



3. General epidemic model 
 

 Each infectious individual remains so for a 

length of time TI ~ Exp( ). 

 During this time, infectious contacts occur 

with each susceptible according to a 

Poisson process of rate  / N. 

 Thus overall infection rate is  St It / N.  

 Two model parameters,  and . 

 



3. General epidemic model 
 

 Viewed as a Markov Chain, the epidemic 

can be thought of as the bivariate process 

    { (S(t), I(t)) : t  0 },   

  where (S(0),I(0)) = (N-1, 1). 

 If chain currently at (s,i), then it can jump to  

   (s-1,i+1) (infection) at rate  s i / N  

   (s, i-1)    (removal) at rate  i 



3. General epidemic model 
 

 Thus time spent in (s,i) is  

          T(s,i)   Exp([ s i / N] +  i)  

 

 When chain leaves (s,i) it jumps to 

  (s-1, i+1) with prob  [ s ] / [ s + N ] 

    (s, i-1) with prob [N ] / [ s + N ] 

      
 



3. General epidemic model 
 

Algorithm 

 

Input parameters are N,  ,  

 

Initialise s = N-1, i = 1, t = 0 



3. General epidemic model 
 

while (i > 0) do  { 

     T  Exp( [ s i / N] +  i )  

  u  U(0,1) 

        if u < [ s ] / [ s + N ] then 

  s = s-1, i = i+1 

        else i = i-1 

        t = t + T 

        record (s,i), t    } 



3. General epidemic model 
 

Output of the algorithm is a sequence of times 

t0, t1, t2, ... and a corresponding sequence of 

states (s0, i0), (s1, i1), ….(sm, im), where m is 

the first event where i reaches zero.  

It is usually also useful to keep track of the 

type of each event, i.e. whether it is an 

infection or a removal. 



3. General epidemic model 
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4. Non-Markov simulation 
 

Same basic idea as before! 

For non-Markov processes, we again simulate 

by generating the time until the next event. 

However, in general the nice independence 

properties of the Markov case are lost and 

so we need to explicitly generate the times 

of future events as the algorithm evolves. 
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5. Non-Markov epidemic model 
 

In the Markov SIR model,  

 infections occur according to a Poisson 

process of rate  St It / N.  

 each infective remains so for a period of 

time TI ~ Exp( ). 

A common generalisation is to let the 

infectious period distribution TI be some 

other distribution (e.g. constant, Gamma, …) 

 



5. Non-Markov epidemic model 
 

Model Definition 

 Population of N individuals 

 At time t there are: 

  St susceptibles 

    It infectives 

    Rt recovered / immune individuals 

  Thus   St + It + Rt = N    for all t. 

  Initially (S0, I0 ,R0 ) = (N-1,1,0). 

 



5. Non-Markov epidemic model 
 

 Each infectious individual remains so for a 

length of time TI drawn from some specified 

distribution with parameter vector  

 During this time, infectious contacts occur 

with each susceptible according to a 

Poisson process of rate  / N. 

 Thus overall infection rate is  St It / N.  

 Two model parameters,  and . 



5. Non-Markov epidemic model 
 

To simulate this epidemic: 

 Generate removal time of each individual 

as they become infected 

 This means that the time of next removal is 

known – as is the identity of the removed 

individual 

 

 



5. Non-Markov epidemic model 
 

To simulate this epidemic: 

 Generate possible time-to-next-infection  

       T  Exp(  s i / N)  

  If T <  time of next removal, infection occurs 

  Otherwise, the next removal occurs 

 

 



5. Non-Markov epidemic model 
 

Example: (Fixed infectious periods) 

 Set TI = c,  a constant 

 We will need r, which is a vector containing 

the removal times of all the current 

infectives 

 

 



5. Non-Markov epidemic model 
 

 

 
Algorithm 

 

Input parameters are N,    

 

Initialise   s = N-1, i = 1, t = 0 

 

Initialise   r = ( c )    (= removal time of initial  

    infective) 



5. Non-Markov epidemic model 
 

while (i > 0) do  { 

     T  Exp(  s i / N )  

  R = min ( r )      # time of next removal 

        if (t + T < R) # infection occurs 

        s = s -1, i = i +1 

        add new removal time  (t + T + c) to r  

  t = t + T 



5. Non-Markov epidemic model 
 

  else                  # t + T > R: removal 

     i = i -1 

        remove the minimal element of r from r 

  t = R  

  }                         # end of the i-loop 

 



5. Non-Markov epidemic model 
 

  Example 

 

 

N=10, s=9, i=1,   = 1.5, c = 1 

 t = 0, r = (1) 

 T  Exp(  s i / N ) = 0.7831 

 R = min(r) = 1 

 t + T = 0 + 0.7831< R = 1 : infection occurs 
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5. Non-Markov epidemic model 
 

  Example 

 

 

 

 s = s – 1 = 8, i = i + 1 = 2 

    r = (1, 1.7831)  

 t = t + T = 0.7831 

 

 

t=0 t=0.7831 
1 1.7831 



5. Non-Markov epidemic model 
 

  Example 

 

 

 

 T  Exp(  s i / N ) = 0.6110 

 R = min(r) = 1 

 t + T = 0.7831 + 0.6110 > R = 1 : removal 

 

 

 

t=0 t=0.7831 
1 1.7831 



5. Non-Markov epidemic model 
 

  Example 

 

 

 

 i = i - 1 = 1 

 Remove “1” from r, so now r = (1.7831) 

 t = R = 1 

 etc..... 

 

 

 

t=0 t=0.7831 
1.7831 

t=1 



5. Non-Markov epidemic model 
 

Non-constant infectious period 

 If TI is not constant then simply need to 

generate a random sample from the 

distribution of TI for the infectious period of 

an individual who has just become infected.  

 

 



5. Non-Markov epidemic model 
 

while (i > 0) do  { 

     T  Exp(  s i / N )  

  R = min ( r )      # time of next removal 

        if (t + T < R) # infection occurs 

        s = s -1, i = i +1 

        add new removal time  (t + T + c) to r  

  t = t + T                                     ↑ 



5. Non-Markov epidemic model 
 

while (i > 0) do  { 

     T  Exp(  s i / N )  

  R = min ( r )      # time of next removal 

        if (t + T < R) # infection occurs 

        s = s -1, i = i +1 

 →   generate c  TI 

  add new removal time  (t + T + c) to r  

  t = t + T 


