Module 2 Introduction to Longitudinal Data Analysis

Colleen Sitlani, PhD Cardiovascular Health Research Unit University of Washington

> SISCER July 22, 2019

Learning objectives

- This module will focus on the design of longitudinal studies, exploratory data analysis, and application of regression techniques based on estimating equations and mixed-effects models
- Focus will be on the practical application of appropriate analysis methods, using illustrative examples in R and Stata
- Some theoretical background and details will be provided; our goal is to translate statistical theory into practical application
- At the conclusion of this module, you should be able to apply appropriate exploratory and regression techniques to summarize and generate inference from longitudinal data

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations
- Case Study: Longitudinal Depression Scores
- Generalized linear mixed-effects models
- Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations
- Case Study: Longitudinal Depression Scores
- Generalized linear mixed-effects models
- Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Repeatedly collect information on the same individuals over time

Benefits

- Record incident events
- Ascertain exposure prospectively
- Separate time effects: cohort, period, age

Separate time effects: cohort, period, age

- Cohort effects
 - Differences between individuals at baseline
 - "Level"
 - Example: Younger individuals begin at a higher level
- Age effects
 - Differences within individuals over time
 - "Trend"
 - **Example**: Outcomes increase over time for everyone
- · Period effects may also matter if measurement date varies

Repeatedly collect information on the same individuals over time

Benefits

- Record incident events
- Ascertain exposure prospectively
- Separate time effects: cohort, period, age
- Distinguish changes over time within individuals

Cross-sectional: $E[Y_{i1}] = \beta_0 + \beta_C x_{i1}$ Longitudinal: $E[Y_{ij} - Y_{i1}] = \beta_L(x_{ij} - x_{i1})$ Single model: $E[Y_{ij}] = \beta_0 + \beta_C x_{i1} + \beta_L(x_{ij} - x_{i1})$

 β_L : expected change in outcome per unit change in age for a given subject

Repeatedly collect information on the same individuals over time

Benefits

- Record incident events
- Ascertain exposure prospectively
- Separate time effects: cohort, period, age
- Distinguish changes over time within individuals
- Offer efficiency gains over cross-sectional studies

Efficiency in pre-post data analyses

- Randomized treatment studies
 - ▶ Baseline equivalence ⇒ mean change over time can be estimated via POST only, CHANGE, or POST/CHANGE controlling for baseline ["ANCOVA"]
 - Frison and Pocock (1992): we can order methods w.r.t. precision

$$\rho > 1/2 \ \ \mathsf{POST} \prec \mathsf{CHANGE} \prec \mathsf{ANCOVA}$$

$$ho < 1/2$$
 CHANGE \prec POST \prec ANCOVA

- Observational data
 - Baseline equivalence no longer guaranteed
 - Methods no longer answer same scientific question
 - CHANGE often most relevant, but sometimes ANCOVA is appropriate [discussion in Fitzmaurice (2001) Nutrition article]

Repeatedly collect information on the same individuals over time

Benefits

- Record incident events
- Ascertain exposure prospectively
- Separate time effects: cohort, period, age
- Distinguish changes over time within individuals
- Offer efficiency gains over cross-sectional studies
- Help establish causal effect of exposure on outcome

```
e.g.statin use \leftrightarrow glucose?
statin use \rightarrow later glucose
```

Repeatedly collect information on the same individuals over time

Challenges

- Determine causality when covariates vary over time
- Choose exposure lag when covariates vary over time
- Account for incomplete participant follow-up
- Require specialized methods that account for longitudinal correlation

Require specialized methods that account for longitudinal correlation

- Individuals are assumed to be independent
- Longitudinal dependence may be a secondary feature
- Ignoring dependence may lead to incorrect inference
 - Longitudinal correlation usually positive
 - Estimated standard errors may be too small
 - Confidence intervals are too narrow; too often exclude true value

e.g.
$$E[Y_{ij}] = \beta_0 + \beta_C x_{i1} + \beta_L (x_{ij} - x_{i1})$$

cannot be analyzed with simple linear regression

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Longitudinal data concepts

- Exploratory data analysis
- Regression model specification
- Parameter interpretation
- Covariance and correlation

