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MCMC I

10th Summer Institute in Statistics and Modeling in Infectious Diseases

Course Time Plan

July 11-13, 2018

Instructors: Vladimir Minin, Kari Auranen, M. Elizabeth Halloran

Course Description: This module is an introduction to Markov chain Monte Carlo methods
with some simple applications in infectious disease studies. The course includes an introduction to
Bayesian inference, Monte Carlo, MCMC, some background theory, and convergence diagnostics.
Algorithms include Gibbs sampling and Metropolis-Hastings and combinations. Programming is
in R. Familiarity with the R statistical package is assumed.

Course schedule: The course is composed of 10 90-minute sessions, for a total of 15 hours of
instruction.

1 Introduction to Bayesian Inference

• Overview of the course.

• Bayesian inference: Likelihood, prior, posterior, normalizing constant

• Conjugate priors; Beta-binomial; Poisson-gamma; normal-normal

• Posterior summaries, mean, mode, posterior intervals

• Motivating examples: Chain binomial model (Reed-Frost), General Epidemic Model, SIS
model.

• Lab:

– Goals: Warm-up with R for simple Bayesian computation

– Example: Posterior distribution of transmission probability with a binomial sampling
distribution using a conjugate beta prior distribution

– Summarizing posterior inference (mean, median, posterior quantiles and intervals)

– Varying the amount of prior information

2 Introduction to Gibbs Sampling

• Chain binomial model and data augmentation

• Brief introduction to Gibbs sampling

• Lab

– Goals: Simple data augmentation using MCMC

– Example: Gibbs sampler for the chain binomial model.
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3 Introduction to computation

• Random number generators

• Non-iterative Monte Carlo methods

– Direct sampling, Monte Carlo integration (classical Monte Carlo)

– Indirect methods: importance sampling, rejection sampling,

• Basic Markov Chain Theory

– Definitions

– Stationarity

– The ergodic theorem

• Lab:

– Goals: Importance sampling, Markov chain

4 Markov chain Monte Carlo methods

• Gibbs sampling

– Background

– Revisit simple Gibbs sampler for chain-binomial model

• Metropolis-Hasting algorithm

• Lab:

– Goals: M-H: elementary missing data imputation on S-I model

5 Metropolis-Hasting and Gibbs combined

• Example: Hierarchical model

• Lab:

– Goals: Combining Metropolis and Gibbs in one algorithm

– Example: Beta-binomial hierarchical model with rat data

6 Chain binomial model revisited

• Hierarchical chain binomial model with hyperparameters

– Model checking

– Allowing for heterogeneity
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• Lab:

– Goals: Combined M-H and Gibbs and learning model checking

– Example: Hierarchical beta-binomial chain binomial model

7 General Epidemic Model

• The general epidemic model and incompletely observed data

• Algorithm

• Lab: General epidemic model

– Goals: parameter estimation with data augmentation

– Example: smallpox transmission

8 Diagnostics, etc

• Assessing convergence (more or less), Coda

• Variance reduction, Monte Carlo error

• Poisson process

• Lab: Diagnostics

– Goals: learn how to do basic diagnostics on chain and output

– Coda

– Diagnostics on previous examples

9 SIS model

• Binary Markov process model for a recurrent infection

• Likelihood

• Algorithm

• Lab: Estimating rates in simple SIS model

– Goals: Data simulation and parameter estimation from complete data in a simple SIS
model.

– Example: simulate one long chain in one person

– Estimating rates from complete data

– Diagnostics
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Prior, likelihood, and posterior

• Let
• y = (y1, . . . , yn): observed data

• f (y |θ): model for the observed data, usually a probability
distribution

• θ: vector of unknown parameters, assumed a random quantity

• π(θ): prior distribution of θ

• The posterior distribution for inference concerning θ is

f (θ|y) =
f (y |θ)π(θ)

∫

f (y |u)π(u)du
.
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Posterior and marginal density of y

• The integral
∫

f (y |u)π(u)du, the marginal density of the data
y , does not depend on θ.

• When the data y are fixed, then the integral can be regarded
as a normalizing constant C .

• In high dimensional problems, the integral can be very difficult
to evaluate.

• Evaluation of the complex integral
∫

f (y |u)π(u)du was a
focus of much Bayesian computation.
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Advent of MCMC Methods

• With the advent of the use of Markov chain Monte Carlo
(MCMC) methods,
−→ one could avoid evaluating the integral, making use of
the unnormalized posterior density.

f (θ|y) ∝ f (y |θ)π(θ).

• Equivalently, if we denote the likelihood function or sampling
distribution by L(θ), then

f (θ|y) ∝ L(θ)π(θ).

posterior ∝ likelihood × prior

• We will show how this works.
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Other Uses of MCMC Methods

• Can simplify otherwise difficult computations.

• Sometimes a likelihood would be easy to evaluate if some data
had been observed that was not observed or is unobservable.

• Examples:
• infection times,
• time of clearing infection,
• when someone is infectious,
• chains of infection.

• MCMC methods can be used to augment the observed data
to make estimation simpler.
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Likehood and Data Transforms Prior to Posterior

• Likelihood and data take prior to posterior:

Transformation
Prior −→ Posterior

–Likelihood
–Data

• Bayesian data analysis is a study of the transformation.
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Transmission probability

• p is the probability an infective infects a susceptible:
transmission probability

• q = 1− p is the probability a susceptible escapes infection
when exposed to an infective: escape probability

• Transmission versus escape ? which is the “success” and
which the ”failure”?

• Given there are n exposures, and y infections, what is the
estimate of the transmission probability?

• Given there are n exposures, and n − y escapes, what is the
estimate of the escape probability?
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Chain-binomial model

• Assume independent households

• One person in each household introduces the infection into
the household (index case).

• Infections occur within households in generations of infection
(discrete time).

• p is the probability an infective infects a susceptible in a
household in a generation

• q = 1− p is the probability a susceptible escapes infection
when exposed to an infective in a household
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Reed-Frost Chain Binomial Model

Figure : Independent exposures = independent Bernoulli trials

a.

b.

(1-p) (1-p)2 (1-p)3 (1-p)4 (1-p)5

(1-p)5
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Chain Binomial Model

Table : Chain binomial probabilities in the Reed-Frost model in N

households of size 3 with 1 initial infective and 2 susceptibles,
S0 = 2, I0 = 1

Final
Chain at at number

Chain probability Frequency p=0.4 p=0.7 infected

1 −→ 0 q2 n1 0.360 0.090 1
1 −→ 1 −→ 0 2pq2 n11 0.288 0.126 2
1 −→ 1 −→ 1 2p2q n111 0.192 0.294 3
1 −→ 2 p2 n12 0.160 0.490 3

Total 1 N 1.00 1.00
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Chain binomial model

• Data: The observations are based on outbreaks of measles in
Rhode Island 1929–1934.

• The analysis is restricted to N = 334 families with three
susceptible individuals at the outset of the epidemic.

• Assume there is a single index case that introduces infection
into the family.

• The actual chains are not observed, just how many are
infected at the end of the epidemic.

• So the frequency of chains 1 −→ 1 −→ 1 and 1 −→ 2 are not
observed.

• MCMC can be used to augment the missing data, and
estimate the transmission probability p.
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Chain Binomial Model

Table : Rhodes Island measles data: chain binomial probabilities in the
Reed-Frost model in N = 334 households of size 3 with 1 initial infective
and 2 susceptibles, N3 = n111 + n12 = 275 is observed

Final
Chain Observed number

Chain probability Frequency frequency infected

1 −→ 0 q2 n1 34 1
1 −→ 1 −→ 0 2pq2 n11 25 2
1 −→ 1 −→ 1 2p2q n111 not observed 3
1 −→ 2 p2 n12 not observed 3

Total 1 N 334
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General epidemic (SIR) model

• The population of N individuals

• Denote the numbers of susceptible, infective, and removed
individuals at time t by S(t), I (t), and R(t).

• The process can be represented by the compartmental diagram

S(t) −→ I (t) −→ R(t)

• Thus, S(t) + I (t) + R(t) = N for all t.

• Initially, (S(0), I (0),R(0)) = (N − 1, 1, 0)



Outline Introduction Transmission Probability Simple Gibbs sampler

General epidemic model

• Each infectious individual remains so for a length of time
TI ∼ exp(γ).

• During this time, infectious contacts occur with each
susceptible according to a Poisson process of rate β/N

• Thus, the overall hazard of infection at time t is βI (t)/N

• The two model parameters of interest are β and γ
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General epidemic model

• In a well-known smallpox data set, the removal times are
observed. That is, when the people are no longer infectious
for others.

• However, the infection times are not observed.

• Thus, estimating the two model parameters is difficult.

• The missing infection times are treated as latent variables.

• MCMC methods are used to augment the missing infection
times and estimate the parameters β and γ.
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Susceptible-infected-susceptible (SIS) model

• Background: Many infections are recurrent, occurring as an
alternating series of presence and absence of infection

• Nasopharyngeal carriage of Streptococcus pneumoniae

(Auranen et al 2000; Cauchemez et al; Melegaro et al)

• Nasopharyngeal carriage of Neisseria meningitidis (Trotter and
Gay 2003)

• Malaria (Nagelkerke et al,)

• multi-resistant Staphylococcus aureus (Cooper et al)
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Susceptible-infected-susceptible (SIS) model

• The population of N individuals

• Denote the numbers of susceptible and infected individuals at
time t by S(t) and I (t).

• The process can be represented by the compartmental diagram

S(t) ↔ I (t)

• Thus, S(t) + I (t) = N for all t.

• Acquisition and clearance times often remain unobserved

• Active sampling of the population to determine the current
status of being infected or susceptible in individuals.
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Susceptible-infected-susceptible (SIS) model

• Could be formulated as an infectious disease transmission
process, as the general epidemic model.

• Too complicated for this introductory course

• We consider here the simple transition process, with rate
parameters λ for acquisition and µ for clearance.

• The acquisition and clearance times are treated as latent
variables.

• MCMC methods are used to augment the missing infection
and clearance times, and estimate the parameters λ and µ.
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Conjugate prior distribtions

• Conjugacy: the property that the posterior distribution follows
that same parametric form as the prior distribution.

• Beta prior distribution is conjugate family for binomial
likelihood: posterior distribution is Beta

• Gamma prior distribution is conjugate family for Poisson
likelihood: posterior distribution is Gamma
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Conjugate prior distributions

• Simply put, conjugate prior distributions in tandem with the
appropriate sampling distribution for the data have the same
distribution as the posterior distribution.

• Conjugate prior distributions have computational convenience.

• They can also be interpreted as additional data.

• They have the disadvantage of constraining the form of the
prior distribution.
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Nonconjugate prior distributions

• Nonconjugate prior distributions can be used when the shape
of the prior knowledge or belief about the distribution of the
parameters of interest does not correspond to the conjugate
prior distribution.

• Noninformative prior distributions carry little population
information and are generally supposed to play a minimal role
in the posterior distribution.
−→They are also called diffuse, vague, or flat priors.

• Computationally nonconjugate distributions can be more
demanding.
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Data and Sampling Distribution

• Goal: Inference on the posterior distribution of the
transmission probability

• Suppose that n people are exposed once to infection

• y become infected (“successes”)
• n − y escape infection (“failures”)

• Let
• p = transmission probability
• 1− p = q = escape probability

• Binomial sampling distribution

L(y |p) = Bin(y |n, p) =

(

n

y

)

py (1− p)n−y =

(

n

y

)

pyqn−y
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Specify the Prior Distribution of p

• To perform Bayesian inference, we must specify a prior
distribution for p.

• We specify a Beta prior distribution:

p ∼ Beta(α, β)

Beta(p|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1, α > 0, β > 0.

• Mean: E (p|α, β) = α
α+β

• Variance: αβ

(α+β)2(α+β+1)
= E(p|α,β)[1−E(p|α,β)]

α+β+1
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Specify the Prior Distribution of p

• We specify a Beta prior distribution:

p ∼ Beta(α, β)

π(p) = Beta(p|α, β)

Beta ∝ pα−1(1− p)β−1.

• Looks similar to binomial distribution

• α > 0, β > 0, “prior sample sizes”
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Posterior distribution of p

• The posterior distribution of the transmission probability p,
f (p|y):

f (p|y) ∝ py (1− p)n−ypα−1(1− p)β−1

posterior likelihood × prior

= py+α−1(1− p)n−y+β−1

= Beta(p|α+ y , β + n − y)

• The role of α and β as prior sample sizes is clear.
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Posterior mean of θ

• Posterior mean of p
−→ posterior probability of success (transmission) for a future
draw from the population:

E (p|y) =
α+ y

α+ β + n

• posterior mean always lies between the prior mean α/(α+ β)
and the sample mean y/n.

• Posterior variance of p:

var(p|y) =
E (p|y)[1− E (p|y)]

α+ β + n + 1
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Uniform prior distribution

• The uniform prior distribution on [0,1] corresponds to α = 1,
β = 1. Essentially no prior information on p.

f (p|y) = Beta(p|y + 1, n − y + 1)

• Let’s see how the posterior distribution of the transmission
probability depends on the amount of data given a uniform
prior distribution (Sample mean y/n = 0.40).

n, number exposed y , number infected

5 2
20 8
50 20

1000 400
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Figure : R program: Posterior distribution with differing amounts of
data. Uniform Beta prior, Binomial sampling distribution.
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Prediction

• After the data have been observed, we can predict a future
unknown observable yn+1.

• For example, we may observe n people who were exposed to
infection, and whether they became infected.

• We may want to predict the probability that the next person
to be observed would become infected.

• Posterior predictive distribution:
−→ posterior because conditional on the observed y

−→ predictive because it is a prediction for an observable
yn+1.
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Prediction

• Posterior predictive distribution of unknown observable

yn+1:

f (yn+1|y) =

∫

f (yn+1, p|y)dp

=

∫

f (yn+1|p, y)f (p|y)dp

=

∫

f (yn+1|p)f (p|y)dp

• The last line follows because y and yn+1 are conditionally
independent given p in this model.

• Useful in model checking.
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Chain Binomial Model

Table : Rhodes Island measles data: chain binomial probabilities in the
Reed-Frost model in N = 334 households of size 3 with 1 initial infective
and 2 susceptibles, N3 = n111 + n12 = 275 is observed

Final
Chain Observed number

Chain probability Frequency frequency infected

1 −→ 0 q2 n1 34 1
1 −→ 1 −→ 0 2pq2 n11 25 2
1 −→ 1 −→ 1 2p2q n111 not observed 3
1 −→ 2 p2 n12 not observed 3

Total 1 N 334
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Complete data likelihood for q

• The multinomial complete data likelihood for q:

f (n1, n11,N3, n111|q)

=

(

334

n1, n11, n111,N3 − n111

)

(q2)n1(2q2
p)n11(2qp2)n111(p2)N3−n111

= constant × q
2n1+2n11+n111p

n11+2N3

• The observed data are (n1, n11,N3), but we do not observe
n111.

• We could estimate q using a marginal model, but won’t.



Outline Introduction Transmission Probability Simple Gibbs sampler

Gibbs sampler for chain binomial model

• The general idea of the Gibbs sampler is to sample the model
unknowns from a sequence of full conditional distributions and
to loop iteratively through the sequence.

• To sample one draw from each full conditional distribution at
each iteration, it is assumed that all of the other model
quantities are known at that iteration.

• In the theoretical lectures, it will be shown that that the Gibbs
sampler converges to the posterior distribution of the model
unknowns.

