Contingency Tables

Overview

1) Types of Variables
2) Comparing (2) Categorical Variables

- Contingency (two-way) tables
- χ^{2} Tests

3) $\mathbf{2} \times 2$ Tables

- Sampling designs
- Testing for association
- Estimation of effects
- Paired binary data

4) Stratified Tables

- Confounding
- Effect Modification

Factors and Contingency Tables

Definition: A factor is a categorical (discrete) variable taking a small number of values that represent the levels of the factor.

Examples

Gender with two levels: $1=$ Male and $2=$ Female
Disease status with three levels: $1=$ Progression, 2
= Stable, 3 = Improved
AgeFactor with 4 levels: $1=20-29 \mathrm{yrs}, 2=30-39$, $3=40-49,4=50-59$

Factors and Contingency Tables

Data description: Form one-way, two-way or multiway tables of frequencies of factor levels and their combinations

- To assess whether two factors are related, we often construct an $\mathrm{R} \times \mathrm{C}$ table that cross-classifies the observations according to the 2 factors.
- Examining two-way tables of Factor A vs Factor B at each level of a third Factor C shows how the A / B association may be explained or modified by C (later).

Data Summary: Categorical data are often summarized by reporting the proportion or percent in each category. Alternatively, one sometimes sees a summary of the relative proportion (odds) in each category (relative to a "baseline" category).

Testing: We can test whether the factors are related using a χ^{2} test.

Categorical Data

Example: From Doll and Hill (1952) retrospective assessment of smoking frequency. The table displays the daily average number of cigarettes for lung cancer patients and control patients. Note there are equal numbers of cancer patients and controls.

	Daily \# cigarettes						
	None	<5	$5-14$	$15-24$	$25-49$	$50+$	Total
Cancer	7	55	489	475	293	38	1357
	0.5%	4.1%	36.0%	35.0%	21.6%	2.8%	
Control	61	129	570	431	154	12	1357
	4.5%	9.5%	42.0%	31.8%	11.3%	0.9%	
Total	68	184	1059	906	447	50	2714

χ^{2} Test

We want to test whether the smoking frequency is the same for each of the populations sampled. We want to test whether the groups are homogeneous with respect to a characteristic.
H_{0} : smoking probability same in both groups
H_{A} : smoking probability not the same

Q: What does H_{0} predict we would observe if all we knew were the marginal totals?

	Daily \# cigarettes							
	None	<5	$5-14$	$15-24$	$25-49$	$50+$	Total	
Cancer							1357	
Control							1357	
Total	68	184	1059	906	447	50	2714	

χ^{2} Test

A: H_{0} predicts the following expectations:

	Daily \# cigarettes						
	None	<5	$5-14$	$15-24$	$25-49$	$50+$	Total
Cancer	34	92	529.5	453	223.5	25	1357
Control	34	92	529.5	453	223.5	25	1357
Total	68	184	1059	906	447	50	2714

Each group has the same proportion in each cell as the overall marginal proportion. The "equal" expected number for each group is the result of the equal sample size in each group (what would change if there were half as many cases as controls?)

χ^{2} Test

Summing the differences between the observed and expected counts provides an overall assessment of H_{0}.

$$
\mathrm{X}^{2}=\sum_{i, j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}} \sim \chi^{2}((r-1) \times(c-1))
$$

X^{2} is known as the Pearson's Chi-square Statistic.
$>$ Large values of X^{2} suggests the data are not consistent with H_{0}
$>$ Small values of X^{2} suggests the data are consistent with H_{0}

χ^{2} Test

In example 3 the contributions to the X^{2} statistic are:

	Daily \# cigarettes						
	None	<5	$5-14$	$15-24$	$25-49$	$50+$	Total
Cancer	$\frac{(7-34)^{2}}{34}$	$\frac{(55-92)^{2}}{92}$	etc.				
Control	$\frac{(61-34)^{2}}{34}$						
Total							

