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Nottingham 1. The data & history

Smallpox

* [Infectious disease caused by Variola virus

 Transmission via inhalation of airborne virus

 Symptoms include fever and severe rash

* QOverall case fatality around 30%

* Control via “ring-vaccination” (= isolation and
local vaccination)

* Declared eradicated in 1980 by WHO

 Concerns over use as bioterrorist weapon
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Abakaliki

 Town in South-Eastern Nigeria
 Mass smallpox and measles immunization
(Feb 1967)
 Smallpox outbreak April —June 1967
e 32 cases, almost all members of FTC (Faith
Tabernacle Church) who had refused vaccination
* Qutbreak described in World Health Organization
report (Thompson and Foege, 1968)
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The recorded data

AnLE NE LISTING OF SMALLPOX CASES
‘ Onas acci an l mber
ICasa No. | 80X | asn Dat | Fro | Compound
| 1 10 F | 8 April | -
For each of the 32 cases: R e s
L 3 | as n |2 April
: 4 4=1/2 P 27 Apeil
! L] 11 M 30 April
i 7 4 P |Last of April - o
8 & F L May 1966 o
a 12 M 5 May 1963 | -
* FTC member (yes/no AT B
y | as | ow | as May - ! o
1z 2B F 5 May - E s}
. 13 -1/2 ¥ay - | o
* Vaccinated (yes + when/no MRS |
y | ; 2 May
| 16 3-1/2 F May
. * 17 1 ? | 25 May
* Compound number (dwellin AR
19 4=1/2 F | 30 May
= R tay rob, 2987
. Age 21 26 F 31 May 1958
22 35 W | 31 May | Last cme in 1948 I
| 23 2 F 1 Jun - Q I| v
| 24 | 2 Kl 2 June - a
‘ S 5 11 P 4 June [ o
eX 26 1 F 4 June | o
a7 a L'} 5 Juné 1 o
28 40 M | 7 June | a
June 4]
une
vvvvvvv
June

* 4 individuals moved compound during outbreak
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The recorded data

Compound
* Housing built around a courtyard
* Houses several families

Additional data on each of 9 compounds:
e Number of FTC and non-FTC individuals
e Vaccination status of each individual*

* With a few exceptions
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The recorded data
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The recorded data

Cases by compound, weeks
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The data in the epidemic modelling literature

First appears as an illustrative data set in Bailey and
Thomas (1971):

* Only FTC individuals included in analysis (120)

* Onlyrash onset times

Modelling assumes
* Homogeneous mixing population (FTC)
* Simple/unrealistic transmission model
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The data in the epidemic modelling literature

* Numerous subsequent appearances in the
literature (~ 20; 1972 — 2016), which...

e ..all use Bailey and Thomas’ version of the data
and unrealistic models

 Ray and Marzouk (2008) include compounds but
still only FTC individuals

* Eichner and Dietz (2003) considers the full data
set
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The data in the epidemic modelling literature
e Ehe New 1] Lork Times =

: : S. ATTACKED
Eichner and Dietz (2003) HIJAEEDJETSDESTROYWWRS

AND HIT PENTAGON IN DAY OF TERROR
A CREEPNG HORROR %

e Use realistic stochastic model

* Fit model using maximum likelihood, where...
.. the likelihood itself is an approximation

* Estimate key epidemiological parameters
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Motivation for current work

* Fit stochastic transmission model, avoiding any
likelihood approximation

 Explore model adequacy

* Estimate key quantities

e Compare results to Eichner and Dietz
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As seen in this module, basic approach is:

 Write down likelihood, augmented if necessary
with any missing data

 Target density is likelihood times prior density

* Write MCMC algorithm to sample target

* Run algorithm and interpret results
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Abakaliki smallpox model (Eichner-Dietz)

Population structure: 9 compounds in town

Compounds
(251 people)
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Abakaliki smallpox model (Eichner-Dietz)

 SEIR-type model (E = “Exposed” = latent)
e Stage-times™ are known Gamma distributions

Susceptible Latent Fever Rash Recovered

*i.e. Latent, Fever and Rash periods DATA
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Abakaliki smallpox model (Eichner-Dietz)

e Control measures introduced at time t,
= isolation = reduced rash period

Susceptible Latent Fever Rash Recovered

DATA



The University of

Nottingham 3. Smallpox transmission model

I

Abakaliki smallpox model (Eichner-Dietz)

Three infection rate* parameters:

* Within-compound, same faith A,
* Within FTC As
* Within population A

d

Also: less infectious in Fever period (factor b)