• In the Rhode Island measles data, we are interested in
augmenting the missing data n111 and estimating the
posterior distribution of q, the escape probability.
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Gibbs sampler for chain binomial model

• The joint distribution of the observations (n1, n11,N3) and the
model unknowns (n111, q) is

f (n1, n11,N3, n111, q) = f (n1, n11,N3, n111|q)× f (q)

complete data likelihood × prior

• We want to make inference about the joint posterior
distribution of the model unknowns

f (n111, q|n1, n11,N3)

• This is possible by sampling from the full conditionals (Gibbs
sampling): f (q|n1, n11,N3, n111) and f (n111|n1, n11,N3, q)
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Algorithm for Gibbs sampler for chain binomial model

1. Start with some initial values (q(0), n
(0)
111)

2. For t = 0 to M do

3. Sample q(t+1) ∼ f (q|n1, n11,N3, n
(t)
111)

4. Sample n
(t+1)
111 ∼ f (n111|n1, n11,N3, q

(t+1))

5. end for

6. How to get the two full conditionals in this model?
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Full conditional of chain 1 −→ 1 −→ 1

• Assume q is known

• Compute the conditional probability of chain 1 → 1 → 1 when
outbreak size is N = 3:

Pr(1 → 1 → 1|N = 3, q) =
Pr(N = 3, 1 → 1 → 1|q)

Pr(N = 3|q)

=
Pr(N = 3|1 → 1 → 1, q) Pr(1 → 1 → 1|q)

Pr(N = 3|1 → 1 → 1, q) Pr(1 → 1 → 1|q) + Pr(N = 3|1 → 2, q) Pr(1 → 2|q)

=
2p2q

2p2q + p2
=

2q

2q + 1
, (0 ≤ q < 1)
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The full conditional of n111

• We have found that

Pr(1 → 1 → 1|N = 3, q) =
2q

2q + 1

• So the full conditional distribution of n111 is

n111|(n1, n11,N3, q) ∼ Binomial(275, 2q/(2q + 1))
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The full conditional of q

• Assume that n111 is known, that is, assume we know the
complete data (n1, n11,N3, n111)

• Assume a prior distribution for q: q ∼ Beta(α, β),

f (q) ≡ f (q|α, β) ∝ qα−1(1− q)β−1

• The full conditional distribution of q :

f (q|n1, n11,N3, n111, α, β) ∝ f (n1, n11,N3, n111|q, α, β)f (q|α, β)

∝ q2n1+2n11+n111pn11+2N3 × qα−1(1− q)β−1

complete data likelihood × prior
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The full conditional of q

• The full conditional distribution of q is thus a Beta
distribution

q|complete data, α, β ∼ Beta(2n1 + 2n11 + n111 + α, n11 + 2N3 + β)

• A uniform prior on q corresponds to α = 1, β = 1.

• With the complete data, a natural point estimate of the
escape probability would be the mean of the Beta distribution,
i.e., the proportion of “escapes” out of all exposures:

2n1 + 2n11 + n111 + α

2n1 + 3n11 + 3n111 + 2n12 + α+ β
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Algorithm for Gibbs sampler for chain binomial model

1. Start with some initial values (q(0), n
(0)
111)

2. For t = 0 to M do

3. Sample q(t+1) ∼ Beta(2n1 + 2n11 + n
(t)
111 + α, n11 + 2N3 + β)

4. Sample n
(t+1)
111 ∼ Binomial(275, 2q(t+1)/(2q(t+1) + 1))

5. end for

6. Get summaries of the marginal posterior distributions.
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Posterior distributions of q and n111
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Summer Institute in Statistics and Modeling of Infectious Diseases
Module 4: MCMC Methods for Infectious Disease Studies

Instructors: Kari Auranen, Elizabeth Halloran and Vladimir Minin

July 11 – July 13, 2018

1 Probability refresher (self-study material)

We assume that we can assign probabilities to events — outcomes of a random experiment. For

example, tossing a coin results in one of two possible events: H =“heads” and T=“tails.” We also

need a concept of a random variable. Informally, a random variable X is a function or variable,

whose value is generated by a random experiment. For example, we can define a binary random

variable associated with a toss of a coin:

X =







1 if heads,

0 if tails.

Example: Discrete uniform random variable

Let X ∈ {1, 2, . . . , n}, with Pr (X = i) = 1/n for all i = 1, . . . , n.

Example: Bernoulli r.v.

X ∈ {0, 1} with Pr (X = 1) = p, Pr (X = 0) = 1− p for 0 ≤ p ≤ 1.

Example: Binomial r.v.

Let Xi ∼ Bernoulli(p). Then the number of successes Sn =
∑n

i=1Xi is called a binomial r.v. with

Pr (Sn = k) =

(
n

k

)

pk(1− p)n−k.

Example: Geometric r.v.

X1,X2, . . . ordered Bernoulli(p). Let N = min{n : Xn = 1} be the number of trials until the first

success occurs, including the the successful trial.

Pr (N = n) = (1− p)n−1p for n = 1, 2, . . .

Note. There is an alternative definition of the geometric distribution does not count the successful

trial so that Pr (N = n) = (1− p)np.

We defined all discrete random variables above using probabilities of X taking a particu-

lar value. A function that assigns probabilities to random variable values is called a probabil-

ity mass function. However, a more general way to define random variables is by specifying a

cumulative distribution function.

Definition. F (x) = Pr (X ≤ x) is called the cumulative distribution function (cdf) of X.

1
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Properties of cdf:

1. 0 ≤ F (x) ≤ 1.

2. F (x) ≤ F (y) for x ≤ y.

3. limx→y+ = F (y) (F (x) is right-continuous).

4. limx→−∞ = Pr (X = −∞) (usually = 0)

5. limx→∞ = 1− Pr (X = ∞) (usually = 1)

6. Pr (X = x) = F (x)− F (x−)

Example: Discrete uniform random variable

For random variable U uniformly distributed over {1, 2, . . . , n}, its cdf is given by

F (x) =







0 if x < 1,

1
n if 1 ≤ x < 2,

2
n if 2 ≤ x < 3,

...

n−1
n if n− 1 ≤ x < n,

1 if x ≥ n.

The probability mass function and cdf of U, with n = 10, are shown in Figure 1, which also contains

the probability mass function and cdf of a geometric random variable.

For continuous random variables, the analog of the probability mass function is a probability

density function, defined as follows.

Definition. If F (x) =
∫ x
−∞ f(x)dx for some f(x) ≥ 0, then f(x) is called probability density function

of X. If X has a probability density function, we say that X is absolutely continuous.

Note.
∫ b
a f(x)dx = F (b)− F (a) = Pr (a ≤ X ≤ b) for a ≤ b. Moreover, d

dxF (x) = f(x).

Example: Uniform random variable on [0, 1]

Random variable U with density

f(x) =







1 if x ∈ [0, 1],

0 otherwise.
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Figure 1: Probability mass functions (left column) and cumulative distribution functions (right

column) of the discrete uniform random variable over {1, 2, . . . , 10} (top row) and geometric random

variable with success probability p = 0.2 (bottom row).
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The cdf of U is

F (x) =







0 if x < 0.

x if 0 ≤ x ≤ 1,

1 if x > 1.

The top row of Figure 2 shows the probability mass function and cdf of U .

Definition. Expectation is defined as E[g(X)] =
∫∞
−∞ g(x)dF (x), where the integral is taken with

respect to the measure induced by the cdf, aka probability measure. More concretely,

1. For discrete random variable X, E[g(X)] =
∑∞

k=1 g(xk)Pr (X = xk).

2. For absolutely continuous random variable X, E[g(X)] =
∫∞
−∞ g(x)f(x)dx.

Example: Exponential r.v.

Exponential random variable has density f(x) = λe−λx1{x≥0}, where λ > 0 is the rate parameter.

Let X ∼ Exp(λ). The probability mass function and cdf of an exponential random variable are

shown in the bottom row of Figure 2. Then

E(X) =

∫ ∞

0
xλe−λxdx =

[

u = x e−λxdx = dv

du = dx − e−λx

λ = v

]

= λ

[

−x
e−λx

λ

∣
∣
∣

∞

0
+

∫ ∞

0

e−λx

λ
dx

]

= λ

[

0 +
1

λ2

]

=
1

λ
.

Expectations are linear operators, meaning that for any collection of random variablesX1, . . . ,Xn,

E

(
n∑

i=1

aiXi

)

=

n∑

i=1

aiE(Xi).

Linearity does not hold for the variance in general. However, if random variables X1, . . . ,Xn are

independent, then

Var

(
n∑

i=1

aiXi

)

=

n∑

i=1

a2iVar(Xi).

Definition. For events A and B in Ω we define conditional probability

Pr (B |A) = Pr (A
⋂

B)

Pr (A)
.

If we have a r.v. X defined on Ω, then we can define conditional expectation

E (X |A) =
E(X1{A})

Pr (A)
.

Conditioning on random variables is a little tricky, so we’ll limit our discussion of this concept

to

4
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Figure 2: Probability density functions (left column) and cumulative distribution functions (right

column) of the continuous uniform random variable on [0, 1] (top row) and exponential random

variable with rate parameter λ = 2.4 (bottom row).
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1. discrete case:

Pr (X = x |Y = y) =
Pr (X = x, Y = y)

Pr (Y = y)
,

and

2. absolutely continuous case:

FX | Y (x|y) =
∫ x
−∞ fXY (z, y)dz

fY (y)
and fX |Y (x|y) =

fXY (x, y)

fY (y)
,

where fXY (x, y) is the joint density of X and Y and fY (y) =
∫∞
−∞ fXY (x, y)dx is the marginal

density of Y .

Definition. Events A and B are independent if Pr (A
⋂

B) = Pr (A) Pr (B). Random variables X

and Y are called independent if events {X ≤ a} and {Y ≤ b} are independent for all a, b ∈ R, i.e.

Pr (X ≤ a, Y ≤ b) = Pr (X ≤ a) Pr (Y ≤ b).

Note. If r.v.s X and Y are independent, then E (XY ) = E (X) E (Y ) and E (X |Y ) = E (X). The

last equality says that Y carries no information about X.

Example: Hypergeometric distribution

Let X1, . . . ,Xn
iid∼ Bernoulli(p), Sn =

∑n
i=1Xi, and Sm =

∑m
i=1Xi for m < n. We want to find the

distribution of Sm conditional on Sn. We start with probability mass function

Pr (Sm = j |Sn = k) =
Pr (Sm = j, Sn = k)

Pr (Sn = k)
=

Pr (
∑m

i=1 Xi = j,
∑n

i=1Xi = k)

Pr (Sn = k)

=
Pr
(∑m

i=1 Xi = j,
∑n

i=m+1Xi = k − j
)

Pr (Sn = k)
= [independence] =

Pr (
∑m

i=1 Xi = j) Pr
(∑n

i=m+1 Xi = k − j
)

Pr (Sn = k)

=

(m
j

)
pj(1− p)m−j

(n−m
k−j

)
pk−j(1− p)n−m−k+j

(n
k

)
pk(1− p)n−k

=

(m
j

)(n−m
k−j

)

(n
k

) .

This is the probability mass function of the hypergeometric distribution, which usually is defined

as the number of red balls among the m balls drawn from an urn with k red and n− k blue balls.

E (Sm |Sn = k) =
m∑

i=1

E (Xi |Sn = k) = [symmetry] = mE (X1 |Sn = k) =
m

n

n∑

i=1

E (Xi |Sn = k)

=
m

n
E (Sn |Sn = k) =

mk

n
.

Notice that X1, . . . ,Xn don’t have to be Bernoulli for E (Sm |Sn) = mSn/n to hold.

Law of total probability If B1, . . . , Bn are mutually exclusive events and
⋃n

i=1 Bi = Ω, then

Pr (A) =
n∑

i=1

Pr
(

A
⋂

Bi

)

=
n∑

i=1

Pr (A |Bi) Pr (Bi) .

6
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Law of total expectation Recall that E (X) is a scalar, but E (X |Y ) is a random variable. Let

X and Y be discrete r.v.s.

E (X |Y = y) =

∞∑

k=1

xkPr (X = xk |Y = y) .

Proof.

E [E (X |Y )] =
∞∑

k=1

E (X |Y = yk) Pr (Y = yk) =
∞∑

k=1

E
(
X1{Y =yk}

)

Pr (Y = yk)
Pr (Y = yk)

=
∞∑

k=1

E
(
X1{Y =yk}

)
= E

(

X1{
⋃∞

k=1{Y=yk}}

)

= E(X) .

In general, E [E (X |Y )] = E (X). In fact, this equality is often used as a definition of the

conditional expectation, when conditioning on a random variable [Durret, 2004].

Law of total variance Decomposing variance using conditioning is only slightly more compli-

cated:

Var(X) = E
(
X2
)
− E (X)2 = [law of total expectation] = E

[
E
(
X2 |Y

)]
− E [E (X |Y )]2

= [def of variance] = E
[

Var(X | Y ) + E (X |Y )2
]

− E [E (X |Y )]2 = E [Var(X | Y )]

+
{

E
[

E (X |Y )2
]

− E [E (X |Y )]2
}

= [def of variance] = E [Var(X | Y )] + Var [E(X | Y )] .

Later in the course, we will be using the following two limit theorems that describe asymptotic

behavior of empirical averages of random variables.

Theorem. Strong Law of Large Numbers (SLLN). Let X1,X2, . . . be independent and identically

distributed (iid) random variables with µ = E(X1) < ∞. Then

lim
n→∞

1

n

n∑

i=1

Xi = µ.

SLLN says that the empirical average of iid random variables converges to the theoretical

average/expectation.

Theorem. Central Limit Theorem (CLT). Let X1,X2, . . . be independent and identically dis-

tributed (iid) random variables with µ = E(X1) < ∞ and 0 < σ2 = Var(X1) < ∞ and let

X̄n = (1/n)
∑n

i=1Xi. Then

√
n(X̄n − µ)

σ
∼ N (0, 1) approximately for large n.

Informally, CLT says that for large n, the empirical average behaves as N (µ, σ2/n). Scaling of

the variance by 1/n implies that averaging reduces variability, which makes intuitive sense.

7
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2 Monte Carlo methods

The rest of the notes are largely based on [Robert and Casella, 2004]. Although our driving

applications of Monte Carlo integration will mostly revolve around Bayesian inference, we would

like to point out that all Monte Carlo methods can (should?) be viewed as a numerical integration

problem. Such problems usually start with either discrete (x) or continuous (θ) vector of random

variables. Despite the fact that distributions of these vectors are known only up to a proportionality

constant, we are interested in taking expectations with respect to these distributions. Compare the

following integration problems faced by physicists and Bayesian statisticians.

Statistical mechanics Bayesian statistics

Pr (x) =
1

Z
e−E(x) Pr (θ |y) = 1

C
Pr (y |θ) Pr (θ)

Objective: E[f(x)] =
∑

x
f(x)Pr (x) Objective: E[f(θ) |y] =

∫
f(θ)Pr (θ |y) dθ

Note. Many applications involve both, intractable summation and integration:

E[f(x,θ)] =
∑

x

∫

f(x, θ)Pr (x,θ) dθ.

The above integration problems are difficult to solve even numerically, especially in high dimensions,

e.g. when the length of x and/or θ is on the order of 103−106. All Monte Carlo techniques attempt

to solve such high dimensional integration problems by stochastic simulation.

2.1 Classical Monte Carlo

In general, Monte Carlo integration aims at approximating expectations of the form

E[h(X)] =

∫

h(x)f(x)dx. (1)

If X1, ...,Xn
iid∼f(x) and E[h(X1)] < ∞ , then we know from the strong law of large number (SLLN)

that
1

n

n∑

i=1

h(Xi)
a.s.→Ef [h(X1)].

Therefore, we can approximate the desired expectation with

h̄n =
1

n

n∑

i=1

h(Xi) ≈ Ef [h(X1)]

for some large, yet finite n. Conveniently, the variance of this Monte Carlo estimator can be

approximated as

Var(h̄n) =
1

n2
× n×Var[h(X1)] =

1

n

∫

{h(x)− Ef [h(x)]}2 f(x)dx ≈ 1

n2

n∑

i=1

[
h(Xi)− h̄n

]2
= vn

8
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Moreover, the central limit theorem says that

h̄n − Ef [h(X1)]√
vn

D→N (0, 1),

allowing us to estimate the Monte Carlo error, e.g. h̄n ± 1.96
√
vn.

Importance Sampling

In many situations classical Monte Carlo is impossible, because we can not sample from the target

distribution f(x). Therefore, we would like to be able to compute the integral (1) by sampling from

some other, perhaps simpler, distribution g(x). Importance sampling allows us to accomplish this

task. The main idea is to rewrite the expectation of interest as

Ef [h(X)] =

∫

h(x)
f(x)

g(x)
g(x)dx = Eg

[

h(X)
f(X)

g(X)

]

.

This representation suggests that we can generate X1, ...,Xn
iid∼g(x) and use the SLLN again to

arrive at the approximation

Ef [h(X)] ≈ 1

n

n∑

i=1

f(Xi)

g(Xi)
h(Xi).

Notice that the above approximation still requires knowledge of the normalizing constant of f(x),

which is unrealistic in most applications of importance sampling. Luckily there is an alternative

importance sampling estimator that is as easy to compute as the original one:

Ef [h(X)] ≈
∑n

i=1 h(Xi)
f(Xi)
g(Xi)

∑n
i=1

f(Xi)
g(Xi)

.