	Daily \# cigarettes							
	None	<5	$5-14$	$15-24$	$25-49$	$50+$	Total	
Cancer	21.44	14.88	3.10	1.07	21.61	6.76		
Control	21.44	14.88	3.10	1.07	21.61	6.76		
Total								

$$
\begin{aligned}
& \qquad \mathrm{X}^{2}=\sum_{i, j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=137.7 \\
& \mathrm{p}=\mathrm{P}\left(\mathrm{X}^{2}>\chi^{2}(5) \mid \mathrm{H}_{0} \text { true }\right)<0.0001 \\
& \text { Conclusion? }
\end{aligned}
$$

χ^{2} Test

	Factor Levels				
	1	2	\ldots	C	Total
1	O_{11}	O_{12}	\ldots	$\mathrm{O}_{1 \mathrm{C}}$	N_{1}
Group	O_{21}				$\mathrm{~N}_{2}$
2					
3	O_{31}				$\mathrm{~N}_{3}$
M	M				
R	$\mathrm{O}_{\mathrm{R} 1}$			O_{RC}	N_{R}
Total	M_{1}	M_{2}		M_{C}	T

1. Compute the expected cell counts under homogeneity assumption:

$$
\mathrm{E}_{\mathrm{ij}}=\mathrm{N}_{\mathrm{i}} \mathrm{M}_{\mathrm{j}} / \mathrm{T}
$$

2. Compute the chi-square statistic:

$$
\mathrm{X}^{2}=\sum_{i, j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

3. Compare X^{2} to $\chi^{2}(d f)$ where

$$
d f=(R-1) x(C-1)
$$

4. Interpret acceptance/rejection or p-value.

2×2 Tables

Example 1: Pauling (1971)

Patients are randomized to either receive Vitamin C or placebo. Patients are followedup to ascertain the development of a cold.

	Cold - Y	Cold - N	Total
Vitamin C	17	122	139
Placebo	31	109	140
Total	48	231	279

Q: Is treatment with Vitamin C associated with a reduced probability of getting a cold?

Q: If Vitamin C is associated with reducing colds, then what is the magnitude of the effect?

2×2 Tables

Example 2: Keller (AJPH, 1965)

Patients with (cases) and without (controls) oral cancer were surveyed regarding their smoking frequency (this table collapses over the smoking frequency categories).

	Case	Control	Total
Smoker	484	385	869
Non- Smoker	27	90	117
Total	511	475	986

Q: Is oral cancer associated with smoking?

Q: If smoking is associated with oral cancer, then what is the magnitude of the risk?

2×2 Tables

Example 3: Sex-linked traits
Suppose we collect a random sample of
Drosophila and cross classify eye color and sex.

	male	female	Total
red	165	300	465
white	176	81	257
Total	341	381	722

Q: Is eye color associated with sex?

Q: If eye color is associated with sex, then what is the magnitude of the effect?

2×2 Tables

Example 4: Matched case control study
213 subjects with a history of acute myocardial infarction (AMI) were matched by age and sex with one of their siblings who did not have a history of AMI. The prevalence of a particular polymorphism was compared between the siblings

	AMI		
	carrier	noncarrier	Total
carrier	73	14	87
No AMI noncarrier	23	103	126
Total	96	117	213

Q: Is there an association between the polymorphism and AMI?

Q: If there is an association then what is the magnitude of the effect?

2×2 Tables

Each of these tables (except for example 4) can be represented as follows:

Disease Status

	D	not D	Total
E	a	b	$(\mathrm{a}+\mathrm{b})=\mathrm{n}_{1}$
not E	c	d	$(\mathrm{c}+\mathrm{d})=\mathrm{n}_{2}$
Total	$(\mathrm{a}+\mathrm{c})=\mathrm{m}_{1}$	$(\mathrm{b}+\mathrm{d})=\mathrm{m}_{2}$	N

The question of association can be addressed with Pearson's X^{2} (except for example 4) We compute the expected cell counts as follows:

Expected:

	D	not D	Total
E	$\mathrm{n}_{1} \mathrm{~m}_{1} / \mathrm{N}$	$\mathrm{n}_{1} \mathrm{~m}_{2} / \mathrm{N}$	$(\mathrm{a}+\mathrm{b})=\mathrm{n}_{1}$
not E	$\mathrm{n}_{2} \mathrm{~m}_{1} / \mathrm{N}$	$\mathrm{n}_{2} \mathrm{~m}_{2} / \mathrm{N}$	$(\mathrm{c}+\mathrm{d})=\mathrm{n}_{2}$
Total	$(\mathrm{a}+\mathrm{c})=\mathrm{m}_{1}$	$(\mathrm{~b}+\mathrm{d})=\mathrm{m}_{2}$	N

2×2 Tables

Pearson's chi-square is given by:

$$
\begin{aligned}
X^{2}= & \sum_{i=1}^{4}\left(O_{i}-E_{i}\right)^{2} / E_{i} \\
= & \left(a-\frac{n_{1} m_{1}}{N}\right)^{2} /\left(\frac{n_{1} m_{1}}{N}\right)+\left(b-\frac{n_{1} m_{2}}{N}\right)^{2} /\left(\frac{n_{1} m_{2}}{N}\right)+ \\
& \left(c-\frac{n_{2} m_{1}}{N}\right)^{2} /\left(\frac{n_{2} m_{1}}{N}\right)+\left(d-\frac{n_{2} m_{2}}{N}\right)^{2} /\left(\frac{n_{2} m_{2}}{N}\right)+ \\
= & \frac{N(a d-b c)^{2}}{n_{1} n_{2} m_{1} m_{2}}
\end{aligned}
$$

2×2 Tables

Example 1: Pauling (1971)

	Cold - Y	Cold - N	Total
Vitamin C	17 (12%)	122 (88%)	139
Placebo	31 (22%)	109 (78%)	140
Total	48	231	279

H_{0} : probability of disease does not depend on treatment
H_{A} : probability of disease does depend on treatment

$$
\begin{aligned}
X^{2} & =\frac{N(a d-b c)^{2}}{n_{1} n_{2} m_{1} m_{2}} \\
& =\frac{279(17 \times 109-31 \times 122)^{2}}{139 \times 140 \times 48 \times 231} \\
& =4.81
\end{aligned}
$$

For the p-value we compute $\mathrm{P}\left(\chi^{2}(1)>4.81\right)=$ 0.028 . Therefore, we reject the homogeneity of disease probability in the two treatment groups.

2×2 Tables
 Applications In Epidemiology

Example 1 fixed the number of E and not E, then evaluated the disease status after a fixed period of time (same for everyone). This is a prospective study.
Given this design we can estimate the relative risk:

$$
R R=\frac{P(D \mid E)}{P(D \mid \bar{E})}
$$

The range of $R R$ is $[0, \infty)$. By taking the logarithm, we have $(-\infty,+\infty)$ as the range for $\ln (R R)$ and a better approximation to normality for the estimated $\ln (\hat{R} R)$:

$$
\begin{aligned}
& \ln (\hat{R} R)=\ln \left(\frac{\hat{P}(D \mid E)}{\hat{P}(D \mid \bar{E})}\right)=\ln \left(\frac{p_{1}}{p_{2}}\right) \\
&=\ln \left(\frac{a / n_{1}}{c / n_{2}}\right) \\
& \ln (\hat{R} R) \sim \operatorname{approx} N\left(\ln \left(p_{1} / p_{2}\right), \frac{1-p_{1}}{p_{1} n_{1}}+\frac{1-p_{2}}{p_{2} n_{2}}\right)
\end{aligned}
$$

Relative Risk

	Cold - Y	Cold - N	Total
Vitamin C	17	122	139
Placebo	31	109	140
Total	48	231	279

The estimated relative risk is:

$$
\begin{aligned}
\hat{R} R & =\frac{\hat{P}(D \mid E)}{\hat{P}(D \mid \bar{E})} \\
& =\frac{17 / 139}{31 / 140}=0.55
\end{aligned}
$$

We can obtain a 95% confidence interval for the relative risk by first obtaining a confidence interval for the $\log -R R$:

$$
\ln (\hat{R} R) \pm 1.96 \times \sqrt{\frac{1-p_{1}}{p_{1} n_{1}}+\frac{1-p_{2}}{p_{2} n_{2}}}
$$

and exponentiating the endpoints of the CI.