Exploratory data analysis

Exploratory data analysis for longitudinal data

- Summary statistics over time (by groups)
- Individual plots of observed and fitted values
- Empirical covariance structure (variance and correlation)

Goal: Summarize mean and covariance structure

Exploratory data analysis: Guidelines

- 1. Show as much of the data as possible, rather than only summaries
- 2. Highlight aggregate patterns of potential scientific interest
- 3. Identify both cross-sectional and longitudinal patterns
- 4. Facilitate the identification of unusual individuals or observations

Dental growth (Patthoff and Roy, 1964)

- Model growth among 11 females and 16 males, ages 8 to 14 years
- Distance between the pituitary gland and the pterygomaxillary fissure
- Characterize dental growth among children
- growth.RData or growth.dta on course website (SISCER Module 2)

Dental growth: Data

Sitlani (Module 2)

Longitudinal Data Analysis

Dental growth: Summary statistics

	Mean Length (mm)					
	Age 8	Age 10	Age 12	Age 14		
Males	22.9	24.0	25.9	27.6		
Females	21.2	22.2	23.1	24.1		
Difference	1.8	1.7	2.8	3.5		

On average...

- Trend: Dental length increases over time for males and females
- Cross-sectional: Males have larger dental length at every age
- Longitudinal: Increase in average dental length is larger for males

Dental growth: Individual plots for females

Dental growth: Individual plots for females

- Trend: Dental length in females increases over time
- **Tracking**: Females with large dental length at younger ages tend to have large dental length at older ages
- **Variability**: Dental length appears to be slightly more variable at older ages (verify using empirical estimates)
- Outliers
 - Subjects 1, 5, and 9 have a periodic decrease in dental length
 - Subject 10 appears to have small dental length, especially at age 8
 - Subject 11 appears to have large dental length, especially at age 12
 - ▶ NB: Outliers are hard to judge with only 11 subjects

Individual plots: Difficulties

- Issue: Individual plots may not be useful for large datasets
- Issue: Random selection of individual lines may be arbitrary
- Solution: Produce plots for well-defined groups
 - Example: Individual plots of dental growth for females
- Issue: Individual patterns may be difficult to detect in raw data
- Solution: Plot marginalized residuals versus time for individuals
 - Example: Individual plots of dental growth residuals for females

Dental growth: Individual plots of residuals

Sitlani (Module 2)

Dental growth: Individual plots of residuals

Question: What are the advantages in examining residuals?

Answer

- Easier to identify individual patterns because it's generally easier to see variation across a flat line rather than a sloped line
- Facilitates the identification of unusual individuals or observations given the average temporal trend
 - Example: Dental length for subjects 8 and 10 increases over time, but their increase is smaller than the average increase
- ★ If we wish to study the random variation in the outcome over time, then we must remove the systemic variation due to temporal trends using residuals with a thorough and flexible adjustment for time

Choosing time scale(s)

- Age: use Age_{ij} as time variable
 - Assumes: growth from age 8 to age 10 experienced 1990–1992 is the same as that from age 8 to age 10 experienced 2000–2002
 - (e.g. no period effects)
- Age-since-entry: use Age_{ij} Age_{i1} as time variable
 - Assumes: growth experienced 1990–1992 is same for children who aged from 8 to 10 years old, and children who aged from 12 to 14 years old
 - (e.g. no cohort effects)
- Age-at-entry: use Age_{i1} as time variable
 - Assumes: children may be different at entry to study, but do not change further during follow-up
 - (e.g. no aging effects)

Choosing model for time

- Linear: constant rate of change
- Categorical: no change (flat) within each age, then jumps at new age
- Polynomials/Splines: non-constant rate of change

Sitlani (Module 2)

Longitudinal Data Analysis

Dental growth: Scientific questions as regression

• Questions concerning the rate of growth refer to the time slope for dental length

 $\mathsf{E}[\mathsf{Length}_{ij} \mid x_{ij} = \{\mathsf{Age, Gender}\}] = \beta_0^*(x_{ij}) + \beta_1^*(x_{ij}) \cdot \mathsf{Time}_{ij}$

• Does the rate of growth differ for males as compared to females?