In this estimator, the normalizing constants of both f(x) and g(x) cancel out and the denominator

converges to
∫ f(x)

g(x)g(x)dx =
∫
f(x)dx = 1 by the SLLN again.

As illustrated by the next example, the importance sampling can be useful even if we can easily

simulate from f(x), because importance sampling can be used to reduce the Monte Carlo variance.

In conclusion, we point out that the most difficult aspect of classical Monte Carlo is generating

iid samples. Even importance sampling has severe limitations in high dimensions. In such difficult

cases, Markov chain Monte Carlo (MCMC) can come to rescue. Before we master this numerical

integration technique we need to refresh our knowledge of Markov chains.

Example: Estimating the tail of the standard normal distribution

See practical in ‘dtmc-lab.pdf’.

2.2 Elementary Markov chain theory

In this section we will cover some basic results for Markov chains. For a more detailed treatment,

see for example [Brémaud, 1998].

9
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2.2.1 Definitions and examples

Definition. A stochastic process is a family of ordered random variables Xt, where t ranges over

a suitable index set T , e.g. T1 = [0,∞), T2 = {1, 2, ...}.

Definition. A discrete time stochastic process {Xn}∞n=0 is called a Markov chain if for all n ≥ 0

and for all i0, i1, ..., in−1, i, j,

P(Xn+1 = j |Xn = i,Xn−1 = in−1, ...,X0 = i0) = P(Xn+1 = j |Xn = i).

We callXn a homogeneous Markov chain if Pr (Xn+1 = j |Xn = i) is independent of n, and inhomogeneous

otherwise. We also define 1-step transition probabilities

pij = Pr (X1 = j |X0 = i)
∑

j

pij = 1, pij ≥ 0 for all i, j

and n-step transition probabilities

p
(n)
ij = Pr (Xn = j |X0 = i) ,

∑

j

p
(n)
ij = 1, p

(n)
ij ≥ 0 for all i, j

and collect them into transition probability matrixP = {pij} and n-step transition probability matrix

P(n) = {p(n)ij }.

Note. A Markov chained is fully specified by its transition probability matrix P and an initial

distribution ν.

Note. It is easy to show that n-step transition probabilities can be obtained by repeatedly multi-

plying transition probability matrix by itself. More precisely, P(n) = Pn. This observation makes it

easy to compute the marginal distribution of Xn, ν
(n) = (ν

(n)
1 , . . . , ν

(n)
s ), where ν

(n)
i = Pr(Xn = i).

Then

ν(n) = νPn.

Definition. A Markov chain with transition probability matrix P is called irreducible if for any

pair of states (i, j) there exists n > 0 such that p
(n)
ij > 0 and reducible otherwise. In other words,

an irreducible Markov chain can get from any state to any state in a finite number of steps with

positive provability.

Example: SIS model

Suppose we observe an individual over a sequence of days n = 1, 2, . . . and classify this individual

each day as

Xn =







I if infected

S if susceptible.

10
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We would like to construct a stochastic model for the sequence {Xn}∞n=1. One possibility is to

assume that Xns are independent and P(Xn = I) = 1 − P(Xn = S) = p. However, this

model is not very realistic since we know from experience that the individual is more likely

to stay infected if he or she is already infected. Since Markov chains are the simplest mod-

els that allow us to relax independence, we proceed by defining a transition probability matrix

P =

(

1− p p

q 1− q

)

The directed graph with labeled edges, shown next to the matrix, graphically encodes the same

information contained in the transition probability matrix. Such graphs are called transition graphs

of Markov chains. If p and q are strictly positive, then the Markov chain is irreducible.

2.2.2 Stationary distribution and long term behavior

Definition. Any probability distribution π on state space E that satisfies πT = πTP (also called

the global balance equation) is called a stationary (or equilibrium) distribution of the corresponding

homogeneous Markov chain.

Note. πT = πTP if and only if π(i) =
∑

j∈E πjpji for all i ∈ E.

Example: SIS model continued

Let’s assume that 0 < p < 1 and 0 < q < 1 in the SIS model. Then global equations become

(π1, π2)

(

1− p p

q 1− q

)

= (π1, π2) ⇒







π1(1− p) + π2q = π1

π1p+ (1− q)π2 = π2

⇒ π1 =
q

p
π2.

Adding the constraint π1 + π2 = 1, we obtain the unique solution

π1 =
q

p+ q
and π2 =

p

p+ q
.

Not all Markov chains have a stationary distribution and if a stationary distribution exists, it

may be not unique as illustrated by the following example.

Example: Gambler’s ruin

In this example, we assume that a gambler can increase or decrease his/her fortune by one with

corresponding probabilities p and q = 1−p. The game ends as soon the gambler runs out of money

or reaches a predefined fortune, 4 in our example. The transition matrix and the corresponding

transition graph are shown below.











1 0 0 0 0

q 0 p 0 0

0 q 0 p 0

0 0 q 0 p

0 0 0 0 1












0 1 2 3 4

p p p

q q q

1 1.
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The chain is reducible, because it is impossible to get out of states 0 and 4. Such states are called

absorbing states. It is easy to show that vector πT = (α, 0, 0, 0, 1 − α) satisfies πTP = π for any

α ∈ [0, 1].

Global balance equations can be hard to check in practice when the Markov chain state space

is large. However, there is an easier set of equations that one can check to ensure that a stationary

distribution exists.

Definition. A probability vector π is said to satisfy detailed balance equations with respect to

stochastic matrix P if

πipij = πjpji for all i, j.

Proposition. (detail balance ⇒ global balance) Let P be a transition probability matrix of Xn on

E and let π be a probability distribution on E. If π satisfies detailed balance equations, then π also

satisfies global balance equations.

Proof : πipij = πjpji ⇒
∑

j∈E πipij = πi · 1 =
∑

j∈E πjpji.

Note. Markov chains with a stationary distribution that satisfies detailed balance equations are of-

ten called reversible Markov chains. However, there is some disagreement among textbook authors

about this term. For example, some authors require reversible chains to have initial distribution be-

ing equal to the stationary distribution. Irreducibility is also often added to the list of requirements

for reversible Markov chains.

Example: Ehrenfest model of diffusion

See practical in ‘dtmc-lab.pdf’.

Definition. An irreducible Markov chain is called recurrent if starting from any state the chain

returns this state eventually with probability one. The recurrent chain is called positive recurrent

if all expected return times are finite.

Proposition. If a Markov chain is irreducible and positive recurrent, then there exists a stationary

distribution and this distribution is unique.

Note. Irreducible Markov chains on finite state spaces are always positive recurrent.

Proposition. An irreducible Markov chain is positive recurrent if and only if the chain possesses

a stationary distribution.

Theorem. (Ergodic Theorem) Let {Xn} be an irreducible positive recurrent Markov chain with

stationary distribution π and let f : E → R be an arbitrary function that maps Markov chain states

12
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to real numbers satisfying
∑

i∈E |f(i)|πi < ∞. Then for any initial distribution

lim
N→∞

1

N

N∑

k=1

f(Xk)

︸ ︷︷ ︸

time average

=
∑

i∈E

f(i)πi = Eπ[f(X)]
︸ ︷︷ ︸

space average

.

Example: Ehrenfest model of diffusion (continued)

Separate practical.

Note. Just as the strong law of large numbers is the key behind Monte Carlo simulations, the

ergodic theorem for Markov Chains is the reason why Markov chain Monte Carlo (MCMC) works.

This remark naturally leads us to the next section.

2.3 Markov chain Monte Carlo

Before we dive into MCMC, let’s ask ourselves why we are not happy with classical Monte Carlo

and if there is any need to invent something more complicated. The main motivation for developing

MCMC is the fact that classical Monte Carlo is very hard to implement in high dimensional

spaces. MCMC also often experiences difficulties in high dimensions. However, for almost any

high dimensional integration, it is fairly straightforward to formulate an MCMC algorithm, while

the same is not true for classical Monte Carlo.

Recall that our objective in MCMC is the same as in classical Monte Carlo: to estimate expec-

tations of the form

Eπ[h(x)] =
∑

x∈E

πxh(x).

Notice that here we assume that our state space is discrete so the above expectation is a finite sum.

However we assume that the size of E is so large that carrying out this summation even on fastest

computers is impractical. We also assume that we do not know how to produce iid samples from π.

The general MCMC strategy then is to construct an ergodic Markov chain {Xn} with stationary

distribution π. Then from the ergodic theorem and N realizations from the Markov chain, we get

Eπ[h(x)] ≈
1

N

N∑

i=1

h(Xi).

The question is how to construct such a Markov chain, {Xn}.

2.3.1 Metropolis-Hastings algorithm

As always in MCMC, we start with a target distribution π. Given some initial value X0 = x0, we

construct a Markov chain according to the following set of rules [Hastings, 1970].

Proposition. The Metropolis-Hastings algorithm generates a Markov chain with stationary distri-

bution π.

13
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Algorithm 2.1 Metropolis-Hastings Algorithm: approximate Eπ[h(x)]

1: Start with some initial value X0 = x0.

2: for n = 0 to N do

3: Simulate a candidate value Y ∼ q(j |Xn = i). Suppose Y = j.

4: Compute the Metropolis-Hastings acceptance probability

aij = min

{
πjq(i | j)
πiq(j | i)

, 1

}

5: Generate U ∼ Unif[0, 1].

6: Accept the candidate Y = j if U ≤ aij , otherwise set Xn+1 = Xn. More specifically, set

Xn+1 =







Y if U ≤ aij

Xn if U > aij

7: end for

8: return 1
N

∑N
i=1 h(Xi).

Proof : Let P = {pij} be the transition matrix for Xn. Then for i 
= j,

pij = Pr(Xn+1 = j |Xn = i) = Pr(X1 = j |X0 = i) = aijq(j | i).

Again, for i 
= j,

πipij = πiaijq(j | i) =







πiq(j | i)
πjq(i | j)
πiq(j | i)

if
πjq(i | j)
πiq(j | i)

≤ 1

πiq(j | i) · 1 otherwise

=







πjq(i | j) if
πjq(i | j)
πiq(j | i)

≤ 1

πiq(j | i) otherwise

and

πjpji = πjajiq(i | j) =







πjq(i | j) · 1 if
πjq(i | j)
πiq(j | i)

≤ 1

πjq(i | j)
πiq(j | i)
πjq(i | j)

otherwise
=







πjq(i | j) if
πjq(i | j)
πiq(j | i)

≤ 1

πiq(j | i) otherwise

So we have shown πipij = πjpji. We require πi > 0 for all i and q(i|j) > 0 ⇔ q(j|i) > 0. Since we

have detailed balance, we conclude that π is a stationary distribution.

Note. If we choose {q(i, j)} so that {Xn} is irreducible, then {Xn} is positive recurrent by the

stationary distribution criterion. Therefore, we can use the Ergodic theorem.

Note. We do not need a normalizing constant of π in order to execute the Metropolis-Hastings

algorithm. This is important, because in most applications of MCMC (e.g., Bayesian statistics) the

target distribution is not normalized and the normalization constant is unknown.
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Example: Toric Ising model on a circle

We model ferromagnetism with a set of n electron spins, x. We assume that spins are arranged on

a circles and have two directions, denoted by 1 and −1. The Gibbs distribution of configuration x

is

π(x) =
1

Z
eβ

∑n
i=1 xixi+1 ,

where the normalizing constant

Z =
∑

x∈{1,−1}n

eβ
∑n

i=1 xixi+1

is called a partition function. In this particular example, Z can be computed using a transfer

matrix method, but we will pretend that Z is not available to us.

To set up a Metropolis-Hastings algorithm, we need a proposal mechanism to move from one

configuration to another. At each step, let’s choose a site uniformly at random and change the

direction of the spin. This translates to the proposal probabilities

q(y |x) = q(x |y) =







1
n if x and y differ at exactly one location,

0 otherwise.

If x(t) is the current state of the Markov chain and x′ is a proposed state with the jth site changed

to the opposite direction, then

a
x(t),x′ =

π(x′) 1n
π(x(t)) 1n

=
eβ

∑
i/∈{j,j−1} x

(t)
i x

(t)
i+1eβ(−x

(t)
j−1x

(t)
j −x

(t)
j x

(t)
j+1)

eβ
∑

i/∈{j,j−1} x
(t)
i x

(t)
i+1eβ(x

(t)
j−1x

(t)
j +x

(t)
j x

(t)
j+1)

= e−2βx
(t)
j (x

(t)
j−1+x

(t)
j+1).

Clearly, this proposal mechanism makes it possible to get from any state to any other state of spin

configurations, so the Metropolis-Hastings chain is irreducible.

Variants of Metropolis-Hastings:

1. q(i | j) = q(j | i) - symmetric proposal. This is the original Metropolis algorithm [Metropolis

et al., 1953]. Here, the acceptance probability simplifies to aij = min
{

πj

πi
, 1
}

. So we move to

a more probable state with probability 1, and move to less probable states sometimes (more

rarely if the candidate is much less probable).

2. Independence sampler: q(j | i) = q(j). Note this is not the same as iid sampling. Indepen-

dence sampler is still a Markov chain, since the sampler can stay in the same place with some

probability at each step of the algorithm.

Metropolis-Hastings algorithm can be executed without any difficulties on continuous state

spaces. This requires defining Markov chains on continuous state spaces.

15



SISMID, Module 4 Lecture Notes Summer 2018

Definition. A sequence of r.v.s X0,X1, . . . is called a Markov chain on a state space E if ∀t and
∀A ⊂ E

Pr (Xn+1 ∈ A |Xn,Xn−1, . . . ,X0) = Pr (Xn+1 ∈ A |Xn) = [in homogeneous case] = Pr (X1 ∈ A |X0) .

A family of functions Pr (X1 ∈ A |x) = K(x,A) is called transition kernel.

If there exists f(x, y) such that

Pr (X1 ∈ A |x) =
∫

A
f(x, y)dy,

then f(x, y) is called transition kernel density. This is a direct analog of a transition probability

matrix in discrete state spaces.

A lot of notions transfer from discrete to continuous state spaces: irreducibility, periodicity, etc.

Chapman-Kolmogorov, for example takes the following form:

Km+n(x,A) =

∫

E
Kn(y,A)Km(x, dy),

where Kn(x,A) = Pr (Xn ∈ A |x).

Definition. A probability distribution π on E is called a stationary distribution of a Markov

process with transition kernel K(x,A) if for any Borel set B in E

π(B) =

∫

E
K(x,B)π(dx).

If transition kernel density is available, then global balance equation can be re-written

π(y) =

∫

E
π(x)f(x, y)dx.

Using the introduced terminology, we define a Metropolis-Hastings algorithm for continuous

state spaces Let f(x) be a target density, where x is a vector in R
n now. Then we simply can

replace proposal probabilities q(j | i) with proposal densities q(y |x) so that Metropolis-Hastings

acceptance ratio becomes

a(x,y) = min

{
f(y)q(x |y)
f(x)q(y |x) , 1

}

(2)

The rest of the algorithm remains intact. As before, we need to ensure that the resulting Markov

chain is irreducible. One way to do this is to require that q(y |x) > 0 for all x,y ∈ E. Alternately,

a less restrictive assumption is that there exists some fixed δ and ǫ so that q(y |x) > ǫ if |x−y| < δ.

A common example of a proposal scheme is a random walk. The proposal is given by

Y = Xn + ǫn (3)

where ǫn is some random perturbation independent of Xn with E(ǫn) = 0. By convention, random

walk proposals are always taken to be symmetric and have the following form

q(y |x) = q(|y − x|). (4)

Example: Approximating standard normal distribution

Separate practical
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2.3.2 Combining Markov kernels

Suppose we have constructed m transition kernels with stationary distribution π. In discrete

state spaces, this means that we have m transition matrices, P1, . . . ,Pm, where πTPi = π for

all i = 1, . . . ,m. There are two simple ways to combine these transition kernels. First, we can

construct a Markov chain, where at each step we sequentially generate new states from all kernels

in a predetermined order. The transition probability matrix of this new Markov chain is

S = P1 × · · · ×Pm.

It is easy to show that πTS = π. So as long the new Markov chain is irreducible, we can use the

Ergodic theorem applied to the new Markov chain. In the second method of combining Markov

kernels, we first create a probability vector α = (α1, . . . , αm). Next, we first randomly select kernel

i with probability αi and then use this kernel to advance the Markov chain. The corresponding

transition kernel is

R =

m∑

i=1

αiPi.

Again, πTR = π, so this MCMC sampling strategy is valid as long as we can guarantee irreducibil-

ity.

