MCMC 2: Lecture 2 Coding and output

Phil O'Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

Contents

- 1. General (Markov) epidemic model
- 2. Non-Markov epidemic model
- 3. Debugging tips
- 4. What to do with MCMC output

Contents

- 1. <u>General (Markov) epidemic model</u>
- 2. Non-Markov epidemic model
- 3. Debugging tips
- 4. What to do with MCMC output

- Population of N individuals
- At time t there are:
 - S_t susceptibles
 - I_t infectives
 - R_t recovered / immune individuals
 - Thus $S_t + I_t + R_t = N$ for all t. Initially $(S_0, I_0, R_0) = (N-1, 1, 0)$.

- Each infectious individual remains so for a length of time T_I ~ Exp(γ).
- During this time, infectious contacts occur with each susceptible according to a Poisson process of rate β / N.
- Thus overall infection rate is $\beta S_t I_t / N$.
- Two model parameters, β and γ .

Let infection times be

$$i_1 \le i_2 \le i_3 \le \ldots \le i_n,$$

- where i₁ is time that initial infective begins their infectious period.
- Note that n = total number infected.

Define
$$\mathbf{i} = (i_2, i_3, ..., i_n)$$

Let removal times be

$$\mathbf{r}_1 \leq \mathbf{r}_2 \leq \mathbf{r}_3 \leq \ldots \leq \mathbf{r}_n.$$

Note that kth infection time need not correspond to the kth removal.

Define
$$\mathbf{r} = (r_1, r_2, ..., r_n)$$

Recall the standard inference problem: we observe removal times and wish to perform Bayesian inference for β and γ.

Solution [as discussed in MCMC I] is to use MCMC, treat missing infection times i₁ and i = (i₂, i₃, ..., i_n) as "latent" variables.

The target posterior density is

$$\pi (\beta, \gamma, i_1, i | r) \propto \pi (i, r | \beta, \gamma, i_1) \pi (\beta, \gamma, i_1)$$

posterior \propto likelihood × prior

Recall the likelihood:

 π (i, r | β , γ , i₁) =

$$\left(\prod_{j=2}^{n} (\beta/N) \mathbf{S}_{ij} \mathbf{I}_{ij}\right) \left(\prod_{j=1}^{n} \gamma \mathbf{I}_{rj}\right) \exp\left(-\int_{i_1}^{r_n} \{(\beta/N) \mathbf{S}_{i} \mathbf{I}_{i} + \gamma \mathbf{I}_{i}\} dt\right)$$

product terms integral term

Note that S_{i_j} here means S just before time i_j .

Recall: if β and γ ~ Gamma a priori then both have Gamma full conditional distributions.

■ e.g.

β | γ, i₁, i, r ~ Γ (m_β + n -1, λ_β + N⁻¹∫SI) where β ~ Γ (m_β, λ_β) a priori.
Thus β and γ can be updated using a "Gibbs step" - i.e. according to their full conditional distributions - during an MCMC algorithm.

- Recall that the unknown infection times are updated using a Metropolis-Hastings step.
- The acceptance probability requires us to calculate
 - posterior ∞ likelihood \times prior

Thus to write an MCMC algorithm, it is necessary to be able to evaluate both the product and (integral) terms in the likelihood.

Product terms

First note that

$$\left(\prod_{j=2}^{n}\beta N^{-1}\mathbf{S}_{ij}\mathbf{I}_{ij}\right)\left(\prod_{j=1}^{n}\gamma \mathbf{I}_{rj}\right)\propto\beta^{n-1}\gamma^{n}\left(\prod_{j=2}^{n}\mathbf{S}_{ij}\mathbf{I}_{ij}\right)\left(\prod_{j=1}^{n}\mathbf{I}_{rj}\right)$$
$$=\beta^{n-1}\gamma^{n}(\mathbf{N}-1)(\mathbf{N}-2)...(\mathbf{N}-\mathbf{n}+1)\left(\prod_{j=2}^{n}\mathbf{I}_{ij}\right)\left(\prod_{j=1}^{n}\mathbf{I}_{rj}\right)$$

Product terms

- Thus only the products of numbers of infectives may potentially change when updating the infection times.
- The product is most easily evaluated "directly", i.e. by keeping track of changes to I_t at each infection or removal event.