 $\mathsf{E}[Y_{ij}] = \beta_0 + \beta_1(\mathsf{Age}_{ij} - 8) + \beta_2\mathsf{Gender}_i + \beta_3(\mathsf{Age}_{ij} - 8) \cdot \mathsf{Gender}_i$

How would you interpret these β parameters?

Dental growth: Parameter interpretation

 $\mathsf{E}[Y_{ij}] = \beta_0 + \beta_1(\mathsf{Age}_{ij} - 8) + \beta_2\mathsf{Gender}_i + \beta_3(\mathsf{Age}_{ij} - 8) \cdot \mathsf{Gender}_i$

If Gender = $\{1 = male; 0 = female\}$

- $\beta_0 = expected$ dental length in 8-year-old females
- $\beta_1 = \text{expected dental growth (per year) for females}$
- β₂ = expected difference in dental length comparing 8-year-old males to 8-year-old females
- $\beta_3 = \text{expected difference in dental growth (per year)}$ between males and females

Dental growth: Regression model

model <- lm(length ~ I(age-8)*gender, data=growth)</pre>

	Estimate Std.	Error t	value	Pr(> t)	
(Intercept)	21.209	0.570	37.21	<2e-16	***
I(age - 8)	0.480	0.152	3.15	0.0022	**
gendermale	1.491	0.750	1.99	0.0497	*
I(age - 8):gendermale	0.320	0.201	1.60	0.1133	

Dependence and correlation

Issue Response variables measured on the same subject are correlated

- Observations are **independent** when deviation in one variable does not predict deviation in the other variable
 - Given two sujects with the same age and gender, then the dental length for patient ID=14 is not predictive of the dental length for patient ID=9
- Observations are **dependent** or **correlated** when one variable does predict the value of another variable
 - ► The dental length for patient ID=14 at age 10 is predictive of the dental length for patient ID=14 at age 12

Dependence and correlation: Variance review

Recall: The variance of a variable Y_{ij} (fix time j) is defined as:

$$\sigma_j^2 = \mathsf{E}[(Y_{ij} - \mu_j)^2]$$
$$= \mathsf{E}[(Y_{ij} - \mu_j)(Y_{ij} - \mu_j)]$$

• The variance measures the average distance that an observation falls away from the mean

Dependence and correlation: Covariance

• Define: The **covariance** of two variables Y_{ij} and Y_{ik} is

$$\sigma_{jk} = \mathsf{E}[(Y_{ij} - \mu_j)(Y_{ik} - \mu_k)]$$

• The covariance measures whether, on average, departures in one variable $Y_{ij} - \mu_j$ 'go together with' departures in a second variable $Y_{ik} - \mu_k$

Dependence and correlation: Correlation

Define: The **correlation** of two variables Y_{ij} and Y_{ik} is

$$\rho_{jk} = \frac{\mathsf{E}[(Y_{ij} - \mu_j)(Y_{ik} - \mu_k)]}{\sigma_j \sigma_k}$$

- The correlation is a measure of dependence that takes values between $-1 \mbox{ and } +1$
- Recall that a correlation of 0 implies that two measures are unrelated (linearly)
- Recall that a correlation of 1 implies that the two measures fall perfectly on a line one exactly predicts the other!

Notation

Define

$$\begin{split} m_i &= \text{number of observations for subject } i = 1, \dots, n \\ Y_{ij} &= \text{outcome for subject } i \text{ at time } j = 1, \dots, m_i \\ X_i &= (x_{i1}, x_{i2}, \dots, x_{im_i}) \\ x_{ij} &= (x_{ij1}, x_{ij2}, \dots, x_{ijp}) \\ &= \text{exposure, covariates} \end{split}$$