2.3.3 Gibbs sampling

Suppose now that our state space is a Cartesian product of smaller subspaces, E = E1 × · · · ×Em.

The target distribution or density is f(x) and we still want to calculate Ef [h(x)]. We assume

that we can sample from full conditional distributions xi |x−i, where the notation x−i means all

elements of x except the ith component. It turns out that if keep iteratively sampling from these

full conditionals, we will form a Markov chain with the required target distribution or density f(x).

More formally, let’s look at the sequential scan Gibbs sampling algorithm below.

Algorithm 2.2 Sequential Scan Gibbs Sampling Algorithm: approximate Ef [h(x)]

1: Start with some initial value x(0).

2: for t = 0 to N do

3: Sample x
(t+1)
1 ∼ f1

(

x1 |x(t)
−1

)

4: Sample x
(t+1)
2 ∼ f2

(

x2 |x(t+1)
1 , x

(t)
3 , ..., x

(t)
m

)

...

5: Sample x
(t+1)
m ∼ fm

(

xm |x(t+1)
−m

)

6: end for

7: return 1
N

∑N
t=1 h(x

(t)).
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The question remains why the Gibbs sampling algorithm actually works. Consider one possible

move in the Gibbs sampling procedure from xcur → xnew, where xnew is obtained by replacing

the ith component in xcur with a draw from the full conditional fi
(
xi |xcur

−i

)
. Now, let’s view

this “move” in light of the Metropolis-Hastings algorithm. Our proposal density will be the full

conditional itself. Then the Metropolis-Hastings acceptance ratio becomes

a(xcur,xnew) = min

{

f
(
xnewi ,xcur

−i

)
fi
(
xcuri |xcur

−i

)

f
(
xcuri ,xcur

−i

)
fi
(
xnewi |xcur

−i

) , 1

}

= min

{

f
(
xcur
−i

)

f
(
xcur
−i

) , 1

}

= 1. (5)

So when we use full conditionals as our proposals in the Metropolis-Hastings step, we always

accept. This means that drawing from a full conditional distribution produces a Markov chain

with stationary distribution f(x). Clearly, we can not keep updating just the ith component,

because we will not be able to explore the whole state space this way. Therefore, we update each

component in turn. This is not the only way to execute Gibbs sampling. We can also randomly

select an component to update. This is called a random scan Gibbs sampling.

Algorithm 2.3 Random Scan Gibbs Sampling Algorithm: approximate Ef [h(x)]

1: Start with some initial value x0.

2: for t = 0 to N do

3: Sample index i by drawing a random variable with probability mass function {α1, . . . , αm}.
4: Sample x

(t+1)
i ∼ fi

(

xi | x(t)
−i

)

5: end for

6: return 1
N

∑N
t=1 h(x

t).

Note. Although it is not obvious, but in many cases sampling from full conditional distribution

does not require knowing the normalizing constant of the target distribution.

Example: Ising model (continued)

Recall that in the Ising model

π(x) =
1

Z
eβ

∑k
i=1 xixi+1 ,

where x = (x1, . . . , xk). The full conditional is

π(xj | x−j) =
π(x)

π(x−j)
=

π(x)
∑

y∈{−1,1} π(y,x−j)
=

1
Z e

β
∑k

i=1 xixi+1

1
Z e

β
∑

i/∈{j,j−1} xixi+1
[
eβ(xj−1+xj+1) + e−β(xj−1+xj+1)

]

=
eβ(xj−1xj+xjxj+1)

eβ(xj−1+xj+1) + e−β(xj−1+xj+1)
.

2.3.4 Combining Gibbs and Metropolis-Hastings samplers

Our discussion of combining Markov kernels suggests that it it is possible to combine Gibbs and

Metropolis-Hastings steps in MCMC sampler.
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Example: Beta-binomial hierarchical model

Separate practical

2.3.5 Variance of MCMC estimators

Let X1,X2, . . . be an ergodic Markov chain and

ĥ =
1

N

N∑

i=1

h(Xi)

be the corresponding estimate of Ef [h(X)], where f is the stationary distribution of the chain.

Estimating the variance of this estimator is complicated by the dependence among X1,X2, . . . ,XN .

One simple way to get around it is to subsample the Markov chain output so that the resulting

sample is approximately iid. Then, the variance can be approximated as before with

v̂ =
1

N2

N∑

i=1

[h(Xi)− ĥ]2.

Subsampling can be wasteful and impractical for slow mixing chains. One way to quantify the

loss of efficiency due to dependence among samples is to compute the effective sample size,

N̂eff =
N

κh
,

where

κh = 1 + 2

∞∑

i=1

corr[h(X0), h(Xi)]

is the autocorrelation time that can be estimated using spectral analysis for time series. After N̂eff

is obtained, the variance of ĥ is computed as

ṽ =
1

N

1

Neff

N∑

i=1

[h(Xi)− ĥ]2.

2.3.6 Convergence diagnostics

Although there is no definitive way to tell whether one ran a Markov chain long enough, several

useful diagnostic tools can illuminate problems with the sampler, bugs in the code, and suggest

ways to improve the design of the MCMC sampler. We organize these tools into the following

categories:

1. Visualizing MCMC output. Trace plots provide a useful method for detecting problems with

MCMC convergence and mixing. Ideally, trace plots of unnormalized log posterior and model

parameters should look like stationary time series. Slowly mixing Markov chains produce

trace plots with high autocorrelation, which can be further visualized by autocorrelation

plots at different lags. Slow mixing does not imply lack of convergence.
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2. Comparing batches. We take two vectors from MCMC output: (θ(1), . . . ,θT/2) and (θ(T/2+1),

. . . ,θT ). If MCMC achieved stationarity at the time of collecting these batches, then both

vectors follow the same stationary distribution. To test this hypothesis, we can apply

Kolmogorov-Smirnov test, for example.

3. Renewal theory methods. Monitor return times of the Markov chain to a particular state

and check whether these return times are iid. Care is needed on continuous state-spaces. See

[Mykland et al., 1995] for details.

4. Comparing multiple chains, started from random initial conditions. There are many ways

of performing such a comparison. One popular method is called Potential Scale Reduction

Factor (PSRF) due to Gelman and Rubin [1992].

Many useful diagnostic tools are implemented in R package CODA [Plummer et al., 2006]. Cowles

and Carlin [1995] and Brook and Roberts [1998] review many of the methods in depth.

2.3.7 Special topics

1. Perfect sampling. Strictly speaking perfect sampling is a Monte Carlo, not Markov chain

Monte Carlo method. However, the algorithm relies on running Markov chains. Coupling

these Markov chains in a certain way (coupling from the past), allows one to generate a

sample from the stationary distribution exactly [Propp and Wilson, 1996].

2. Green [1995] formally introduced a Metropolis-Hastings algorithm for sampling parameter

spaces with variable dimensions. This class of MCMC is called reversible jump MCMC

(rjMCMC). Newton et al. [1992] and Arjas and Gasbarra [1994] have developed reversible

jump procedure before Peter Green popularized these algorithms with his now classical 1995

paper.

3. Simulated tempering. Simulated tempering, proposed by Geyer and Thompson [1995], con-

structs a multivariate Markov chain (X(1), . . . ,X(n) to sample from the vector-valued function

(f(x), f1/τ1(x), . . . , f1/τn(x))T , The auxiliary “heated” chains allow for better exploration of

multimodal targets. The idea is similar in spirit to simulated annealing.

4. Sequential importance sampling and particle filters. These methods are useful for sequential

building of instrumental densities in high dimensions. The main idea is to use the following

representation:

f(x1, . . . , xn) = f(x1 | x2, . . . , xn)f(x2 | x3, . . . , xn) · · · f(xn).

Using specific structure of the problem at hand, conditioning often simplifies due to condi-

tional independences [Liu and Chen, 1998, Chen et al., 2005].
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Model checking, hierarchical modeling and

combined M-H and Gibbs

SISMID/July 11–13, 2018

Instructors: Vladimir Minin, Kari Auranen, Elizabeth Halloran



Outline

◮ Chain binomial model for household outbreaks of measles

◮ Bayesian analysis of incompletely observed data, using data
augmentation (cf. the earlier lecture and computer lab)

◮ Checking the model fit through comparison of predictive data
with the observed data of the final number infected

◮ Model extension by allowing heterogeneity across households
→ a hierarchical model

◮ Implementation of posterior sampling in the hierarchical
model by a combined Gibbs and Metropolis algorithm



The observed outbreak sizes

Recall the observed data in the chain binomial model:

Chain Chain Frequency Observed Final number
probability frequency infected

1 q2j n1 34 1

1→1 2q2j pj n11 25 2

1→1→1 2qjp
2
j n111 not observed 3

1→2 p2j n12 not observed 3

Total 1 N 334

◮ If the final number infected is 1 or 2, the actual chain is
observed

◮ If the final number infected is 3, the actual chain data are not
observed
◮ We still know that N3 ≡ n111 + n12 = 275

◮ In the previous analysis, we assumed qj = q for
j = 1, . . . , 334, i.e., for all 334 households



Prediction

◮ Recall that new (predictive) data y pred can be generated by
drawing from their posterior predictive distribution f (y pred|y)

◮ Posterior predictive distribution because

◮ conditioning on the observed data y

◮ predicting a future observable y pred

◮ Predictive data can be compared with the observed data to
assess the fit of the model

◮ In this example, we compare the predictive and observed
frequencies of chains 1 and 1 → 1



Posterior predictive distribution

◮ Denote the model parameters by θ. Then

f (y pred|y) =

∫

f (y pred, θ|y)dθ =

∫

f (y pred|θ, y)f (θ|y)dθ

=

∫

f (y pred|θ)f (θ|y)dθ

◮ This means that samples from the posterior predictive
distribution can be realised as follows:

[1 ] Draw an MCMC sample θk from the posterior f (θ|y) of the
model parameters

[2 ] Given θk , draw a sample y
pred

k from f (y pred|θk)

[3 ] Repeat steps [1] and [2] K times (k = 1, . . . ,K )



Model checking

◮ The posterior predictive distribution of the chain frequencies
(n1, n11, n111, n12) is now

f (npred

1 , npred

11 , npred

111, n
pred

12 |n1, n11,N3)

=

∫ 1

0
f (npred

1 , npred

11 , npred

111, n
pred

12 |q)f (q|n1, n11,N3)dq

◮ Samples from the posterior predictive distribution:

[1 ] Draw an MCMC sample q(k) from the posterior
f (q|n1, n11,N3)

[2 ] Draw a sample (n
(k)
1 , n

(k)
11 , n

(k)
111, n

(k)
12 ) from

Multinomial(334,(q(k), 2(q(k))
2
p(k), 2q(k)(p(k))

2
, p(k)))

[3 ] Repeat steps [1] and [2] K times (k = 1, . . . ,K )



Model checking continues

◮ Comparison of a sample from the joint predictive posterior of
(npred

1 , npred

11 ) with the actually observed point (34,25) reveals a
poor model fit (next page)

◮ The model did not take into account possible heterogeneity
across households in the escape probability

◮ Therefore, we’ll consider a model extension through allowing
such heterogeneity



Model checking continues
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A hierarchical model

◮ In household j , let (n
(j)
1 , n

(j)
11 , n

(j)
111, n

(j)
12 ) follow a multinomial

distribution with size 1 and probability vector
(q2j , 2q

2
j pj , 2qjp

2
j , p

2
j ), j = 1, . . . , 334

◮ The household-specific escape probabilities qj follow a
Beta(α,β) distribution

◮ Assuming an uninformative joint prior∗ for α and β, the
hierarchical model becomes fully defined:

(n
(j)
1 , n

(j)
11 , n

(j)
111, n

(j)
12 )|qj ∼ Multinomial(1, (q2j , 2q

2
j pj , 2qjp

2
j , p

2
j ))

qj |α, β ∼ Beta(α, β)

(α, β) ∝ (α+ β)−5/2

∗ The odd-looking joint prior distribution for α and β follows
from assuming independent uniform prior distibutions for
α/(α+ β) (expectation of the Beta distribution) and

1/(α+ β)−1/2: see Chapter 5.3, Gelman et al.



A hierarchical model continues



The joint distribution

◮ The joint distribution of the parameters α and β, the
household-specific escape probabilities qj (j = 1, . . . , 334) and
the chain frequencies is

334
∏

j=1

(

f (n
(j)
1 , n

(j)
11 , n

(j)
111, n

(j)
12 |qj)f (qj |α, β)

)

f (α, β),

◮ The model unknowns are parameters α and β, frequencies

n
(j)
111 for all 275 households with outbreak size 3, as well as all

334 household-specific escape probabilities qj



Sampling from the posterior cont.

◮ In each household, the full conditional (Beta) distribution of

q
(k)
j depends on the current iterates of the numbers of

escapes (e
(k−1)
j ) and infections (d

(k−1)
j ) in that household

and the prior parameters α(k−1) and β(k−1)

◮ So, q
(k)
j ∼ Beta(e

(k−1)
j + α(k−1), d

(k−1)
j + β(k−1))

◮ The numbers of escapes and infections are given in the table
below

Chain Number of Number of

escapes e
(k−1)
j

infections d
(k−1)
j

1 2 0
1→1 2 1
1→1→1 1 2
1→2 0 2

◮ Note that the unknown number of escapes in a household with
outbreak size 3 (i.e. with either chain 1→ 1 or 1→ 2) is equal

to n
(j,k−1)
111 ; this is useful in implementing the sampling routine

(see computer lab)



Sampling from the posterior

◮ A sketch of the steps in kth iteration of the sampling
algorithm:

q
(k)
j |α(k−1), β(k−1) ∼ Beta(2 + α(k−1), β(k−1)), j=1,..., 34

q
(k)
j |α(k−1), β(k−1) ∼ Beta(2 + α(k−1), 1 + β(k−1)), j=35,..., 59

q
(k)
j |α(k−1), β(k−1), n

(j ,k−1)
111 ∼ Beta(n

(j ,k−1)
111 + α(k−1), 2 + β(k−1)),

j=60,..., 334

n
(j ,k)
111 |q

(k)
j ∼ Binom(1, 2q

(k)
j /(2q

(k)
j + 1), j=60,...,334

α(k)|β(k−1), q
(k)
1 , ..., q

(k)
334 using a Metropolis-Hastings step

β(k)|α(k), q
(k)
1 , ..., q

(k)
334 using a Metropolis-Hastings step



Sampling from the posterior cont.