Integral terms

$$\int \mathbf{I}_{t} dt = \Sigma_{1 \le k \le n} (\mathbf{r}_{k} - \mathbf{i}_{k})$$

$$\int \mathbf{S}_{t} \mathbf{I}_{t} dt = \Sigma_{1 \le k \le n} \Sigma_{1 \le j \le N} [(\mathbf{r}_{k} \land \mathbf{i}_{j}) - (\mathbf{i}_{k} \land \mathbf{i}_{j})]$$

Here, "a \land b" denotes "minimum of a,b".

Also $i_j = \infty$ for j > n, i.e. for those individuals never infected.

Integral terms

Explanation:

$$\int \mathbf{I}_{t} dt = \int \Sigma_{1 \le k \le n} \mathbf{1}_{\{k \text{ is infective at time }t\}} dt$$
$$= \Sigma_{1 \le k \le n} \int \mathbf{1}_{\{k \text{ is infective at time }t\}} dt$$

where $1_A = 1$ if event A occurs = 0 otherwise

Integral terms

Recall that individual k is removed at r_k . Suppose their infection time is $i_{L(k)}$.

Then $\int 1_{\{k \text{ is infective at time }t\}} dt$ = total time k is infective = $(r_k - i_{L(k)})$

Integral terms

Then
$$\int I_t dt = \sum_{1 \le k \le n} (\mathbf{r}_k - \mathbf{i}_{L(k)})$$

= $\sum_{1 \le k \le n} \mathbf{r}_k - \sum_{1 \le k \le n} \mathbf{i}_{L(k)}$
= $\sum_{1 \le k \le n} \mathbf{r}_k - \sum_{1 \le k \le n} \mathbf{i}_k$
= $\sum_{1 \le k \le n} (\mathbf{r}_k - \mathbf{i}_k)$

Integral terms

$$\int \mathbf{S}_t \mathbf{I}_t \, dt = \Sigma_{1 \le k \le n} \Sigma_{1 \le j \le N} \left[(\mathbf{r}_k \land \mathbf{i}_j) - (\mathbf{i}_k \land \mathbf{i}_j) \right]$$

Similar arguments used to derive this...

Integral terms

 $[(r_k \wedge i_j) - (i_k \wedge i_j)] = time that k is infective and j is susceptible$

$$\begin{split} & [(r_k \wedge i_j) - (i_k \wedge i_j)] = r_k - i_k & \text{if } i_j > r_k \text{ (e.g. } i_j = \infty \text{)} \\ & [(r_k \wedge i_j) - (i_k \wedge i_j)] = i_j - i_k & \text{if } i_k < i_j < r_k \\ & [(r_k \wedge i_j) - (i_k \wedge i_j)] = 0 & \text{if } i_j < i_k \end{split}$$

Contents

- 1. General (Markov) epidemic model
- 2. Non-Markov epidemic model
- 3. Debugging tips
- 4. What to do with MCMC output

- We now consider a generalisation of the basic (Markov) SIR model in which the infectious periods are no longer exponentially distributed.
- This apparently minor change has a material impact on the likelihood calculations.

- Each infectious individual remains so for a length of time T_I drawn from some specified distribution with parameter vector θ
- During this time, infectious contacts occur with each susceptible according to a Poisson process of rate β / N.
- Thus overall infection rate is $\beta S_t I_t / N$.
- Two model parameters, β and θ .

Likelihood

- Assume population contains N individuals of whom n ever become infective.
- Label the n infectives 1, 2, ..., n and the other individuals n+1, n+2, ..., N.
- Define r_k and i_k as the removal and infection times of individual k. Note these = ∞ if k never becomes infected.

Likelihood

- Let b be the label of the last removal time, i.e. r_b ≥ r_k for all k = 1, ..., n.
- Given removal data, b is observed and fixed for any given labelling.
- Define a as the label of the first infection time, i.e. $i_a \le i_k$ for all k = 1, ..., n.
- Given removal data, a is unknown.

Likelihood

Define **r** = (r₁, r₂, ..., r_n)
 Define **i** = (i₁, i₂, ..., i_{a-1}, i_{a+1}, ..., i_n)

Let f(x | θ) denote the probability density function (or mass function if appropriate) of the infectious period distribution with parameter vector θ.

Likelihood

• π (i, r | β , θ , a, i_a) =

$$\left(\prod_{j=2}^{n} (\beta/N) \mathbf{I}_{ij}\right) \exp\left(-\int_{i_a}^{r_b} \{(\beta/N) \mathbf{S}_{i} \mathbf{I}_{t}\} dt\right) \prod_{j=1}^{n} f(r_j - i_j \mid \theta)$$

Bayesian inference

- $\pi (\beta, \theta, a, i_a, i | r)$ $\propto \pi (i, r | \beta, \theta, a, i_a) \pi (\beta, \theta, a, i_a)$
- Thus we must specify a prior distribution for β , θ , a, and i_a.