Stacks of data for each subject:

$$Y_{i} = \begin{bmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{im_{i}} \end{bmatrix} \qquad X_{i} = \begin{bmatrix} x_{i11} & x_{i12} & \cdots & x_{i1p} \\ x_{i21} & x_{i22} & \cdots & x_{i2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{im_{i}1} & x_{im_{i}2} & \cdots & x_{im_{i}p} \end{bmatrix}$$

Covariance: Something new to model

$$Cov[Y_{i}] = \begin{bmatrix} Var[Y_{i1}] & Cov[Y_{i1}, Y_{i2}] & \cdots & Cov[Y_{i1}, Y_{im_{i}}] \\ Cov[Y_{i2}, Y_{i1}] & Var[Y_{i2}] & \cdots & Cov[Y_{i2}, Y_{im_{i}}] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[Y_{im_{i}}, Y_{i1}] & Cov[Y_{im_{i}}, Y_{i2}] & \cdots & Var[Y_{im_{i}}] \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_{1}^{2} & \sigma_{1}\sigma_{2}\rho_{12} & \cdots & \sigma_{1}\sigma_{m_{i}}\rho_{1m_{i}} \\ \sigma_{2}\sigma_{1}\rho_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2}\sigma_{m_{i}}\rho_{2m_{i}} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{m_{i}}\sigma_{1}\rho_{m_{i}1} & \sigma_{m_{i}}\sigma_{2}\rho_{m_{i}2} & \cdots & \sigma_{m_{i}}^{2} \end{bmatrix}$$

Dental growth: Covariances

Females					Males				
	Age 8	Age 10	Age 12	Age 14		Age 8	Age 10	Age 12	Age 14
Age 8	4.51	3.35	4.33	4.36	-	6.39	2.30	3.74	1.56
Age 10	3.35	3.62	4.03	4.08		2.30	4.48	1.96	2.58
Age 12	4.33	4.03	5.59	5.47		3.74	1.96	7.16	3.05
Age 14	4.36	4.08	5.47	5.94		1.56	2.58	3.05	4.20
Dental growth: Correlations

	F	emales					M	ales	
	Age 8	Age 10	Age 12	Age 14		Age 8	Age 10	Age 12	Age 14
Age 8	1.0	0.83	0.86	0.84	-	1.0	0.43	0.55	0.30
Age 10	0.83	1.0	0.90	0.88		0.43	1.0	0.35	0.59
Age 12	0.86	0.90	1.0	0.95		0.55	0.35	1.0	0.56
Age 14	0.84	0.88	0.95	1.0		0.30	0.59	0.56	1.0

Dental growth: Questions on covariance structure

- Is there a trend over time in the variance? If so, how does it relate to the trend over time in the mean?
- Does the variance differ in males vs females?
- Are observations on the same individual correlated? Is that correlation dependent on gender and/or time?
- What challenges might arise when evaluating covariance/correlation matrices?

Dental growth: Comments on covariance structure

- In females, some indication that the variance increases over time, as does the mean
- Similar magnitude of variance in males vs females
- Clear correlation among observations on the same individual, though correlation in males lower than that in females

Challenges

- Covariance of raw outcomes same as covariance of residuals due to lack of covariates
- Must also examine sample size in each cell to assess relative confidence in each estimate (here we have balanced and complete data)
- Producing covariance and correlation matrices requires categorizing continuous time into a reasonable number of categories

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Goal: Characterize dental growth among children, ages 8 to 14 years

- 1. Estimate the average growth curve among all children
- 2. Estimate the growth curve for individual children
- 3. Characterize the degree of heterogeneity across children
- 4. Identify factors that predict growth

Dental growth

GEE (Liang and Zeger, 1986)

- Contrast average outcome values across populations of individuals defined by covariate values, while accounting for correlation
 - Focus on a generalized linear model with regression parameters β, which characterize the systemic variation in Y across covariates X

$$Y_{i} = (Y_{i1}, Y_{i2}, \dots, Y_{im_{i}})^{\mathsf{T}} X_{i} = (x_{i1}, x_{i2}, \dots, x_{im_{i}})^{\mathsf{T}} x_{ij} = (x_{ij1}, x_{ij2}, \dots, x_{ijp}) \beta = (\beta_{1}, \beta_{2}, \dots, \beta_{p})^{\mathsf{T}}$$

for i = 1, ..., n; $j = 1, ..., m_i$; and k = 1, ..., p

• Longitudinal correlation structure is a nuisance feature of the data

Mean model

Assumptions

- Observations are independent across subjects
- Observations may be correlated within subjects