Note that disease status and exposure status are transposed here compared to previous tables.

. csi 1731122109

Exposed Unexposed
Total

2×2 Tables

Example 2: Keller (AJPH, 1965)

Patients with (cases) and without (controls) oral cancer were surveyed regarding their smoking frequency (this table collapses over the smoking frequency categories).

	Case	Control	Total
Smoker	484	385	869
Non- Smoker	27	90	117
Total	511	475	986

Q: Is oral cancer associated with smoking?

Q: If smoking is associated with oral cancer, then what is the magnitude of the risk?

2×2 Tables
 Applications In Epidemiology

In Example 2 we fixed the number of cases and controls then ascertained exposure status. Such a design is known as case- control study. Based on this we are able to directly estimate:

$$
P(E \mid D) \text { and } \quad P(E \mid \bar{D})
$$

However, we generally are interested in the relative risk of disease given exposure, which is not estimable from these data alone - we've fixed the number of diseased and diseased free subjects, and it can be shown that in general:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{D} \mid \mathrm{E}) \neq \mathrm{P}(\mathrm{E} \mid \mathrm{D}) \\
& \frac{\mathrm{P}(\mathrm{D} \mid \mathrm{E})}{\mathrm{P}(\mathrm{D} \mid \overline{\mathrm{E}})} \neq \frac{\mathrm{P}(\mathrm{E} \mid \mathrm{D})}{\mathrm{P}(\mathrm{E} \mid \overline{\mathrm{D}})}
\end{aligned}
$$

Odds Ratio

Instead of the relative risk we can estimate the exposure odds ratio which (surprisingly) is equivalent to the disease odds ratio:

$$
\frac{P(E \mid D) /(1-P(E \mid D))}{P(E \mid \bar{D}) /(1-P(E \mid \bar{D}))}=\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))}
$$

In other words, the odds ratio can be estimated regardless of the sampling scheme.

Furthermore, for rare diseases, $\mathrm{P}(\mathrm{D} \mid \mathrm{E}) \approx 0$ so that the disease odds ratio approximates the relative risk:

$$
\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))} \approx \frac{P(D \mid E)}{P(D \mid \bar{E})}
$$

Since with case-control data we are able to effectively estimate the exposure odds ratio we are then able to equivalently estimate the disease odds ratio which for rare diseases approximates the relative risk.

For rare diseases (e.g., prevalence <5\%), the (sample) odds ratio estimates the (population) relative risk.

Odds Ratio

Odds Ratio

Like the relative risk, the odds ratio has $[0, \infty)$ as its range. The \log odds ratio has $(-\infty,+\infty)$ as its range and the normal approximation is better as an approximation to the dist of the estimated \log odds ratio.

$$
\begin{aligned}
& O R=\frac{p_{1} / 1-p_{1}}{p_{2} / 1-p_{2}} \\
& \hat{O} R=\frac{\hat{p}_{1} / 1-\hat{p}_{1}}{\hat{p}_{2} / 1-\hat{p}_{2}} \\
& \hat{O} R=\frac{a d}{b c}
\end{aligned}
$$

Confidence intervals are based upon:
$\ln (\hat{O} R) \sim \mathrm{N}\left(\ln (\mathrm{OR}), \frac{1}{\mathrm{n}_{1} p_{1}}+\frac{1}{\mathrm{n}_{1}\left(1-p_{1}\right)}+\frac{1}{\mathrm{n}_{2} p_{2}}+\frac{1}{\mathrm{n}_{2}\left(1-p_{2}\right)}\right)$
Therefore, a 95% confidence interval for the \log odds ratio is given by:

$$
\ln \left(\frac{a d}{b c}\right) \pm 1.96 \times \sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}
$$