MCMC algorithm

- β is updated as for the Markov model (i.e. Gibbs step, assuming β has a Gamma prior)
- Infection times updated using a M-H step.
 One option is to propose (r_k i_k) from distribution of infectious period.

Contents

- 1. General (Markov) epidemic model
- 2. Non-Markov epidemic model
- 3. <u>Debugging tips</u>
- 4. What to do with MCMC output

- 1. Test each piece of code separately
- Most MCMC algorithms in this field involve various components, e.g.
- Gibbs updates
- Metropolis-Hastings updates
- Likelihood
- It is good practice to check each component works before proceeding.

- 2. Validate output using simulations
- As discussed in Lecture 1, one way to test MCMC code (e.g. for SIR model) is
- Simulate SIR model M times (e.g. M=1000)
- Run MCMC on each output to infer parameters
- Average parameter estimates from MCMC should be close to the known true values

2. Validate output using simulations

If the MCMC code is time-consuming to run then an alternative is use simulation output that gives a single large epidemic - idea being that this should give reasonable information about the model parameters.

3. Beware Zeroes

Some languages allow operations such as "0/0" without reporting an error.

4. Try a very small data set

Sometimes it is possible to test MCMC code by using a very small data set where one can work out the required inference by hand. This can then be checked against the MCMC output.

5. Use log likelihood

Many likelihoods require calculation of products which can in turn lead to numerical instabilities and run-time errors.

One way to tackle this issue is to instead work with the log likelihood, since

 $\log(A_1 \times A_2 \times ... \times A_m) = \log(A_1) + ... + \log(A_m)$

5. Use log likelihood (cont)

- The likelihood may involve the calculation of Beta or Gamma functions.
- R has built-in functions to compute such functions, i.e. beta, gamma; but if we are working on the log scale, instead of doing something like log(gamma(k)) we could use another built in function lgamma(k) to ensure numerical stability, especially if k is large.

Contents

- 1. General (Markov) epidemic model
- 2. Non-Markov epidemic model
- 3. Debugging tips
- 4. What to do with MCMC output

In this section, for illustration it is assumed that we have MCMC output from the Markov SIR model removal-data-observed scenario:

 $(\beta_1, \gamma_1), (\beta_2, \gamma_2), ..., (\beta_M, \gamma_M),$ where M is large (e.g. M=10⁶).

Each pair (β_k , γ_k) is (approx) a sample from the joint posterior density π (β , γ | r).

Marginal summaries

Quantities such as the marginal mean, median, variance etc of β and of γ can be readily obtained using the package R.

It is also useful to plot the marginal posterior density of each parameter.

Joint summaries

- It can be useful to assess the extent to which β and γ can be estimated separately.
- The posterior correlation and a scatterplot of the samples against axes β and γ provide such information.

Functions of model parameters

- The quantity R₀ is of enormous interest in mathematical epidemic theory. It is (roughly) defined as the average number of secondary cases caused by a typical infective in an infinitely large population of susceptibles.
- If $R_0 \le 1$, epidemics are unlikely to take off.

- Functions of model parameters
- For the (general) SIR model,

$$\mathsf{R}_0 = \beta \,\mathsf{E}(\mathsf{T}_\mathsf{I}),$$

- where $E(T_I)$ is the mean infectious period.
- This follows from the fact that each infective causes new infections at (Poisson) rate β during a period of time T₁.

Functions of model parameters

For the Markov model we have

$$\mathsf{R}_0 = \beta \mathsf{E}(\mathsf{T}_\mathsf{I}) = \beta / \gamma,$$

since $T_I \sim Exp(\gamma)$.

Thus given the MCMC output we can create a new file containing

 $(\beta_1/\gamma_1), (\beta_2/\gamma_2), ..., (\beta_M/\gamma_M),$

i.e. samples from the posterior density of R_0 .

Functions of model parameters

 R_0 can be summarised in the usual ways (mean, variance etc): also interesting to find the posterior probability that $R_0 \le 1$.

Functions of model parameters

Can also be interesting to translate inference for <u>rates</u> into inference for <u>probabilities</u>.

e.g. 1 - $\exp(-\beta/N)$ is the probability that one infective individual infects a given susceptible in one time unit.