E

Mean model: Primary focus of the analysis

$$\mathbb{E}[Y_{ij} \mid x_{ij}] = \mu_{ij}$$

 $g(\mu_{ij}) = x_{ij}\beta$

• May correspond to any generalized linear model with link $g(\cdot)$

Continuous	outo	come	Count ou	utcor	ne	Binary out	come	2
$E[Y_{ij} \mid x_{ij}]$	=	μ_{ij}	$E[Y_{ij} \mid x_{ij}]$	=	μ_{ij}	$P[Y_{ij}=1 \mid x_{ij}]$	=	μ_{ij}
μ_{ij}	=	$x_{ij}\beta$	$log(\mu_{ij})$	=	$x_{ij}\beta$	$logit(\mu_{ij})$	=	$x_{ij}\beta$

• Characterizes a marginal mean regression model

Marginal mean

Definition: μ_{ij} does not condition on anything other than x_{ij}

 Mixed-effects model: Use subject-specific random effects γ_i to induce a correlation structure

$$g(\mathsf{E}[Y_{ij} \mid x_{ij}, \gamma_i]) = x_{ij}(\beta^* + \gamma_i)$$

• **Transition model**: Model the conditional expectation as a function of covariates and previous outcomes \mathcal{Y}_{ij}

$$g(\mathsf{E}[Y_{ij} \mid x_{ij}, \mathcal{Y}_{ij}]) = x_{ij}\beta^{\star\star} + \mathcal{Y}_{ij}\alpha$$

Covariance model

Longitudinal correlation is a nuisance; secondary to mean model of interest

1. Assume a form for **variance** that may depend on μ_{ii}

Continuous outcome:	$Var[Y_{ij} \mid x_{ij}]$	=	σ^2
Count outcome:	$Var[Y_{ij} \mid x_{ij}]$	=	μ_{ij}
Binary outcome:	$Var[Y_{ij} \mid x_{ij}]$	=	$\mu_{ij}(1-\mu_{ij})$

which may also include a scale or dispersion parameter $\phi > 0$ 2. Select a model for longitudinal **correlation** with parameters α

Covariance model: General notation

Longitudinal correlation is a nuisance; secondary to mean model of interest

- Assume a form for variance that depends on $\boldsymbol{\mu}$
- Select a model for longitudinal correlation with parameters $\boldsymbol{\alpha}$

$$egin{array}{rcl} {\sf Var}[Y_{ij}\mid X_i]&=&V(\mu_{ij})\ S_i(\mu_i)&=&{\sf diag}\ V(\mu_{ij}) \end{array}$$

$$Corr[Y_{ij}, Y_{ij'} | X_i] = \rho(\alpha)$$
$$R_i(\alpha) = \text{matrix } \rho(\alpha)$$

$$Cov[Y_i \mid X_i] = V_i(\beta, \alpha)$$
$$= S_i^{1/2} R_i S_i^{1/2}$$

Correlation models

Independence: Corr $[Y_{ij}, Y_{ij'} | X_i] = 0$

[1	0	0	• • •	0
0	1	0	•••	0
0	0	1	•••	0
:	÷	÷	·	÷
0	0	0		1

Exchangeable: Corr $[Y_{ij}, Y_{ij'} | X_i] = \alpha$

$$\begin{bmatrix} 1 & \alpha & \alpha & \cdots & \alpha \\ \alpha & 1 & \alpha & \cdots & \alpha \\ \alpha & \alpha & 1 & \cdots & \alpha \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha & \alpha & \alpha & \cdots & 1 \end{bmatrix}$$