◮ Parameters α and β require a Metropolis-Hastings step

◮ For example, for parameter α, if the current iterate is α(k−1),
a new value ᾱ is first proposed (e.g.) uniformly about the
current iterate (this is a symmetric proposal)

◮ The proposal is then accepted, i.e., α(k) := ᾱ, with probability

min{1,

334
∏

j=1

f (q
(k)
j |ᾱ, β(k−1))f (ᾱ, β(k−1))

334
∏

j=1

f (q
(k)
j |α(k−1), β(k−1))f (α(k−1), β(k−1))

}



Posterior distributions of α and β
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Predictive distribution of the household-specific

escape probability

◮ Posterior predictive distribution of the household-specific
escape probability,

∫

f (q335|α, β)f (α, β|n1, n11,N3)dαdβ

posterior predictive distribution of the escape probability

predictive q
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Checking the hierarchical model
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An alternative approach

◮ In this example, it is actually possible to marginalise qj over
its prior distribution

◮ This means calculating the chain probabilities as expectations
of the probabilities given in the Table on page 3 with respect
to Beta(q̃/z , (1− q̃)/z)
◮ Note that the Beta distribution is now parameterised

differently: q̃ = α/(α+ β), z = 1/(α+ β)

Chain Chain Frequency Observed Final number
probability frequency infected

1 q̃(q̃ + z)/(1 + z) n1 34 1
1→1 2p̃q̃(q̃ + z)/((1 + z)(1 + 2z)) n11 25 2
1→1→1 2p̃q̃(p̃ + z)/((1 + z)(1 + 2z)) n111 missing 3
1→2 p̃(p̃ + z)/(1 + z) n12 missing 3



Alternative approach continues

◮ The following identity helps to calculate the expectations:

E(puj q
v
j ) =

q̃(q̃ + z) . . . (q̃ + z(u − 1))p̃(p̃ + z) . . . (p̃ + z(v − 1))

(1 + z) . . . (1 + z(u + v − 1))

◮ Using the probabilities as given in the table, it is
straightforward to implement a Metropolis-Hastings algorithm
to draw samples from the posterior of parameters q̃ and z

◮ A suitable prior for q̃ and z is of course needed
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Outline

◮ The general epidemic model
◮ A simple Susceptible–Infected–Removed (SIR) model of an

outbreak of infection in a closed population

◮ Poisson likelihood for infection and removal rates
◮ Complete data: both infection and removal times are observed
◮ Under Gamma priors for the infection and removal rates, their

full conditionals are also Gamma, so Gibbs updating steps can
be used

◮ Incomplete data: only removal times are observed
◮ Augment the unknown infection times
◮ Additional Metropolis-Hastings steps for sampling infection

times, requiring explicit computation of the complete data
likelihood



The SIR model

◮ Consider a closed population of M individuals

◮ One introductory case (infective) introduces the infection into
a population of initially susceptible individuals, starting an
outbreak

◮ Once the outbreak has started, the hazard of infection for a
still susceptible individual depends on the number of infectives
in the population: (β/M)I (t)

◮ If an individual becomes infected, the hazard of clearing
infection (and stopping being infective) is γ, i.e., he/she
remains infective for an exponentially distributed period of
time. He/she then becomes removed and does not contribute
to the outbreak any more

◮ There is no latency



Transitions in the state space

s s+1s−1

i

i−1

i+1



The complete data

◮ Assume one introductory case whose infection takes place at
time t = 0 (i.e. this fixes the time origin)

◮ For M individuals followed from time 0 until the end of the
outbreak at time T (after which time the number of infectives
I (t) = 0), the complete data record all event times

◮ This is equivalent to observing n − 1 infection times and n

removal times, and the fact the M − n individuals escaped
infection throughout the outbreak

infection times
︷ ︸︸ ︷

{0 = i1 < i2 < ... < in} and

removal times
︷ ︸︸ ︷

{r1 < ... < rn−1 < rn = T}

◮ N.B. Here, the ik and rk do not correspond to the same
individual (we will discuss this assumption later)



Counting infectives and susceptibles

◮ Denote the ordered event times i1, . . . , in and r1, . . . , rn jointly
as 0 = u1 < u2 < . . . < u2n = T

◮ Denote the indicators of time uk being an infection or removal
time by Dk and Rk , respectively

◮ Denote the number of infectives at time t by I (t)
◮ it is a piecewise constant (left-continuous) function, assuming

values in the set {0, 1, . . . ,M}
◮ it jumps at times u2 < . . . < u2n

◮ Denote the number of susceptibles at time t by S(t)
◮ it is a piecewise constant (left-continuous) function, jumping

at times i2 < . . . < in

◮ Both I (t) and S(t) are determined by the complete data



Example



The process of infections

◮ The model of new infections is a non-homogeneous Poisson
process with rate βI (t)S(t)/M
◮ the rate is a piecewise constant (left-continuous) function
◮ it jumps at times u2 < . . . < u2n, with levels

βI (u2)S(u2)/M, βI (u3)S(u3)/M, . . . , βI (u2n)S(u2n)/M

◮ The probability density of the infection events is thus
proportional to

∏2n
k=2

[

((β/M)I (uk)S(uk))
Dk exp−(β/M)I (uk )S(uk )(uk−uk−1)

]

∝
∏2n

k=2 (βI (uk)S(uk))
Dk × exp

−(β/M)

total time for “infectious pressure”
︷ ︸︸ ︷

2n∑

k=2

I (uk)S(uk)(uk − uk−1)



The process of removals

◮ The model of removals is a non-homogeneous Poisson process
with rate γI (t)
◮ the rate is a piecewise constant (left-continuous) function
◮ it jumps at times u2 < . . . < u2n, with levels

γI (u2), γI (u3), . . . , γI (u2n)

◮ The probability density of the removal events is thus
proportional to

∏2n
k=2

[

(γI (uk))
Rk exp−γI (uk )(uk−uk−1)

]

=
∏2n

k=2 (γI (uk))
Rk × exp

−γ

total time spent infective
︷ ︸︸ ︷

2n∑

k=2

I (uk)(uk − uk−1)



Complete data likelihood

◮ The joint likelihood of parameters β and γ, based on the
complete data:

f (i ,r |β,γ)
︷ ︸︸ ︷

L(β, γ; i , r) =

2n∏

k=2

(βI (uk)S(uk))
Dk

2n∏

k=2

(γI (uk))
Rk

× exp−
∑2n

k=2((β/M)I (uk )S(uk )+γI (uk ))(uk−uk−1)

=
n∏

k=2

{βI (ik)S(ik)}
n∏

k=1

{γI (rk)}

× exp −
∑2n

k=2((β/M)I (uk )S(uk )+γI (uk ))(uk−uk−1)



Simplifying the notation

◮ Note that
∑

k I (uk)S(uk)(uk − uk−1) =
∫ T

0 I (u)S(u)du

◮ Similarly
∑

k I (uk)(uk − uk−1) =
∫ T

0 I (u)du

◮ The likelihood function can thus be written as

n∏

k=2

{βI (ik)S(ik)}
n∏

k=1

{γI (rk)}

× exp

(

−

∫ T

0
{(β/M)I (u)S(u) + γI (u)}du

)



Poisson likelihood and Gamma priors

◮ This above likelihood is the so called Poisson likelihood for
parameters β and γ

◮ In particular, Gamma distributions can be used as conjugate
priors for β and γ

◮ It follows that the full conditional distributions of β and γ are
also Gamma and can be updated by Gibbs steps



Gamma prior distributions

◮ Rate parameters β and γ are given independent Gamma priors

f (β) ∝ βνβ−1 exp(−λββ)

f (γ) ∝ γνγ−1 exp(−λγγ)

◮ This allows easy updating of these parameters using Gibbs
sampling (the next two pages)



The full conditional of β

◮ Parameter β can be updated through a Gibbs step

f (β|i , r , γ) ∝ f (β, γ, i , r) ∝ f (i , r |β, γ)f (β)

∝ βn−1 exp

(

−(β/M)

∫ T

0
I (u)S(u)du

)

βνβ−1 exp(−λββ)

◮ This means that

β|(i , r , γ) ∼ Γ

(

n − 1 + νβ , (1/M)

∫ T

0
I (u)S(u)du + λβ

)



The full conditional of γ

◮ Parameter γ can be updated through a Gibbs step:

f (γ|i , r , β) ∝ f (β, γ, i , r) ∝ f (i , r |β, γ)f (γ)

∝ γn exp

(

−γ

∫ T

0
I (u)du

)

γνγ−1 exp(−λγγ)

◮ This means that

γ|(i , r , β) ∼ Γ

(

n + νγ ,

∫ T

0
I (u)du + λγ

)



Computation of the integral terms

◮ In practice, the integral terms can be calculated as follows:

total time spent infective
︷ ︸︸ ︷
∫ T

0
I (u)du =

n∑

k=1

(rk − ik)

total time for “infectious pressure”
︷ ︸︸ ︷
∫ T

0
I (u)S(u)du =

n∑

k=1

M∑

j=1

(min(rk , ij)−min(ik , ij))

where ij = ∞ for j > n, i.e., for those never infected

◮ These expressions are invariant to choice of which rk
corresponds to which ik



Incomplete data

◮ Assume that only the removal times r = (r1, . . . , rn) have
been observed

◮ Augment the set of unknowns (β and γ) with infection times
i = (i2, . . . , in)

◮ The aim is to do statistical inference about rates β and γ
(and times i ), based on their posterior distribution f (β, γ, i |r)

◮ The posterior distribution is proportional to the joint
distribution of all model quantities:

f (β, γ, i |r) ∝ f (β, γ, i , r) =

complete data likelihood
︷ ︸︸ ︷

f (i , r |β, γ)

prior
︷ ︸︸ ︷

f (β)f (γ),



Updating infection times

◮ The full conditional distributions of β and γ are as above

◮ The unknown infection times require a Metropolis–Hastings
step, including explicit evaluations of the Poisson likelihood

◮ If the current iterate of ik is i
(j)
k , a new value ĩk is first

proposed (e.g.) from a uniform distribution on [0,T ]

◮ The proposal is then accepted, i.e., i
(j+1)
k := ĩ , with probability

min{1,
f (ĩ , r |β, γ)

f (i , r |β, γ)
}

◮ Here ĩ is i except for the kth entry which is ĩk (instead of i
(j)
k )



Augmenting individual histories

◮ The likelihood above was constructed for the aggregate
processes, i.e., to count the total numbers of susceptibles and
infectives

◮ In such case, the corresponding augmentation model must not
consider individuals
◮ In particular, times i2, . . . , in must not be tied to particular

removal times, i.e., individual event histories must not be
reconstructed

◮ If one considers individual event histories as pairs of times
(ik , rk) for individuals k = 1, . . . ,M, the appropriate complete
data likelihood is (cf. above)

γn
n∏

k=2

{βI (ik)} exp

(

−

∫ T

0
(γI (u) + (β/M)I (u)S(u))du

)



Example: a smallpox outbreak

◮ The Abakaliki smallpox outbreak
◮ A village of M = 120 inhabitants
◮ One introductory case
◮ 29 subsequent cases; this means that n = 1 + 29 = 30

◮ We will assume that the index case started being infectious on
day 0 and that she/he entered the village starting the
outbreak at the same day

◮ The observed data are the 30 removal times (in days) with
respect to the time origin:

14, 27, 34, 36, 39, 39, 39, 40, 44, 49, 52, 54, 54, 56, 56,

61, 64, 65, 69, 69, 70, 71, 72, 74, 74, 75, 80, 80, 85, 90

◮ The problem: to estimate rates β and γ from these outbreak;
see the computer class exercise data
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Outline

◮ Background: recurrent infections

◮ Binary Markov processes and their generalizations

◮ Counting process likelihood

◮ Incomplete observations
◮ discrete-time transition models
◮ Bayesian data augmentation and reversible jump MCMC

◮ A computer class exercise



Background

◮ Many infections can be considered recurrent, i.e., occurring as
an alternating series of presence and absence of infection
◮ Nasopharyngeal carriage of Streptococcus pneumoniae (Auranen et

al.; Cauchemez et al.; Melegaro et al.)

◮ Nasopharyngeal carriage of Neisseria menigitidis
◮ multi-resistant Staphylococcus aureus (Cooper et al.)

◮ some parasitic infections (e.g. Nagelkerke et al.)

◮ Observation of these processes requires active sampling of the
underlying epidemiological states

◮ Acquisition and clearance times often remain unobserved ⇒
incompletely observed data



A binary Markov process

A simple model for a recurrent infection is the binary Markov
process:

◮ The state of the individual alternates between “susceptible”
(state 0) and “infected” (state 1)

◮ The hazard of acquiring infection is β:

P(acq. in [t, t + dt[| susceptible at time t−) = βdt

◮ The hazard of clearing infection is µ:

P(clearance in [t, t + dt[|infected at time t−) = µdt



The complete data

◮ For each individual i , the complete data include
the times of acquisition and clearance during the observation
period [0,T ]:
◮ Denote the ordered acquisition times for individual i during

]0,T [ by t
(i) = (ti1, . . . , tiN(i)

01
)

◮ Denote the ordered clearance times for individual i during
]0,T [ by r

(i) = (ri1, . . . , riN(i)
10
)

◮ Denote the ordered acquisition and clearance times together as
ui1 = 0, ui2, . . . , ui,N(i) = T

◮ Note: these include times 0 and T

(so that N(i) = N
(i)
01 + N

(i)
10 + 2)



Keeping track who is susceptible

◮ The indicators for individual i to be susceptible or infected at
time t are denoted by Si (t) and Ii (t), respectively
◮ Both indicators are taken to be predictable, i.e., they values at

time t are determined by the initial value Si (0) and the
complete data observed up to time t−

◮ Note that Ii (t) = 1− Si (t) for all times t ≥ 0



The process of acquisitions

◮ In each individual, acquisitions occur with intensity βSi (t)
◮ The intensity is β when the individual is in state 0

(susceptible) and 0 when the individual is in state 1 (infected)

◮ The probability density of the acquisition events is
proportional to

N(i)
∏

k=1

[

β1(uk is time of acq.) exp−βSi (uk )(uk−uk−1)
]

∝ βN
(i)
01 × exp

−β

total time susceptible
︷ ︸︸ ︷

N(i)
∑

k=1

Si (uk)(uk − uk−1)



The process of clearances

◮ In each individual, the clearances occur with intensity µIi (t)
◮ The intensity is µ when the individual is in state 1 (infected)

and 0 when then individual is in state 0 (susceptible)

◮ The probability density of the clearance events is proportional
to

N(i)
∏

k=1

[

µ1(uk is time of clearance) exp−µIi (uk )(uk−uk−1)
]

= µN
(i)
10 × exp

−µ

total time infectd
︷ ︸︸ ︷

N(i)
∑

k=1

Ii (uk)(uk − uk−1)



The complete data likelihood

◮ The likelihood function of parameters β and µ, based on the
complete data from individual i :

f (t (i)
,r (i)|β,µ)

︷ ︸︸ ︷

Li (β, µ; t
(i), r (i))

= βN
(i)
01 µN

(i)
10 × exp −

∑N(i)

k=1 (βSi (uk )+µIi (uk ))(uk−uk−1)

= βN
(i)
01 µN

(i)
10 × exp

(

−

∫ T

0
{βSi (u) + µIi (u)}du

)

◮ Likelihood for all M individuals is
∏M

i=1 Li (β, µ; t
(i), r (i))



More complex models

◮ In the following six slides, the binary model is formulated as a
process of counting transitions “0 → 1” (acquisitions) and
“1 → 0” (clearances)

◮ More complex models can then be defined, allowing e.g.
◮ different (sero)types/strains of infection
◮ taking into account exposure from other individuals in the

relevant mixing groups, e.g., modelling transmission in
households



A counting process formulation

◮ For individual i , the binary process can be described in terms
of two counting processes (jump processes):

◮ N
(i)
01 (t) counts the number of acquisitions for individual i from

time 0 up to time t

◮ N
(i)
10 (t) counts the number of clearances for individual i from

time 0 up to time t

◮ Specify the initial state: (e.g.) N
(i)
01 (0) = N

(i)
10 (0) = 0

◮ Denote H
(i)
t the history of the processes up to time t:

H
(i)
t = {N

(i)
01 (s),N

(i)
10 (s); 0 ≤ s ≤ t}



Stochastic intensities

◮ The two counting processes can be specified in terms of their
stochastic intensities:

P(dN
(i)
01 (t) = 1|H

(i)
t−) = α

(i)
01 (t)Y

(i)
0 (t)dt

P(dN
(i)
10 (t) = 1|H

(i)
t−) = α

(i)
10 (t)Y

(i)
1 (t)dt

◮ Here, Y
(i)
j (t) is indicator for individual i being in state j at

time t−

◮ In the simple Markov model, α
(i)
01 (t) = β, α

(i)
10 (t) = µ,

Y
(i)
0 (t) = Si (t), and Y

(i)
1 (t) = Ii (t)



Several types of infection

◮ The infection can involve a “mark”, e.g. the serotype of the
infection
◮ N

(i)
0j (t) counts the number of times that individual i has

acquired infection of type j from time 0 up to time t

◮ N
(i)
j0 (t) counts the number of times that individual i has

cleared infection of type j from time 0 up to time t
◮ Stochastic intensities can be defined accordingly for all possible

transitions between the states. For example, for K serotypes,

α
(i)
rs (t)Y

(i)
r (t), r , s = 0, . . . ,K



Modelling transmission

◮ The hazard of infection may depend on the presence of
infected individuals in the family, day care group, school class
etc.