Odds Ratio

. cci 4842738590

Interpreting Odds ratios

1. What is the outcome of interest? (i.e. disease)
2. What are the two groups being contrasted?
(i.e. exposed and unexposed)

$\mathrm{OR}=\frac{\text { odds of OUTCOME in EXPOSED }}{\text { odds of OUTCOME in UNEXPOSED }}$

- Similar to RR for rare diseases
- Meaningful for both cohort and case-control studies
- $\mathrm{OR}>1 \Rightarrow$ increased risk of OUTCOME with EXPOSURE
- $\mathrm{OR}<1 \Rightarrow$ decreased risk of OUTCOME with EXPOSURE

2×2 Tables

Example 3: Sex-linked traits
Suppose we collect a random sample of
Drosophila and cross classify eye color and sex.

	male	female	Total
red	165	300	465
white	176	81	257
Total	341	381	722

Q: Is eye color associated with sex?

Q: If eye color is associated with sex, then what is the magnitude of the effect?

2×2 Tables

Applications in Epidemiology

Example 3 is an example of a cross-sectional study since only the total for the entire table is fixed in advance. The row totals or column totals are not fixed in advance.

	male	female	Total
red	165 (48%)	300 (79%)	465
white	176	81	257
Total	341	381	722

Cross-sectional studies

- Sample from the entire population, not by disease status or exposure status
- Use chi-square test to test for association
- Use RR or OR to summarize association
- Cases of disease are prevalent cases (compared to incident cases in a prospective or cohort study)

2×2 Tables
 Applications in Epidemiology

Case = red eye color
 Noncase $=$ white eye color

male
female

Cases Noncases	165300	$\begin{aligned} & 465 \\ & 257 \end{aligned}$	
	17681		
Total	341	722	
Risk	. 483871.7874016	. 6440443	
	Point estimate	[95\% Con	Interval]
Risk difference	-. 3035306	-. 3706217	-. 2364395
Risk ratio	. 6145161	. 544263	. 6938375
Prev. frac. ex.	. 3854839	. 3061625	. 455737
Prev. frac. pop	. 1820637	I	
Odds ratio	. 253125	.1830613	. 3500144
	chi2(1) =	.32 Pr>c	$2=0.0000$

2×2 Tables

Example 4: Matched case control study
213 subjects with a history of acute myocardial infarction (AMI) were matched by age and sex with one of their siblings who did not have a history of AMI. The prevalence of a particular polymorphism was compared between the siblings

	AMI		
	carrier	noncarrier	Total
carrier	73	14	87
No AMI noncarrier	23	103	126
Total	96	117	213

Q: Is there an association between the polymorphism and AMI?

Q: If there is an association then what is the magnitude of the effect?

Paired Binary Data

Example 4 measures a binary response in sibs. This is an example of paired binary data. One way to display these data is the following:

	Carrier	Noncarrier	Total
AMI	96	117	213
No AMI	87	126	213
Total	183	243	426

Q: Can't we simply use X^{2} Test of Homogeneity to assess whether this is evidence for an increase in knowledge?

A: NO!!! The X^{2} tests assume that the rows are independent samples. In this design the 213 with AMI are genetically related to the 213 w/o AMI.

