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1. What can be estimated? 

 As with any attempt to fit a model to data, it is 

always important to think about how 

informative the data are about the model 

parameters which one is trying to estimate. 

  

  In some settings it is obvious what can or 

cannot be estimated; in other settings it can 

be much less obvious. 

 



1. What can be estimated? 

 Example: Latent periods 

Consider the Markov SIR model with latent 

periods, say of fixed unknown length = c. 

 

Thus when an individual is infected, they must 

wait c days until they become infectious. 

 

Latent individuals are called “exposed”. 

  

   

 



1. What can be estimated? 

 Example: Latent periods 

Thus we have an SEIR model where  

Exposed period = c time units. 
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1. What can be estimated? 

 Example: Latent periods 

Introduce “exposure” times (= infection times) 

                  e1, e2 , ... , en , where ek = ik - c 

and define e = (e2 , ... , en). 

 

As before,  r = (r1, r2 , ... , rn) is observed. 

Define        i = (i1, i2 , ... , in).  

  

   

 



1. What can be estimated? 

 Example: Latent periods 

π (i, r, e |  ,, c, e1) =  
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1. What can be estimated? 

 Example: Latent periods 

It would be straightforward to adapt the 

standard MCMC algorithm to include c as 

an extra parameter - e.g. using M-H 

updates for c. 

However such an algorithm would be 

uninformative about c given removal data 

alone. 

   

 



1. What can be estimated? 

 Example: Latent periods 

Roughly speaking, for any value of c, the 

infection rate  would be estimated 

accordingly - large c means large   and 

small c means small  . 

So although the MCMC algorithm is correct, 

the output would need to be carefully 

interpreted. Here we would see high 

posterior correlation between c and  .  

 



1. What can be estimated? 

 Example: Latent periods 

In practice, a better strategy would be to fix c 

to certain (biologically reasonable) values 

and then perform estimation for  and  . 

  



1. What can be estimated? 

 Example: Gamma infectious periods 

A common generalisation of the Markov SIR 

model is to have Gamma-distributed 

infectious periods. 

Thus each infective remains so for a period of 

time TI, where 

             TI  (c,d), say (c = shape, d = rate). 

Note E( TI ) = c / d. 

  



1. What can be estimated? 

 Example: Gamma infectious periods 

As seen in lecture 2, the likelihood is 

π (i, r |  ,c , d, a, ia) =  

 

 

  

where   f(x | c,d) = xc-1dc exp(-dx) / (c)  

is the p.d.f. of TI . 
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1. What can be estimated? 

 Example: Gamma infectious periods 

The two parameters c,d can be updated in an 

MCMC algorithm.  

It is not immediately obvious if it is possible to 

estimate both parameters separately from 

removal data. 

One might expect E(TI ) = c / d  to be 

estimated with reasonable precision. 

 

 

  



1. What can be estimated? 

 Example: Data for Markov SIR model 

Another important aspect of estimation is the 

detail of the data. 

For example, suppose we have observations 

(= removal times) in a population of N=100 

susceptibles, of whom n become infected. 

Clearly if n=0, no inference can be drawn.  

But what if n=1? n=10? n=100?  
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2. Reparameterisation 

 Reminder: MCMC theory and practice 

A common problem with MCMC algorithm 

mixing is correlation, i.e. when two (or 

more) parameters in the target density are 

highly correlated. 

This problem usually means it is hard to 

update correlated parameters separately. 

  



2. Reparameterisation 

 Example: Gamma infectious periods 

As described above, consider the SIR model 

with (c,d) infectious periods. 

Since the mean infectious period is c/d, c and 

d will be positively correlated. 

It therefore makes sense to consider a 

reparameterisation to (m,v), where 

m = mean, v = variance of TI . 

  



2. Reparameterisation 

 Example: Gamma infectious periods 

Note that this makes the corresponding part of 

the likelihood more complex: 
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2. Reparameterisation 

 Example: Gamma infectious periods 

In practice it is often the case that there is a 

trade-off between “elegance” and 

“efficiency” of MCMC algorithms. 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

For the Markov SIR model with n (= number 

infected) large, it can be hard to move 

quickly around the space of all possible 

infection times. 

A key difficulty is that the infectious period rate 

parameter, , affects the likelihood of 

proposed new infection times. 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

e.g. if  is large, so the mean infectious period 

is small, proposed updates that give large 

infectious periods will often be rejected. 

One way around this is to try and update 

infections times and  simultaneously (i.e. 

“block updating”). 

An alternative is to reparameterise to break 

the correlation: this is “non-centering”. 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

Aside: the term “non-centering” arises via the 

following graphical model representation: 

 

 

 

 

Here, ( , i) is a centered parameterisation. 
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2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

If the data r are relatively uninformative about 

i, then the dependence between  and i 

can give poor MCMC mixing. 