◮ The statistical unit is the relevant mixing group

◮ Denote H
(i ,fam)
t the joint history of all members in the mixing

group (e.g. family) of individual i :

P(dN(i)(t) = 1|H
(i ,fam)
t− ) = α

(i)
01 (t)Si (t)dt ≡

βC (i)(t)

M
(i)
fam − 1

Si (t)dt

where C (i)(t) =
∑M

(i)
fam

j=1 I
(i)
j (t) is the number of infected individuals

in the family of individual i at time t−



The counting process likelihood

◮ For M individuals followed from time 0 to time T , the
complete data record all transitions between states 0 and 1
(equivalent to observing all jumps in the counting processes):

ycomplete = {T
(ik)
rs ; r , s = 0, 1 (r 6= s), k = 1, . . . ,N

(i)
rs (T ), i = 1, . . . ,M}

◮ The likelihood of the rate parameters θ, based on the
complete (event-history) data

f (ycomplete|θ)
︷ ︸︸ ︷

L(θ; ycomplete) =
N∏

i

∏

r 6=s

N
(i)
rs (T )
∏

k

[

α
(i)
rs (T

(ik)
rs )×exp

(

−

∫ T

0
α
(i)
rs (u)Y

(i)
r (u)du

)]



Remarks

◮ The likelihood is valid even when the individual processes are
dependent on the histories of other individuals, e.g. in the
case of modelling transmission (cf. Andersen et al)

◮ The likelihood is correctly normalized with respect to any
number of events occurring between times 0 and T (cf. Andersen et

al)
◮ This is crucial when performing MCMC computations through

data augmentation with an unknown number of events



Incomplete observations

◮ Usually, we do not observe complete data

◮ Instead, the status y
(i)
j of each individual is observed at

pre-defined times t
(i)
j

◮ This creates incomplete data: the process is only observed at
discrete times (panel data)

◮ The observed data likelihood is now a complicated function of
the model parameters

◮ How to estimate the underlying continuous process from
discrete observations?
◮ a discrete-time Markov transition model
◮ Bayesian data augmentation



Markov transition models

◮ Treat the problem as a discrete-time Markov transition model

◮ This is parameterized in terms of transition probabilities
P(X (i)(t) = s|X (i)(u) = r) for all r , s in the state space χ,
and for all times t ≥ u ≥ 0

◮ In a time-homogeneous model the transition probabilities
depend only on the time difference:

prs(t) = P(X (i)(t) = s|X (i)(0) = r)

◮ This defines a transition probability matrix Pt with entries
[Pt ]rs = prs(t), where

∑

s prs(t) = 1 for all r and all t ≥ 0



The likelihood

◮ When observations y
(i)
j are made at equal time intervals (∆),

the likelihood is particularly simple

L(P∆) =
∏

r ,s

[prs(∆)]Nrs(T ) =
∏

r ,s

[P∆]
Nrs(T )
rs

◮ When observation are actully made at intervals k∆ only (e.g.
∆ = day and k = 28), the likelihood is

L(P∆) =
∏

r ,s

[Pk
∆]

Nrs(T )

rs



Modeling transmission

◮ In a mixing group of size M, the state space is
χ1 × χ2 × . . . χM

◮ For example, in a family of three the states then are: (0,0,0),

(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)

◮ For M individuals, the dimension of the state space is 2M

◮ Application to pneumococcal carriage in families (Melegaro et al.)

◮ The transition probability matrix in a family of 3 (next page),
assuming the same probabilities (per day) for each family
member

◮ Notation: qii = 1 - the sum of the ith row



Transition probability matrix

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

P∆ =















q11 κ κ κ 0 0 0 0
µ q22 0 0 β/2 + κ β/2 + κ 0 0
µ 0 q33 0 β/2 + κ 0 β/2 + κ 0
µ 0 0 q44 0 β/2 + κ β/2 + κ 0
0 µ µ 0 q55 0 0 β + κ
0 µ 0 µ 0 q66 0 β + κ
0 0 µ µ 0 0 q77 β + κ
0 0 0 0 µ µ µ q88

















Potential problems

◮ The dimension of the state space
◮ With M individuals and K + 1 types of infection, the

dimension of the state space is (K + 1)
M

◮ With 13 serotypes and 25 individuals (see Hoti et al.), the
dimension is ∼ 4.5× 1028

◮ Non-Markovian sojourn times
◮ e.g. a Weibull duration of infection may be more realistic than

the exponential one

◮ Handling of varying observation intervals and individuals with
completely missing data are still cumbersome



Bayesian data augmentation

◮ Retaining the continuous-time model formulation, the
unknown event times are taken as additional model unknowns
(parameters)

◮ Statistical inference on all model unknowns (θ and ycomplete)

observation model
︷ ︸︸ ︷

f (yobserved|ycomplete)

complete data likelihood
︷ ︸︸ ︷

f (ycomplete|θ)

prior
︷︸︸︷

f (θ)

◮ The observation model often only ensures agreement with the
observed data (as an indicator function)

◮ The computational problem:
how to sample from f (ycomplete|yobserved, θ)?



The sampling algorithm

◮ Initialize the model parameters and the latent processes

◮ For each individual, update the latent processes
◮ Update the event times using standard MH
◮ Add/delete episodes using reversible jump MH

◮ with 0.5 probability propose to add a new episode
◮ with 0.5 probability propose to delete an existing episode

◮ Update the model parameters using single-step MH

◮ Iterate the updating steps for a given number of MCMC
iterations
◮ See the computer class exercise



Adding/deleting episodes

◮ Choose one interval at random from among the K sampling
intervals (see page+2)

◮ Choose to add an episode (delete an existing episode) within
the chosen interval with probability πadd = 0.5 (πdelete = 0.5)
◮ If ’add’, choose random event times t̄1 < t̄2 uniformly from ∆

(= the length of the sampling interval). These define the new
episode.

◮ If ’delete’, delete the two event times

◮ The ’add’ move is accepted with probability (“acceptance
ratio”)

min

(
f (yobserved|y

∗
complete)f (y

∗
complete|θ)q(ycomplete|y

∗
complete)

f (yobserved|ycomplete)f (ycomplete|θ)q(y
∗
complete|ycomplete)

, 1

)



Adding/deleting episodes cont.

◮ The ratio of the proposal densities is

q(ycomplete|y
∗
complete)

q(y∗complete|ycomplete)
=

πdelete

1

K

1

L

πadd

1

K

1

L

2

∆2

=
∆2

2

◮ The ratio of the proposal densities in the ’delete’ move is the
inverse of the expression above

◮ Technically, the add/delete step relies on so called reversible
jump MCMC (see page+2)

◮ Reversible jump types should be devised to assure
irreducibility of the Markov chain

◮ For a more complex example, see Hoti et al.



Adding/deleting latent processes cont.

0
T

observation 1 observation 2 observation 3

t t1 2

The number of sampling intervals K= 4

The number of ’sub−episodes’ within the second interval L = 2

end of follow−up



Reversible jump MCMC

◮ “When the number of things you don’t know is one of the
things you don’t know”

◮ For example, under incomplete observation of the previous
(Markov) processes, the exact number of events is not
observed

◮ This requires a joint model over ’sub-spaces’ of different
dimensions

◮ And a method to do numerical integration (MCMC sampling)
in the joint state space
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MCMC I Methods

Vladimir Minin, Kari Auranen, M. Elizabeth Halloran

Summer Institute in Statistics and Modeling in Infectious Diseases, July 2018

1 Introduction to R and Bayes programming

1.1 Simple Beta posterior distribution

The goal is here to learn simple R programming commands relevant to introductory Bayesian meth-

ods. In this first exercise, we compute the posterior distribution of the transmission probability.

The sampling distribution is binomial, the prior distribution is Beta, so the posterior distribution

is Beta. You can use the command help(dbeta) in R to learn more about this function.

Let’s see how the posterior distribution of the transmission probability depends on the amount

of data given a uniform prior distribution (Sample mean y/n = 0.40).

n, number exposed y, number infected

5 2
20 8
50 20
1000 400

##Simple Beta posterior distribution of the transmission probability

## R program to compute the posterior distribution of the transmission probability

## Beta prior distribution of the binomial likelihood

## We want to evaluate the density of the posterior of p along the interval [0,1]

## To start, generate a sequence from 0 to 1 in increments of .01 that will supply

## the values where we will evaluate the posterior density

x = seq(0,1, by = .01)

x

## Observed data

## Generate a vector of the observed number of trials in the four experiments

n=c(5,20,50,1000)

n

## Generate a vector of the number of successes (infections) in the four experiments



Bayes Introduction July 1, 2018 2

y=c(2,8,20,400)

y

##Set up noninformative Beta prior distributions

my.alpha = 1

my.beta = 1

my.alpha

my.beta

##Set up a matrix with 4 rows and the number of columns that is the length of the

## x vector where the values of the posterior densities will be evaluated. This

## matrix will hold the values for the four posterior densities. The value

## 0 is a place holder. Other entries could be used.

posta = matrix(0, nrow=4, ncol = length(x))

##plot the four posterior densities using different amounts of data from

## the four experiments

## open pdf (or ps) file graphics device

#pdf(file="/Users/betz/Documents/Bayesintro/betaunif1.pdf", height=6.5, width = 8.9)

## set up to have 4 plots in one figure with 2 by 2

par(mfrow=c(2,2))

# loop through the for graphs. Use a for loop

for (i in 1:4){

posta[i,] = dbeta(x,my.alpha+y[i],my.beta+n[i]-y[i])

plot(x,posta[i,], type = "l", ylab ="Posterior Density", xlab="p")

}

## close graphics device if using pdf (or ps)

#dev.off()

#return to 1 plot if need be

par(mfrow=c(1,1))

1.2 Summaries of the posterior distribution

After obtaining the posterior distribution, we might be interested in certain summary measures

such as the posterior mean or posterior median. We might want the 95% posterior interval,
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equitailed, or any quantiles of interest. We could also ask what is the posterior probability that

p > 0.5.

## Posterior summaries using closed form distributions

#prior mean

priormean = my.alpha/(my.alpha + my.beta)

priormean

[1] 0.5

# posterior mean

postmean= (my.alpha+y)/(my.alpha+my.beta+n)

postmean

[1] 0.4285714 0.4090909 0.4038462 0.4001996

round(postmean,4)

[1] 0.4286 0.4091 0.4038 0.4002

#posterior median

# use qbeta to get the values at the given quantiles

postmedian=qbeta(0.5, my.alpha+y, my.beta+n-y)

round(postmedian,4)

[1] 0.4214 0.4063 0.4026 0.4001

#median, 95% equitailed posterior or credible interval

# use qbeta to get the values at the given quantiles

# set up matrix

post95int=matrix(0,4,3)

for (i in 1:4){

post95int[i,] = qbeta(c(0.5, 0.025,0.975), my.alpha+y[i], my.beta+n[i]-y[i])

}

round(post95int,3)

[,1] [,2] [,3]

[1,] 0.421 0.118 0.777

[2,] 0.406 0.218 0.616

[3,] 0.403 0.276 0.539

[4,] 0.400 0.370 0.431
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1.3 Random sampling from the posterior distribution

The function rbeta() is used to generate random draws from a given beta distribution. Here

we draw 5000 random samples from the four posterior distributions in the first exercise based on

different amounts of data and a uniform Beta prior.

# Drawing random samples from the posterior distributions to imitate results

# of an MCMC output; use rbeta() command for random samples from a beta distribution

#Set the number of samples

nsamp=5000

#Set up matrix

post=matrix(0,4,nsamp)

##pdf(file="/Users/betz/Documents/TexWork/MCMC/betz/Bayesintro/betaunif1r.pdf", height=6.5, width=8.9)

par(mfrow=c(2,2))

for (i in 1:4){

post[i,]=rbeta(nsamp,my.alpha+y[i],my.beta+n[i]-y[i])

hist(post[i,], xlim=c(0,1), xlab = "p ", ylab = "Frequency")

}

#dev.off()

par(mfrow=c(1,1))

1.4 Posterior summary using samples of posterior

Now we can get the posterior means using the samples of the posterior distributions and compare

them with the analytic posterior means. We can also use the function summary() to get posterior

summaries.

#Posterior summaries using random samples

# posterior mean

postmeanr = apply(post,1,mean)

postmeanr

#Compare with analytic posterior mean

postmean
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# Get summary of simulated posterior distributions row by row

summary(post[1,])

summary(post[2,])

summary(post[3,])

summary(post[4,])

# Get all summaries of all four rows at the same time

apply(post, 1, summary)

1.5 Using informative conjugate priors

Let’s assume we have more prior information, or stronger prior beliefs about the transmission

probability p. See how it affects posterior inference about one data set, n1 = 50, y1 = 20 (sample

mean = 0.40).

Prior Prior
mean sum

α
α+β

α+ β α β

0.50 2 1 1
0.50 4 2 2
0.50 100 50 50
0.60 5 3 2
0.60 20 12 8
0.60 100 60 40
0.80 5 4 1
0.80 20 16 4

## Now use different informative conjugate priors

alpha1 = c(1,2,50,3,12,60,4,16)

beta1 = c(1,2,50,2,8,40,1,4)

priorsum = alpha1+beta1

priormean = alpha1/(alpha1+beta1)

priorsum

priormean

n1 = 50

y1 = 20

post95int2 = matrix(0,length(alpha1),3)
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for (i in 1:length(alpha1)){

post95int2[i,] = qbeta(c(0.5,0.025,0.975), alpha1[i]+y1, beta1[i]+n1-y1)

}

round(post95int2,3)

[,1] [,2] [,3]

[1,] 0.403 0.276 0.539

[2,] 0.406 0.281 0.540

[3,] 0.467 0.388 0.547

[4,] 0.417 0.292 0.550

[5,] 0.457 0.343 0.574

[6,] 0.533 0.453 0.612

[7,] 0.436 0.309 0.568

[8,] 0.514 0.398 0.630
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Practical session:

Chain binomial model I: Gibbs sampler

Background

In this computer lab, we apply Gibbs sampling to incompletely observed data in a chain binomial

model. The observations are based on outbreaks of measles in Rhode Island during the years

1929–1934 [1]. We restrict the analysis to families with 3 susceptible individuals at the onset of

the outbreak. This example is based on references [1]-[4].

We assume that there is a single index case that introduces infection to the family. Thus,

possible epidemic chains are 1, 1 → 1, 1 → 1 → 1 and 1 → 2. Denote the probability for a

susceptible to escape infection when exposed to one infective in the family by q (and p = 1 − q).

The following table lists chain probabilities, with the actually observed frequencies of the size of

epidemic:

chain prob. frequency observed frequency

1 q2 n1 34
1→1 2q2p n11 25
1→1→1 2qp2 n111 not observed
1→ 2 p2 n12 not observed

In this exercise, we assume that frequencies n111 and n12 have not been observed. Only their

sum N3 = n111 + n12 = 275 is known.

The estimation problem concerns the escape probability q, so that there is basically only one

unknown parameter in the model. However, the fact that not all frequencies have been observed

creates a computational problem that can be solved by Bayesian data augmentation and Gibbs

sampling [2].

Marginal likelihood. The joint probability of the complete data (n1, n11, N3, n111) is pro-

portional to a multinomial probability:

f(n1, n11, N3, n111|q) = (q2)
n1(2q2p)

n11(2qp2)
n111(p2)

N3−n111

= constant× q2n1+2n11+n111pn11+2N3 . (1)

The marginal likelihood f(n1, n11, N3|q) would be obtained by summing up expressions (1) with

n111 running from 0 to N3.

The Bayesian approach. Instead of using the marginal likelihood, we will treat frequency

n111 as a model unknown in addition to parameter q. The joint distribution of the observations
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(n1, n11, N3) and the model unknowns (n111, q) is

f(n1, n11, N3, n111, q) = f(n1, n11, N3, n111|q)f(q). (2)

The first term in is the complete data likelihood (see (1)), based on the augmented data (i.e. the

data are augmented with the unknown frequency n111).

The second term is the prior density of probability q. We choose a Beta prior for parameter q:

q ∼ Beta(α, β) so that f(q) ∝ qα−1(1− q)β−1. With the choice α = β = 1, this is uniform prior

on [0,1].

The joint posterior distribution of the model unknowns is f(q, n111|n1, n11, N3).

Gibbs sampling. In the lecture we demonstrated that the joint posterior distribution of

the model unknowns n111 and q can be investigated by Gibbs sampling. This means making a

numerical sample from the posterior distribution by drawing samples of n111 and q in turn from

their full conditional posterior distributions:

f(q|n1, n11, N3, n111) and f(n111|n1, n11, N3, q).

These were found to be

q|n1, n11, N3, n111 ∼ Beta(2n1 + 2n11 + n111 + α, n11 + 2N3 + β) (3)

and

n111|n1, n11, N3, q = n111|N3, q ∼ Binomial(N3, 2q/(2q + 1)). (4)

Exercises

1. Gibbs sampling. The R program (chainGibbs.R) contains a function chainGibbs(mcmc.size,α, β)

that draws samples from the joint posterior distribution of q and n111. The function has

this particular data set “hardwired” within the program. Using Gibbs sampling, the pro-

gram draws samples in turn from distributions (3) and (4). Starting with the initial values

(q(1), n
(1)
111) = (0.5, 275 ∗ (2 ∗ 0.5)/(2 ∗ 0.5 + 1)), it iterates between sampling

q(i)|n1, n11, N3, n
(i−1)
111 and

n
(i)
111|n1, n11, N3, q

(i), i = 2, . . . ,mcmc.size.