Correlation models

Auto-regressive: Corr $[Y_{ij}, Y_{ij'} | X_i] = \alpha^{|j-j'|}$

$$\begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{m-1} \\ \alpha & 1 & \alpha & \cdots & \alpha^{m-2} \\ \alpha^2 & \alpha & 1 & \cdots & \alpha^{m-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha^{m-1} & \alpha^{m-2} & \alpha^{m-3} & \cdots & 1 \end{bmatrix}$$

Unstructured: Corr $[Y_{ij}, Y_{ij'} | X_i] = \alpha_{jj'}$

1	α_{21}	α_{31}		α_{m1}
α_{12}	1	α_{32}	•••	α_{m2}
α_{13}	α_{23}	1	•••	α_{m3}
:	÷	÷	·	:
α_{1m}	α_{2m}	$lpha_{3m}$		1

Correlation models

Correlation between any two observations on the same subject...

- Independence: ... is assumed to be zero
 - ▶ Always appropriate with use of robust variance estimator (large *n*)
- Exchangeable: ... is assumed to be constant
 - More appropriate for clustered data
- Auto-regressive: ... is assumed to depend on time or distance
 - More appropriate for equally-spaced longitudinal data
- Unstructured: ... is assumed to be distinct for each pair
 - ▶ Only appropriate for short series (small *m*) on many subjects (large *n*)

Semi-parametric

- Specification of a mean model and correlation model does not identify a complete probability model for the outcomes
- The [mean, correlation] model is semi-parametric because it only specifies the first two moments of the outcomes
- Additional assumptions are required to identify a complete probability model and a corresponding parametric likelihood function (GLMM)

Question: Without a likelihood function, how do we estimate β and generate valid statistical inference, while accounting for correlation?

Answer: Construct an unbiased estimating function

Estimating functions

The estimating function for estimation of β is given by

$$\mathcal{U}_{\beta}(\beta, \alpha) = \sum_{i=1}^{n} D_{i}^{\mathsf{T}} V_{i}^{-1} (Y_{i} - \mu_{i})$$
$$\mu_{i} = g^{-1} (X_{i}\beta)$$
$$D_{i} = \frac{\partial \mu_{i}}{\partial \beta}$$

- V_i is the 'working' variance-covariance matrix: Cov[Y_i | X_i]
 - Depends on the assumed form for the variance: $Var[Y_{ij} | x_{ij}]$
 - Depends on the specified correlation model: $Corr[Y_{ij}, Y_{ij'} | X_i]$
- V_i may also be written as a covariance weight matrix: $W_i = V_i^{-1}$
- $\mathcal{U}_{\beta}(\beta, \alpha)$ depends on the model or value for α

Generalized estimating equations

Setting an estimation function equal to 0 defines an estimating equation

$$D = \mathcal{U}_{\beta}(\hat{\beta}, \alpha)$$
$$= \sum_{i=1}^{n} D_{i}^{\mathsf{T}} V_{i}^{-1} (Y_{i} - \hat{\mu}_{i})$$

with $\hat{\mu}_i = g^{-1}(X_i\hat{\beta})$

- 'Generalized' because it corresponds to a GLM with link function $g(\cdot)$
- Solution to the estimation equation defines an estimator \hat{eta}
- $\mathcal{U}_{eta}(\hat{eta}, \, lpha)$ depends on the model or value for lpha
 - \blacktriangleright Moment-based estimation of α based on residuals
 - \blacktriangleright A second set of estimating equations for α

Generalized estimating equations: Intuition

- 1 The model for the mean, $\mu_i(\beta)$, is compared to the observed data, Y_i ; setting the equations to equal 0 tries to minimize the difference between **observed** and **expected**
- 2 Estimation uses the inverse of the variance (covariance) to weight the data from subject *i*; more weight is given to differences between observed and expected for those subjects who contribute more information
- 3 This is simply a 'change of scale' from the scale of the mean, $\mu_i(\beta)$, to the scale of the regression coefficients (covariates)