Paired Binary Data

For paired binary data we display the results as follows:

	AMI	
	1	0
No AMI 1	n_{11}	n_{10}
0	n_{01}	n_{00}

This analysis explicitly recognizes the heterogeneity of subjects. Thus, those that score $(0,0)$ and $(1,1)$ provide no information about the association between AMI and the polymorphism. These are known as the concordant pairs. The information regarding the association is in the discordant pairs, $(0,1)$ and $(1,0)$.

$$
\begin{aligned}
\mathrm{p}_{1} & =\mathrm{P}(\text { carrier } \mid \mathrm{AMI}) \\
\mathrm{p}_{0} & =\mathrm{P}(\text { carrier } \mid \text { No AMI }) \\
\mathrm{H}_{0} & : \mathrm{p}_{1}=\mathrm{p}_{0} \\
\mathrm{H}_{\mathrm{A}} & : \mathrm{p}_{1} \neq \mathrm{p}_{0} \\
\hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{0} & =\frac{\mathrm{n}_{11}+\mathrm{n}_{01}}{\mathrm{~N}}-\frac{\mathrm{n}_{11}+\mathrm{n}_{10}}{\mathrm{~N}}=\frac{\mathrm{n}_{01}-\mathrm{n}_{10}}{\mathrm{~N}}
\end{aligned}
$$

Paired Binary Data
 McNemar's Test

Under the null hypothesis, $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{0}$, we expect equal numbers of 01 's and 10 's. $\left(E\left[\mathrm{n}_{01}\right]=\mathrm{E}\left[\mathrm{n}_{10}\right]\right)$. Specifically, under the null:

$$
\begin{aligned}
& M=n_{01}+n_{10} \\
& n_{10} \left\lvert\, M \sim \operatorname{Bin}\left(M, \frac{1}{2}\right)\right. \\
& Z=\frac{n_{10}-M \frac{1}{2}}{\sqrt{M \frac{1}{2}\left(1-\frac{1}{2}\right)}}
\end{aligned}
$$

Under $\mathrm{H}_{0}, \mathrm{Z}^{2} \sim \chi^{2}(1)$, and forms the basis for McNemar's Test for Paired Binary Responses.

The odds ratio comparing the odds of carrier in those with AMI to odds of carrier in those w/o AMI is estimated by:

$$
\hat{O} R=\frac{n_{01}}{n_{10}}
$$

Confidence intervals can be obtained as described in Breslow and Day (1981), section 5.2, or in Armitage and Berry (1987), chapter 16.

Example 4:

	AMI		
	carrier	noncarrier	Total
carrier	73	14	87
No AMI noncarrier	23	103	126
Total	96	117	213

We can test $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$ using McNemar's Test:

$$
\begin{aligned}
Z & =\frac{n_{01}-M_{2} \frac{1}{\sqrt{2}}}{\sqrt{2\left(\frac{1}{2}\right)}} \\
& =\frac{23-(23+14) / 2}{\sqrt{(23+14) / 4}} \\
& =1.48
\end{aligned}
$$

Comparing 1.48^{2} to a $\chi^{2}(1)$ we find that $\mathrm{p}>0.05$. Therefore, we do not reject the null hypothesis and find little evidence of association between gene and disease.

We estimate the odds ratio as $\quad \hat{O} R=23 / 14=1.64$.

Matched case-control data

. mcci 732314103

McNemar's chi2(1) = $2.19 \quad$ Prob $>$ chi2 $=0.1390$
Exact McNemar significance probability $=0.1877$

Proportion with factor
Cases
.4507042
Controls . 4084507
[95\% Conf. Interval]
difference .0422535 -.0181247 . 1026318
ratio 1.103448 .9684942 1.257207
rel. diff. .0714286 -.0197486 . 1626057
odds ratio 1.642857 .8101776 3.452833 (exact)

Two way tables - Review

- How were data collected?
- Cohort design
- Case-control design
- Cross-sectional design
- Matched pairs
- Is there an association?
- R x C Tables
- Chi-square tests of Homogeneity \& Independence
- 2×2 Tables
- Chi-square test
- Paired data and McNemar's
- What is the magnitude of the association?
- Relative risk
- Odds ratio (\approx relative risk for rare diseases)
- Risk difference (attributable risk)

SUMMARY
 Measures of Association for 2×2 Tables

$\mathbf{R D}=\mathrm{p}_{1}-\mathrm{p}_{2}=$ risk difference (null: $\mathrm{RD}=0$)