This creates a sample (q(i), n
(i)
111), i = 1, . . . ,mcmc.size.

2. Write your own Gibbs sampler Before running chainGibbs.R, you might like to try

writing your own Gibbs sampler for the chain binomial problem. Assume you will run

mcmc.size iterations.

(a) Reserve space for the mcmc.size-vector of q and n111 values.
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(b) Initialize the model unknowns q[1] and n111[1] (round the n111[1])

(c) Enter the data n1, n11, N3

(d) Draw the MCMC samples 2:mcmc.size using the rbeta() and rbinom() functions

3. Posterior inferences. By discarding a number of ”burn-in” samples, you can use the rest

of the numerical sample to explore the posterior of escape probability q. It is enough to

discard a few hundred first samples, say 500, in this simple model.

(a) Make a histogram of the samples 501:mcmc.size of q and n111.

(b) Use the summary() function to get summaries the samples 501:mcmc.size of q and n111.

4. Writing a Gibbs sampler function You can now convert your R program to a func-

tion that can be called. It could be similar to the function in the file chainGibbs.R

chainGibbs(mcmc.size,α, β).

(a) However, you might prefer to write a function mychainGibbs(n1,n11,N3,mcmc.size,α, β)

that allows you to do inference on other data sets with observed (n1, n11, N3).

(b) If you write such a function, try altering the value of N3. How do larger and smaller

values alter the posterior distribution of q?

5. Sensitivity to the choice of prior. Assess how the choice of the prior distribution affects

estimation of the escape probability. Use the Beta(α, β) prior with different values of α and β.

Note that both parameters can be given as input to the function chainGibbs(mcmc.size,α, β)

in chainGibbs.R or hopefully your own new function.
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Practical: Monte Carlo and Markov chain theory

Instructors: Kari Auranen, Elizabeth Halloran and Vladimir Minin

July 11 – July 13, 2018

Estimating the tail of the standard normal distribution

Let Z ∼ N (0, 1). We would like to estimate the tail probability Pr(Z > c), where c is large (e.g.,

c = 4.5).

Naive Monte Carlo: simulate Z1, . . . , Zn
iid
∼N (0, 1). Then

µ̂ =
1

n

n
∑

i=1

1{Zi>c} ≈ E
(

1{Z>c}

)

= Pr(Z > c).

This estimator will most likely give you 0 even for n = 10, 000. The problem is the large variance

of the integrand:

Var(µ̂) =
1

n
Var(1{Z1>c}) =

1

n
Pr(Z1 > c)[1−Pr(Z1 > c)] = 3.4× 10

−10 for n = 10, 000 and c = 4.5.

This variance is huge, because the quantity of interest is Pr(Z1 > c) = 3.39×10−6 and the standard

deviation of our estimator is 1.84× 10−5.

Importance sampling : Simulate Y1, ..., Yn
iid
∼Exp(c, 1) from a shifted exponential with density

g(y) = e−(y−c)1{y>c}.

Generating such random variables is very easy: just simulate a regular exponential Exp(1) and add

c to the simulated value. Then the importance sampling estimator becomes

µ̃ =
1

n

n
∑

i=1

φ(Yi)

g(Yi)
1{Yi>c},

where φ(x) is the standard normal density. The variance of this estimator amounts to

Var(µ̃) =
1

n
Var

[

φ(Y )

g(Y )
1{Y >c}

]

=
1

n

{

Eg

[

φ2(Y )

g2(Y )
1{Y >c}

]

−

[

Eg

(

φ(Y )

g(Y )
1{Y >c}

)]2
}

=
1

n

[
∫ ∞

c

φ2(y)

g(y)
dy − Pr(Z > c)2

]

= 1.9474× 10
−15 for n = 10, 000 and c = 4.5.

This means that we reduced Monte Carlo variance roughly by a factor of 105 using importance

sampling.

Your task

Implement naive and importance sampling Monte Carlo estimates of Pr(Z > 4.5), where Z ∼

N (0, 1). Download ‘import sampl reduced.R’ from the course web page. The code has a couple of

things to get you started.
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Ehrenfest model of diffusion

Imagine a two dimensional rectangular box with a divider in the middle. The box contains N balls

(gas molecules) distributed somehow between the two halves. The divider has a small gap, through

which balls can go through one at a time. We assume that at each time step we select a ball

uniformly at random and force it go through the gap to the opposite side of the divider. Letting

Xn denote the total number of balls in the left half of the box, our Markov process is described by

the following transition probabilities.

pij =



















i
N
. for j = i− 1,

1− i
N
, for j = i+ 1,

0, otherwise.
= 3Xn

If we want to derive a stationary distribution of the system, we can solve the global balance

equations π
T
P = π

T . Alternatively, we may “guess” that at equilibrium Xn ∼ bin(12 , N) and

verify this candidate stationary distribution via detailed balance. Notice we do not know whether

the Ehrenfest chain is reversible, but we’ll go ahead with the detailed balance check anyway. First,

notice that entries of our candidate vector are

πi =

(

N

i

)(

1

2

)i(

1−
1

2

)N−i

=

(

N

i

)

1

2N

Since Xn can only increase or decrease by one at each time step, we need to check detailed balance

only for i and j = i+ 1.

πipi,i+1 =
1

2N

(

N

i

)

N − i

N
=

1

2N
N !

i!(N − i)!

N − i

N
=

1

2N
N !

(i+ 1)!(N − i− 1)!

i+ 1

N

=

(

N

i+ 1

)

1

2N
i+ 1

N
= πi+1pi+1,i,

confirming our guess.

Now, consider the Ehrenfest model with N = 100 gas molecules. From our derivations we know

that the stationary distribution of the chain is Bin(12 , N). The chain is irreducible and positive

recurrent (why?). The stationary variance can be computed analytically as N × 1
2 × 1

2 .

Your task

Use ergodic theorem to approximate the stationary variance and compare your estimate with the

analytical result. Don’t panic! You will not have to write everything from scratch. Download

‘ehrenfest diff reduced.R’ file from the course web page. Follow comments in this R script to fill

gaps in the code.
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Practical: Metropolis-Hastings Algorithm

Instructors: Kari Auranen, Elizabeth Halloran and Vladimir Minin

July 11 – July 13, 2018

Sampling from the standard normal distribution

Suppose our target is a univariate standard normal distribution with density f(x) = 1/(
√
2π)e−x2/2.

Given current state x(t), we generate two uniform r.v.s U1 ∼ U [−δ, δ] and U2 ∼ U [0, 1]. Then set

x(t+1) =







x(t) + U1 if U2 ≤ min

{

e

[

(x(t))
2
−(x(t)+U1)2

]

/2
, 1

}

x(t) otherwise.

δ is a tuning parameter. Large δ leads to small acceptance rate, small δ leads to slow exploration of

the state space. The rule of thumb for random walk proposals is to keep acceptance probabilities

around 30-40%. If your proposal is close to the target, then higher acceptance rates are favorable.

Your task

Implement the above algorithm. Experiment with the tuning parameter δ and report empirically

estimate acceptance probabilities for different values of this parameter.

Distribution of the time of infection

Consider a two state continuous-time Markov SIS model, where the disease statusXt cycles between

the two states: 1=susceptible, 2=infected. Let the infection rate be λ1 and clearance rate be λ2.

Suppose that an individual is susceptible at time 0 (X0 = 1) and infected at time T (XT = 2). We

don’t know anything else about the disease status of this individual during the interval [0, T ]. If T

is small enough, it is reasonable to assume that the individual was infected only once during this

time interval. We would like to obtain the distribution of the time of infection I, conditional on

the information we have.

Your task

Implement a Metropolis-Hastings sampler to draw realizations from the distribution

Pr(I | X0 = 1, Xt = 2, Nt = 1) ∝ Pr(0 < t < I : Xt = 1, I < t < T : Xt = 2),
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where Nt is the number of infections. Since Xt is a continuous-time Markov chain, the last proba-

bility (it is actually a density) can be written as

Pr(0 < t < I : Xt = 1, I < t < T : Xt = 2) = λ1e
−λ1I

︸ ︷︷ ︸

density of waiting time until infection

×

prob of staying infected
︷ ︸︸ ︷

e−λ2(T−I) .

To make things concrete, set λ1 = 0.1, λ2 = 0.2 and T = 1.0. For your proposal distribution, use

a uniform random walk with reflective boundaries 0 and T . In other words, given a current value

of the infection time tc, generate u = Unif[tc−δ,tc+δ] (2δ < T ) and then make a proposal value

tp =







u if 0 < u < T,

2T − u if u > T,

−u if u < 0.

This is a symmetric proposal, so your M-H ratio will contain only the ratio of target densities:

λ1e
−λ1tpe−λ2(T−tp)

λ1e−λ1tce−λ2(T−tc)
= e−λ1(tp−tc)−λ2(tc−tp) = e(tp−tc)(λ2−λ1).

Plot the histogram of the posterior distribution of the infection time. Try a couple of sets of values

for λ1 and λ2 and examine the effect of these changes on the posterior distribution of the infection

time.
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Practical: Combining Gibbs and Metropolis-Hastings Kernels

Instructors: Kari Auranen, Elizabeth Halloran and Vladimir Minin

July 11 – July 13, 2018

1 Beta-binomial hierarchical model

Let x = (x1, . . . , xn), where xi | θi ∼ Bin(ni, θi) and xis are independent given θis. We further

assume that θi
iid
∼ Beta(α, β). We group all success probabilities into a vector θ = (θ1, . . . , θn)

and put a prior distribution on hyper-parameters α and β, Pr (α, β). Under our assumptions, the

posterior distribution becomes

Pr (θ, α, β |x) ∝ Pr (x |θ, α, β) Pr (θ, α, β) ∝ Pr (α, β)
n
∏

i=1

Γ(α+ β)

Γ(α)Γ(β)
θα−1
i (1−θi)

β−1
n
∏

i=1

θ
xi

i (1−θi)
ni−xi .

We can compute the posterior up to a proportionality constant, but this does not mean that we

can compute expectations with respect to the posterior. We will tackle this problem with Markov

chain Monte Carlo.

The full condition distribution of θi is

Pr (θi |x, α, β,θ−i) ∝ θxi+α−1(1− θi)
ni−xi+β−1.

Therefore,

θi | x, α, β,θ−i ∼ Beta(xi + α, ni − xi + β).

Sampling from Pr (α, β |x,θ) directly is difficult, so we will use two Metropolis-Hastings steps to

update α and β. To propose new values of α and β, we will multiply their current values by

eλ(U−0.5), where U ∼ U [0, 1] and λ is a tuning constant. The proposal density is

q(ynew | ycur) =
1

λynew
.

This proposal is not symmetric, so we will have to include it into the M-H acceptance ratio.

Your task

Download the file ”beta bin reduced.R” from the module web site. We will go through this R script

together at first. After you become familiar with data structures used in the script, you will fill

in two gaps, marked by ”TO DO” comments in the script. Your first task is to replace the line

”cur.theta = rep(0.5, data.sample.size)” in the script with code that implements the Gibbs update.

Your second task is to implement the M-H steps to sample α and β. The file ”beta bin reduced.R”

contains functions that implement the described proposal mechanism and all the pieces necessary

for the acceptance probability. The full MCMC algorithm is outlined on the next page.



SISMID, Module 4 Practicals Summer 2018

Algorithm 1 MCMC for the beta-binomial hierarchical model

1: Start with some initial values (θ(0), α(0), β(0)).

2: for t = 0 to N do

3: for i = 0 to n do

4: Sample θ
(t+1)
i ∼ Beta(xi + α(t), ni − xi + β(t))

5: end for

6: Generate U1 ∼ U [0, 1] and set α∗ = α(t)eλα(U1−0.5). Generate U2 ∼ U [0, 1] and set

α(t+1) =











α∗ if U2 ≤ min

{

Pr(θ(t+1),α∗,β(t) |x)q(α(t)|α∗)

Pr(θ(t+1),α(t),β(t) |x)q(α∗|α(t))
, 1

}

,

α(t) otherwise.

7: Generate U3 ∼ U [0, 1] and set β∗ = β(t)eλβ(U3−0.5). Generate U4 ∼ U [0, 1] and set

β(t+1) =











β∗ if U4 ≤ min

{

Pr(θ(t+1),α(t+1),β∗ |x)q(β(t)|β∗)

Pr(θ(t+1),α(t+1),β(t) |x)q(β∗|β(t))
, 1

}

,

β(t) otherwise.

8: end for

9: return (θ(t), α(t), β(t)), for t = 1, . . . , N .



Practical: Hierarchical chain binomial model

Instructors: Kari Auranen, Elizabeth Halloran, Vladimir Minin
July 11 – July 13, 2018

Background

In this computer class, we re-analyze the data about outbreaks of measles
in households. The analysis is restricted to households with 3 susceptible
individuals at the onset of the outbreak. We assume that there is a single
index case that introduces infection to the household. The possible chains of
infection then are 1, 1 → 1, 1 → 1 → 1, and 1 → 2.

In this example, the probabilities for a susceptible to escape infection when
exposed to one infective in the household are allowed to be different in dif-
ferent households. These probabilities are denoted by qj (and pj = 1 − qj),
j = 1, . . . , 334. The following table expresses the chain probabilities in terms
of the escape probability qj. The observed frequency is the number of house-
holds with the respective chain.

chain prob. frequency observed frequency

1 q2j n1 34
1→1 2q2jpj n11 25
1→1→1 2qjp

2
j n111 not observed

1→ 2 p2j n12 not observed

The frequencies n111 and n12 have not been observed. Only their sum N3 =
n111 + n12 = 275 is known.

The hierarchical model was defined in the lecture notes. The joint distribu-
tion of parameters α and β, the household-specific escape probabilities and
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the chain frequencies is

334
∏

j=1

(

f(n
(j)
1 , n

(j)
11 , n

(j)
111, n

(j)
12 |qj)f(qj|α, β)

)

f(α, β),

where

(n
(j)
1 , n

(j)
11 , n

(j)
111, n

(j)
12 )|qj ∼ Multinomial(1, (q2j , 2q

2
jpj, 2qjp

2
j , p

2
j)),

qj|α, β ∼ Beta(α, β),

(α, β) ∝ (α + β)−5/2.

N.B. The household-specific chain frequencies are vectors in which only one
of the elements is 1, all other elements being 0.

N.B. The joint prior distribution of the parameters of the Beta distribution,
α and β, is proportional to (α + β)−5/2. This is derived on the basis of
assuming independent uniform priors for α/(α + β) (the expectation of the
Beta distribution) and 1/(α + β) (an approximation to the the standard
deviation of the Beta distribution). See Chapter 5.3 in Gelman et al.

We index the households with chain 1 as 1,...,34, and households with chain
1 → 1 as 35,...,59, and households with chain 1 → 1 → 1 or 1 → 2 as
60,...,334. The model unknowns are α, β, frequencies n

(j)
111 for j = 60, . . . , 334

(i.e., for all 275 households with the final number of infected 3) and qj for
j = 1, . . . , 334 (all households).

In this exercise we apply a combined Gibbs and Metropolis algorithm to draw
samples from the posterior distribution of the model unknowns. Before that,
we explore the fit of the simple model with qj = q for all j.

Exercises

1. The simple chain binomial model. Using R routine chainGibbs.R
(or mychainGibbs), i.e., repeating the earlier exercise, realize an MCMC
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sample from the posterior distribution of the escape probability q in the
simple model in which this probability is the same across all households.

2. Model checking (simple model). Based on the posterior sample
of parameter q, draw samples from the posterior predictive distribution of
frequencies (n1, n11). Compare the sample to the actually observed value
(34,25). The algorithm to do this is as follows:

(a) Discard a number of “burn-in” samples in the posterior sample of param-
eter q, as realised in exercise (1) above.

(b) When the size of the retained sample is K, reserve space for the Kx4
matrix of predicted frequencies for n1, n11, n111 and n12.

(c) Based on the retained part of the posterior sample, take the kth sample
q(k).

(d) Draw a sample of frequencies (n
(k)
1 , n

(k)
11 , n

(k)
111, n

(k)
12 )

fromMultinomial(334,((q(k))
2
, 2(q(k))

2
p(k), 2q(k)(p(k))

2
, (p(k))

2
)) using the rmulti-

nom() function in R.

(e) Repeat steps (c) and (d) K times, storing the sample of frequencies after
each step (d).