*same meaning as B in SIR model
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Abakaliki smallpox model (Eichner-Dietz)

All-or-nothing vaccine model:
P(vaccine works) = v
for each vaccinated individual, independently




I

The University of

Nottingham 3. Smallpox transmission model

Abakaliki smallpox model (Eichner-Dietz)

Six parameter model (A,, A;, A, b, ty, V)

E-D analysis is based on a likelihood
approximation using back-calculation

What happens if instead we use data-
augmentation and MCMC?
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Abakaliki smallpox model — Data augmentation

* Augmentec

data = unknown event times...

e ...and outcome for vaccinated individuals

Susceptible\ Latent

A
Feverx Rash Recovered
DATA

Exposure time Time fever starts Time of isolation  Time of recovery

\

J

!
AUGMENTED DATA
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Augmented likelihood

Augmented likelihood (of event times and
types) given the model parameters is

L = (infection process part)
X (latent/fever/rash/isolation part)
X protection status part for vaccinees
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Augmented likelihood: infection process part

For (susceptible) individual k, define

A (t) = infection pressure at time t acting on k
= hazard rate of infection for k
= sum of infection rates towards k

A(t) = 2, A (t) = total pressure at time t
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Augmented likelihood: infection process part

Likelihood of infection process part is

TT A (L) x exp(-[A(t) dt)

/ \

Likelihood of infection events Likelihood of avoidance of infection
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Augmented likelihood: Latent/fever/... part

For each individual who becomes infected,
multiply together the density functions for
each stage (latent, fever, rash, isolation)
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Augmented likelihood: protection status part

Likelihood of protection statuses = v@ (1-v)®

where
a = no. of vaccinated protected individuals
b = no. of vaccinated unprotected individuals
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Augmented likelihood: protection status part

Problem: there are a lot of protection statuses
(outside compounds, about 30,000)

Solution: we can integrate most out of the
likelihood; for example

No. outside, vacc, prot ~ Binomial(m,v)

where m = no. outside, vacc
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Augmented likelihood: computation

 Computing the likelihood is quite involved in
practice

* Lots to keep track of
* |ndividuals who move complicate matters!
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Target density

n(6,y|r)ocm(y,r|0)mn(6)

r = data
vy = augmented data
0 = model parameters
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5. Results

As well as model parameters we are interested
in epidemiological quantities. For instance,

R, = average number of secondary cases
caused by one case in a large population
= (ug + b e )(A,+A+ A) (for FTC member)

\ J | J

I i
Average time infectious Overall rate of infection _ _
: R, is called the basic
(Rash period, fever Jucti ber-
period; infectivity factor; reproduction number;

< : :
before control measures) Ry< 1to prevent epidemics
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Posterior Density for Ry

E[R,| data] = 8 s
Dashed lines show :
different choices for °
latent period etc S -
° (l) é ‘I|O ‘I|5 2|0
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Ro = (Mg + b e (A, + A+ Ay)
is an “overall” reproduction number.

Can also define specific reproduction numbers
for transmission in compounds, FTC, outside

compounds. For example
Ra = (HR +b o ))\a
is for individuals outside the compounds.
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Impact of control measures

Before control measures After control measures

R, >1 R, >1
R, >1 R, >1
Re >1 Re <1
R, <1 R, <1

In simulations, epidemic never takes off in
whole population; always subcritical
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Estimated Transmission Pathway

Who infects
whom
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Infection

times

Case

Time
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Model adequacy

e We use forward simulation of the model to
assess model adequacy

 Parameter values are drawn from posterior
distribution (i.e. from MCMC output)
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Model adequacy
Final size =

Number of cases

Better fit if
movers infected

Frequency

200 400 600 800 1000

0

Observed final size

Simulations with
any individuals
infected before

move
All simulations

20 40 60 80

Final size
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Model adequacy

Duration

1000
|

— Observed data

Frequency
600
|

0 200
|

I I
0 50 100 150
Duration (days)
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Model adequacy
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Some conclusions

* MCMC methods covered in module
extended to a more complex model

 The approach provides plenty of useful
information, not just estimates
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1. Introduction illustrate new data analysis methodology, but in virtually all cases
most aspects of the data are ignored apart from the population of

In 1967, an cutbreak of smallpox occurred in the Nigerian town 120 FTC individuals and the case detection times, while the models

of Abakaliki. The vast majority of cases were members of the Faith used are not particularly appropriate for smallpox (see for exam-
Tabernacle Church (FTCYL a reliFious organisation whose members ple Becker. 1976: Yip. 1989: O'Meill and Roberts. 1999 O'Neill and