- also known as attributable risk or excess risk
- measures absolute effect - the proportion of cases among the exposed that can be attributed to exposure
$\mathbf{R R}=\mathrm{p}_{1} / \mathrm{p}_{2}=$ relative risk (null: $\mathrm{RR}=1$)
- measures relative effect of exposure
- bounded above by $1 / \mathrm{p}_{2}$
$\mathbf{O R}=\left[\mathrm{p}_{1}\left(1-\mathrm{p}_{2}\right)\right] /\left[\mathrm{p}_{2}\left(1-\mathrm{p}_{1}\right)\right]=$ odds ratio (null: $\left.\mathrm{OR}=1\right)$
- range is 0 to ∞
- approximates RR for rare events
- invariant of switching rows and cols
- good behavior of p-values and CI even for small to moderate sample size

SUMMARY
 Models for 2×2 Tables

1. Cohort ("Prospective", "Followup")

- Sample n_{1} "exposed" and n_{2} "unexposed"
- Follow everyone for equal period of time
- Observe incident disease - r_{1} cases among exposed, r_{2} cases among unexposed
- Model: Two independent binomials

$$
\begin{aligned}
& \mathrm{r}_{1} \sim \operatorname{binom}\left(\mathrm{p}_{1}, \mathrm{n}_{1}\right) \\
& \mathrm{r}_{2} \sim \operatorname{binom}\left(\mathrm{p}_{2}, \mathrm{n}_{2}\right) \\
\mathrm{p}_{1}= & \mathrm{P}(\mathrm{D} \mid \mathrm{E}) \\
\mathrm{p}_{2}= & \mathrm{P}(\overline{\mathrm{D}} \mid \overline{\mathrm{E}})
\end{aligned}
$$

- Useful measures of association - RR,OR,RD
- Examples:

$$
\begin{aligned}
\mathrm{r}_{\mathrm{i}}= & \text { number of cases of HIV during } 1 \text { year } \\
& \text { followup of } \mathrm{n}_{\mathrm{i}} \text { individuals in arm i of } \\
& \text { HIV prevention trial } \\
\mathrm{r}_{\mathrm{i}}= & \text { number of low birthweight babies } \\
& \text { among } \mathrm{n}_{\mathrm{i}} \text { live births }
\end{aligned}
$$

SUMMARY
 Models for 2×2 Tables

2. Case-Control

- Sample n_{1} "cases" and n_{2} "controls"
- Observe exposure history - r_{1} exposed among cases, r_{2} exposed among controls
- Model: Two independent binomials

$$
\begin{aligned}
& \mathrm{r}_{1} \sim \operatorname{binom}\left(\mathrm{q}_{1}, \mathrm{n}_{1}\right) \\
& \mathrm{r}_{2} \sim \operatorname{binom}\left(\mathrm{q}_{2}, \mathrm{n}_{2}\right) \\
& \mathrm{q}_{1}=\mathrm{P}(\mathrm{E} \mid \mathrm{D}) \\
& \mathrm{q}_{2}=\mathrm{P}(\mathrm{E} \mid \overline{\mathrm{D}})
\end{aligned}
$$

- Useful measures of association - OR
- Examples:

$$
\begin{aligned}
\mathrm{r}_{\mathrm{i}}= & \text { consistent condom use (yes/no) } \\
& \text { among those with/without HPV } \\
& \text { infection }
\end{aligned}
$$

$r_{i}=$ number exposed to alcohol during pregnancy among n_{i} low birthweight/normal birthweight babies

SUMMARY
 Models for 2×2 Tables

3. Cross-sectional

- Sample n individuals from population
- Observe both "exposure" and (prevalent) "disease" status.
- No longitudinal followup
- Useful measures of association - RR,OR,RD
- Example:

$\mathrm{n}_{\mathrm{ij}}=$ number of gay men with gonorrhea in random sample of STD clinic attendees