(f) Plot the samples of pairs (n
(k)
1 , n

(k)
11 ), k = 1, ..., K, and compare to the

observed point (34,25).

The R routine covering steps (a)-(f) is provided in the script checkmodel reduced.R,
except for step (d). Complete step (d) and check the model fit:

mcmc.sample = chainGibbs(5000,1,1)

checkmodel reduced(mcmc.sample,1000)

The complete R routine (checkmodel.R) will be provided once you have
tried writing your own code.

3. A hierarchical chain binomial model. Samples from the joint pos-
terior distribution of the unknowns in the hierarchical (beta-binomial) chain
model can be sampled using the following algorithm, applying both Gibbs
and Metropolis-Hastings updatings steps (superscript k refers to the kth
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MCMC step):

(a) Reserve space for all model unknowns (parameters α and β as well as the

275 unknown frequencies n
(j)
111).

(b) Initialize the model unknowns.

(c) Update all household-specific escape probabilities from their full condi-
tionals:

q
(k)
j |α(k−1), β(k−1) ∼ Beta(2 + α(k−1), β(k−1)), j = 1, . . . , 34

q
(k)
j |α(k−1), β(k−1) ∼ Beta(2 + α(k−1), 1 + β(k−1)), j = 35, . . . , 59

q
(k)
j |α(k−1), β(k−1), n

(j,k−1)
111 ∼ Beta(n

(j,k−1)
111 +α(k−1), 2+β(k−1)), j = 60, . . . , 334

(d) Update the unknown binary variables n
(j)
111 (j = 60, . . . , 334) from their

full conditionals:

n
(j,k)
111 |q

(k)
j ∼ Binomial(1, 2q

(k)
j /(2q

(k)
j + 1))

(e) Sample α(k) using a Metropolis-Hastings step (see the program code)

(f) Sample β(k) using a Metropolis-Hastings step (see the program code)

(g) Repeat steps (b)–(f) K times (in the R code, K=mcmc.size).

The above algorithm is written in the R script chain hierarchical reduced.R,
except for parts of step (c). Complete the code and draw a posterior sample
of all model unknowns. Note that the data set and the prior distributions
are hardwired within the given program code.

The complete routine (chain hierarchical.R) will be provided once you
have tried your own solution.
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4. Posterior inferences. Plot the marginal posterior distributions of the
parameters α and β. You can also check how their joint posterior distribution
looks like. Draw a histogram of the posterior distribution of α/(α + β), the
expected escape probability (= the expectation of the Beta distribution).

Using output from program chain hierarchical.R, the above plots can be
done as follows (based on 2000 samples with the first 500 as burn-in samples):

mcmc.size = 10000

mcmc.sample = chain_hierarchical(mcmc.size)

mcmc.al = mcmc.sample$al

mcmc.be = mcmc.sample$be

burn.in = 2000

mcmc.al = mcmc.al[(burn.in+1):mcmc.size]

mcmc.be = mcmc.be[(burn.in+1):mcmc.size]

# The marginal posterior distributions of parameters alpha and beta

par(mfrow=c(1,2))

hist(mcmc.al,xlab=’alpha’,main=’’)

hist(mcmc.be,xlab=’beta’,main=’’)

# The joint posterior distribution of alpha and beta

par(mfrow=c(1,1))

plot(mcmc.al,mcmc.be,xlab=’alpha’,ylab=’beta’)

# The posterior distribution of the expected escape probability

hist(mcmc.al/(mcmc.al+ mcmc.be),breaks=20,

xlab=’expected escape probability’,main=’’,xlim=c(0.1,0.35))

You can still plot the posteriori predictive distribution of the escape proba-
bility: see the programme code.

qpost = rbeta((mcmc.size-burn.in),mcmc.al,mcmc.be)

hist(qpost,main="posterior predictive distribution of the escape probability",

cex.main=1,xlab="predictive q",breaks=20)

5



5. Model checking (hierarchical model). Check the fit of the hierarchi-
cal model with the R program check hierarchical.R. The program draws
samples from the posterior predictive distribution of the chain frequencies
and plots the these samples for frequencies n1 and n11 with the actually
observed point (34,25).

check hierarchical(mcmc.sample,mcmc.burnin=500)

N.B. Unlike we pretended in the preceding exercises, the original data actu-
ally record the frequencies n12 = 239 and n111 = 36. You can now check the
model fit with respect to these frequencies.

References:

[1] Bailey T.J.N. “The Mathematical Theory of Infectious Diseases”, Charles
Griffiths and Company, London 1975.

[2] O’Neill Ph. and Roberts G. “Bayesian inference for partially observed
stochastic processes”, Journal of the Royal Statistical Society, Series A, 162,
121–129 (1999).

[3] Becker N. Analysis of infectious disease data. Chapman and Hall, New
York 1989.

[4] O’Neil Ph. A tutorial introduction to Bayesian inference for stchastic
epidemic models using Markov chain Monte Carlo methods. Mathematical
Biosciences 2002; 180:103-114.

[5] Gelman, Carlin, Stern, Rubin. Bayesian Data Analysis, Chapman and
Hall, London 2004.
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Practical:

Parameter estimation with data augmentation

in the general epidemic model

Instructors: Kari Auranen, Elizabeth Halloran, Vladimir Minin
July 11 – July 13, 2018

Background

In this exercise we fit the general epidemic model to the Abakaliki smallpox
data using Bayesian data augmentation. The data originate from a smallpox
outbreak in a community of M = 120 initially susceptible individuals. There
is one introductory case and 29 subsequent cases so that the total number of
cases is n = 30. The observed 29 time intervals (∆) between the n removals,
i.e., between the detection of cases are:

13, 7, 2, 3, 0, 0, 1, 4, 5, 3, 2, 0, 2, 0, 5, 3, 1, 4, 0, 1, 1, 1, 2, 0, 1, 5, 0, 5, 5 (days).

A zero means that symptoms appeared the same day as for the preceding
case. After the last removal there were no more cases. To fix the the time
origin we assume that the introductory (index) case became infectious at
time 0 and was removed at time 14 days (this appears as a long duration
of infectiousness but agrees with the interpretation made in [1]). With this
assumption, we can calculate the removal times r with respect to the time
origin. The removal times (days) are

14, 27, 34, 36, 39, 39, 39, 40, 44, 49, 52, 54, 54, 56, 56,

61, 64, 65, 69, 69, 70, 71, 72, 74, 74, 75, 80, 80, 85, 90

The total duration of the outbreak is thus T = 90 days.

We explore the joint posterior distribution of the infection rate β and the
removal rate γ. The unknown infection times (i2, . . . , i30) are augmented,
i.e., treated as additional model unknowns. All infection times together are
denoted by i.

N.B. The first infection time is assumed to occur at time 0 and is thus known
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and not part of the model unknowns.

The example program is implemented using individual-based event histories
(see the lectures). The indices thus refer to individuals. In particular, (ik, rk)
are the infection and removal times for the same individual k. This affects the
choice of the likelihood function as explained in the lectures. The appropriate
expression is:

γn

n
∏

k=2

{βI(ik)} exp

(

−

∫ T

0

(γI(u) + (β/M)I(u)S(u))du

)

.

In actual computations, it is more convenient to use the logarithm of the
likelihood function:

n log(γ) + (n− 1) log(β) +
n

∑

k=2

log I(ik)−

∫ T

0

(γI(u) + (β/M)I(u)S(u))du.

N.B. The following is not intended to be a comprehensive analysis of the
Abakaliki smallpox data. More appropriate analyses are possible. For ex-
ample, in reference [2], the time of infection of the index case was included
in the model unknowns. No adjustments were made to the original data. In
[3], heterogeneity across individuals in their susceptibility to infection and a
latent period were allowed.

Exercises

1. Download all required source codes by executing SIRaugmentation reduced.R.
The complete code will be provided once we have tried to complete the
”reduced” version of the sampling routine (see below).

2. Read the data. The observed data in the Abakaliki smallpox out-
break are the 30 removal times (days) for the 30 infected individuals
and the fact that 90 individuals remained uninfected throughout the
outbreak. Function readdata.R can be used to read in the times of
removals:
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remtimes = readdata()

Note that the output vector does not include the piece of information
that 90 individuals remained uninfected. This has to be input to the
estimation routine separately (see below).

3. Implementing the sampling algorithm. The steps are

(a) Reserve space for vectors of length K for the two model parameters
β and γ (for an MCMC sample of size K; in the actual R code, K
= mcmc.size). Samples of the unknown infections times need not be
stored but a (vector) variable is needed to store the current iterates.

(b) Initialise the model unknowns β[1] and γ[1]. The unknown infection
times need to be initialized as well. To do this, you can use routine ini-
tializedata.R which creates a complete data matrix with two columns
(infection times and removal times). Each row corresponds to an in-
fected individuals in the data; the index case is on the first row.

completedata = initializedata(remtimes)

(c) Update β from its full conditional distribution in a Gibbs step:

β[k + 1] | i[k − 1], r ∼ Γ(n− 1 + νβ, (1/M)
∫ T

0
I(u)S(u)du+ λβ)

(d) Update γ from its full conditional distribution in a Gibbs step:

γ[k] | i[k − 1], r ∼ Γ(n+ νγ,
∫ T

0
I(u)du+ λγ)

(e) Update infection times (i2, . . . , in) using Metropolis-Hastings steps
(cf. the lecture). This creates a new vector of infection times i[k] (the
first element is always fixed by our assumption).

(f) Repeat steps (c)–(e) K times, storing the samples (β[k], γ[k]), k =
1, . . . K.

The sampling routine is implemented in sampleSIR reduced.R. It
requires as input the removal times (r), the total number of individu-
als (M) and the number of iterations (K). The program uses a num-
ber of subroutines (with obvious tasks to perform): initializedata.R,
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update beta.R, update gamma.R, update inftimes.R, loglike-
lihood.R, totaltime infpressure.R, and totaltime infected.R.

The subroutines update beta.R and update gamma.R are reduced,
so your task is to complete those. These corresponds to steps (c) and
(d) above.

4. Sampling the posterior distribution. Use the compeleted sampling
routine (or sampleSIR.R) to realize an MCMC sample from the joint
distribution of the model two parameters:

mcmc.sample = sampleSIR(remtimes,M=120,mcmc.size=600)

Plot the sample paths of the two model parameters (β and γ). For
example, for parameter β:

plot(mcmc.sample$beta,type="l",xlab="iteration",ylab="beta")

Then explore the marginal and joint distributions of the model param-
eters.

5. The effect of priors. The program applied uninformative priors
with (νβ, λβ) = (0.0001, 0.0001) and (νγ, λγ) = (0.0001, 0.0001) (see
functions update beta.R and update gamma.R. Try how sensitive the
posterior estimates are to a more informative choice of the prior, e.g.
(νβ, λβ) = (10, 100) and (νγ, λγ) = (10, 100).

6. The number of secondary cases. What is the expected number
of secondary cases for the index case, that is, calculate the posterior
expectation of β/γ.

References: [1] Becker N. Analysis of infectious diseases data. Chapman
and Hall, 1989.
[2] O’Neill Ph. and Roberts G. Bayesian inference for partially observed
stochastic processes. Journal of the Royal Statistical Society, Series A, 162,
121–129 (1999).
[3] O’Neill Ph. A tutorial introduction to Bayesian inference for stochastic
epidemic models using Markov chain Monte Carlo methods. Mathematical
Biosciences 180, 103-114 (2002).
[4] Stockdale J, Kypraios Th., O’Neill Ph. Modelling and Bayesian analysis
of the Abakaliki smallpox data. Epidemics 2017; 19:13–23.
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SISMID, Module 4 Practicals Summer 2018

Practical: Convergence Diagnostics

Instructors: Kari Auranen, Elizabeth Halloran and Vladimir Minin

July 11 – July 13, 2018

Examining MCMC output in the chain-binomial Gibbs sampler

Here, we will have a look at some diagnostic tools provided in the R package ”coda.” Download the

script ”diagnostics.R” that examines convergence of the chain-binomial Gibbs sampler. We will go

over this script during the practical.

Your task

Use ”coda” package tools to examine convergence of either the beta-binomial (R script ”beta bin.R”)

or the hierarchical chain-binomial (R script ”chain hierarchical.R”) Metropolis-within-Gibbs sam-

pler.



Practical:

Data simulation and parameter estimation from

complete data for a recurrent infection

Instructors: Kari Auranen, Elizabeth Halloran, Vladimir Minin
July 11 – July 13, 2018

Background

In the following exercises we try out Markov chain Monte Carlo methods in
the Bayesian data analysis for recurrent infections. The model of infection is
taken to be a binary Markov process, where at any given time the epidemi-
ological state for an individual is either 0 (susceptible) or 1 (infected). This
is the simplest stochastic “SIS” model (susceptible-infected-susceptible).

To familiarize ourselves with the computational approaches, using the
Metropolis-Hastings algorithm with reversible jumps to augment unobserved
events, we consider (statistically) independent individuals, omitting thus
questions about transmission. This makes the likelihood computations easier
and faster.

The binary Markov process is considered from time 0 to time T , at which
the process is censored. The model has three parameters: (λ, µ, π), where λ
is the per capita rate (force) of infection, µ is the rate of clearing infection
and π is the proportion of those that are infected at time 0.

For N independent individuals, the complete data comprise the times (T
(ik)
sr )

of all transitions between states 0 and 1 that occur between time 0 and the
censoring time T (see lectures). In more realistic situations, however, we
could not hope to observe complete data. Instead, the process can usually
only be observed at some pre-defined times. To apply the complete data
likelihood, unobserved event times and states should be augmented. The
computations then rely on the reversible jump Markov chain Monte Carlo
methodology. However, this problem falls outside the scope of the current
exercise.
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Exercises

1. Simulation of complete (event-history) data. Download the source
code of an R function simulateSIS N.R. Then simulate complete data
from the binary Markov model (“susceptible-infected-susceptible”):

complete data = simulateSIS N(N=100,la=0.45,mu=0.67,initprob=0.40,T=12)

The function samples binary processes for N=100 individuals from time
0 to time T=12 (time units). The transition rates are λ = 0.45 (force
of infection, per time unit per capita) and µ = 0.67 (rate of clearing
infection, per time unit per capita). The proportion of those that are
infected at time 0 is π=0.40 (initprob). The output is a list of N
arguments, each containing the event times (times of transition) and
the epidemiological states (after each transition) for one individual.

These data might describe a 12 month follow-up of acquisition and
clearance of nasopharyngeal carriage of pneumococci (a recurrent asymp-
tomatic infection), with mean duration of carriage 1/µ = 1.5 months
and the stationary prevalence of λ/(λ+ µ) = 0.40.

2. Estimation of model parameters from completely observed
data. You can realize numerical samples from the joint posterior
distribution of the three model parameters (λ, µ, π) with the R func-
tion MH SIS.R. This function applies a component-wise Metropolis-
Hastings algorithm to update each of the parameters in turn. It uses
subroutines likelihoodSIS.R (to calculate values of the log-likelihood
from the observed event histories) and update parameters.R (to per-
form the actual updating). These routines are in the same source file
as the main program.

To perform M=1500 MCMC iterations, the program is called as follows:

par = MH SIS(complete data,M=1500)

The output par is a list of three parameter vectors, each of length M.
These are the MCMC samples from the joint posterior distribution of
the model parameters.
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(a) Plot the sample paths of each of the parameters. Does it appear that the
sampling algorithm has converged? For the rate of acquisition, for example:

plot(par[[1]],type="l",xlab="iteration",ylab="rate of acquisition

(per mo)")

(b) Calculate the posterior mean and the 90% posterior intervals for the three
model parameters. For example:

la samples = par[[1]][501:1500]

la samples2 = sort(la samples)

mean(la samples2)

la samples2[50] # 5% quantile of the marginal posterior

la samples2[950]# 95% quantile of the marginal posterior

(c) Are there any correlation between rates λ and µ in their joint posterior
distribution? For a visual inspection, you can draw the scatter plot of the
joint posterior:

la samples = par[[1]][501:1500]

mu samples = par[[2]][501:1500]

plot(la samples,mu samples,type=’p’)

(d) The rate parameters were given (independent) Gamma(ν1, ν2) priors with
ν1 = ν2 = 0.00001 (see the program code in the subroutine update parameters.R).
With the amount of data, the analysis is quite robust to the choice of prior.
However, try how the posterior is affected by a more informative choice of the
prior distributions (e.g, by choosing hyperparameters ν1 = 1 and ν2 = 20)
when N = 10.
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