 

  i r 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

A natural alternative is to find a non-centered 

parameterisation u such that  and u are 

independent: 

 

 

 
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2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

Specifically: observe that if  

                       X  Exp(a) 

then we can write X as 

                     X = (1/a) Y 

where 

    Y  Exp(1). 

 

 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

Proof:  

  P((1/a)Y > t)   = P(Y > at) 

    = exp(-at) 

    = P(X > t) since X  Exp(a). 

 

 

 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

Now in the model, the infectious period of 

individual k  Exp( ). 

As for the non-Markov case, adopt the 

labelling where ik corresponds to rk . 

 

Thus rk - ik  Exp( ) = (1/ )Exp(1) 

     = (1/ ) Uk,  say. 

 

 

 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

 

This suggests a reparameterisation in which 

the infection times  i1, i2 ,..., in are replaced 

with U1, U2, ,..., Un . 

Note that ik can be recovered from Uk and  . 

    rk - ik = (1/ ) Uk,   so  ik = rk - (1/ ) Uk . 

 

 

 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

 

Note now that if  is updated, then all of the 

infection times are simultaneously updated. 

 

This allows for faster mixing around the space 

of possible infection times. 

 

 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

 

Consider now the likelihood in the new 

parameterisation.  

We are making the change of variable  

       uk =  (rk - ik ),       k=1, ..., n 

 

 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

 

To evaluate the likelihood we simply write ik as 

a function of uk in the current likelihood, 

and multiply by the Jacobian of the 

transformation  J =  (i1, i2 ,..., in )     =  -n. 

                                    (u1, u2 ,..., un) 

                                     

 

 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

When we do this, then the “infection” part is 

essentially unchanged: 

 

 

 

 

Unaffected by reparameterisation 
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2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

Conversely, the remaining product term 

simplifies:  
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2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

Specifically, 

  f(rk - ik )  =  exp(-  (rk - ik ) ) 

   =  exp(-  (rk - (rk -  
-1uk) ) 

   =   exp(- uk) , 

and including the Jacobian means that the 

whole product becomes exp(- 1jn uj). 



2. Reparameterisation 

 Example: Non-centering in Markov SIR model 

MCMC algorithm: 

 Update  using Gamma full conditional 

distribution as before 

 Update   using Metropolis-Hastings step 

(e.g. Gaussian random walk). Note that 

when   is updated, so are infection times 

 Update uk’s using M-H step (e.g. propose 

uk from Exp(1) distribution) 
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3. Marginalisation 

Suppose we have an MCMC algorithm with 

target density  

                    π(1, 2, ..., n). 

The idea of marginalisation is to instead run  

MCMC on a marginal target density, e.g.  

                         π(1, 2). 

This is achieved by integrating out the other 

parameters. 

 



3. Marginalisation 

The obvious reason to do this is that the 

resulting MCMC chain has less parameters 

to update. 

Note that samples from the integrated-out 

parameters can be recovered from the 

output of the reduced chain. 



3. Marginalisation 

 Example: Markov SIR model 

Recall that π (i, r |  ,, i1) =  

 

 

 

The standard MCMC algorithm updates  ,, 
and the infection times i. 
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3. Marginalisation 

 Example: Markov SIR model 

However, it is possible to integrate out  and , 

as follows:   

π (i, r | i1) = π (i, r |  ,, i1) π ( ,) d d, 

where π ( ,) is the joint prior density of ( ,). 

 

Standard choice is π ( ,) = π ( ) π () . 

 



3. Marginalisation 

 Example: Markov SIR model 

Specifically, suppose    (m ,  ) a priori. 

  (0, )
  π (i, r |  ,, i1) π ( ) d  

             (0, )
    (n-1) + m-1 exp(-  A)  d , 

where A =  +   St It / N  dt. 



3. Marginalisation 

 Example: Markov SIR model 

However, recalling that 

             (0, )    y
 n-1 exp(- y b) dy  =  (n)  b-n  , 

       (0, )
    (n-1) + m-1 exp(-  A)  d   

                                      =  (n+m-1)  A-(n+m-1)     

                           A-(n+m-1) 



3. Marginalisation 

 Example: Markov SIR model 

The parameter  can be integrated out in a 

similar fashion. 

 

We can thus run an MCMC algorithm on the 

target density π (i, r | i1). 

 

Note that only i updates are required. 

 



3. Marginalisation 

 Example: Markov SIR model 

 

To recover samples from the marginal 

posterior distribution of  , simply note that 

         π ( | i, r, , i1)  (m+n-1 , A ). 

 

Each sample for i yields a sample for A, from 

which a sample from  can be obtained. 
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