Suppose Y_i is continuous so that $E[Y_i | X_i] = X_i\beta$ and $Cov[Y_i | X_i] = V_i$

$$\hat{\beta} = \left(\sum_{i=1}^{n} X_{i}^{\mathsf{T}} V_{i}^{-1} X_{i}\right)^{-1} \sum_{i=1}^{n} X_{i}^{\mathsf{T}} V_{i}^{-1} Y_{i}$$

• $\hat{\beta}$ is **unbiased** assuming $E[Y_i \mid X_i] = X_i\beta$ is correct

$$E[\hat{\beta}] = \left(\sum_{i=1}^{n} X_i^{\mathsf{T}} V_i^{-1} X_i\right)^{-1} \sum_{i=1}^{n} X_i^{\mathsf{T}} V_i^{-1} E[Y_i]$$
$$= \left(\sum_{i=1}^{n} X_i^{\mathsf{T}} V_i^{-1} X_i\right)^{-1} \sum_{i=1}^{n} X_i^{\mathsf{T}} V_i^{-1} X_i \beta$$
$$= \beta$$

• $\hat{\beta}$ is efficient assuming $Cov[Y_i \mid X_i] = V_i$ is correct

$$\operatorname{Cov}[\hat{\beta}] = \left(\sum_{i=1}^{n} X_{i}^{\mathsf{T}} V_{i}^{-1} X_{i}\right)^{-1} \\ \times \left(\sum_{i=1}^{n} X_{i}^{\mathsf{T}} V_{i}^{-1} \operatorname{Cov}[Y_{i}] V_{i}^{-1} X_{i}\right) \\ \times \left(\sum_{i=1}^{n} X_{i}^{\mathsf{T}} V_{i}^{-1} X_{i}\right)^{-1} \\ = \left(\sum_{i=1}^{n} X_{i}^{\mathsf{T}} V_{i}^{-1} X_{i}\right)^{-1}$$

which is known as the model-based variance estimator

Sitlani (Module 2)

If $Cov[Y_i \mid X_i] \neq V_i$, then use an empirical estimator

$$Cov[\hat{\beta}] = \left(\sum_{i=1}^{n} X_i^{\mathsf{T}} V_i^{-1} X_i\right)^{-1} \\ \times \left(\sum_{i=1}^{n} X_i^{\mathsf{T}} V_i^{-1} (Y_i - \mu_i) (Y_i - \mu_i)^{\mathsf{T}} V_i^{-1} X_i\right) \\ \times \left(\sum_{i=1}^{n} X_i^{\mathsf{T}} V_i^{-1} X_i\right)^{-1}$$

- Also known as sandwich, robust, or Huber-White variance estimator
- Requires sufficiently large sample size $(n \ge 40)$
- Requires sufficiently large sample size relative to cluster size $(n \gg m)$

$\operatorname{Cov}[\hat{\beta}]$

 $(Y_i - \mu_i)(Y_i - \mu_i)^{\mathsf{T}}$ is a poor estimate of $\mathsf{Cov}[Y_i]$ for each *i*

- However, a good estimate for each i is not required
- Rather, need a good estimate of the average (total) covariance

$$B_{n} = \frac{1}{n} \sum_{i=1}^{n} D_{i}^{\mathsf{T}} V_{i}^{-1} \operatorname{Cov}[Y_{i}] V_{i}^{-1} D_{i}$$
$$\hat{B}_{n} = \frac{1}{n} \sum_{i=1}^{n} D_{i}^{\mathsf{T}} V_{i}^{-1} (Y_{i} - \mu_{i}) (Y_{i} - \mu_{i})^{\mathsf{T}} V_{i}^{-1} D_{i}$$

• \hat{B}_n can be well estimated with sufficient independent replication, i.e. sufficiently large sample size relative to cluster size

- $\hat{\beta}$ is a consistent estimator for β even if the model for longitudinal correlation is incorrectly specified, i.e. $\hat{\beta}$ is 'robust' to correlation model mis-specification
- However, the variance of $\hat{\beta}$ must capture the correlation in the data, either by choosing the correct correlation model, or via an alternative variance estimator
- Selecting an approximately correct correlation model will yield a more efficient estimator for β , i.e. $\hat{\beta}$ has the smallest variance (standard error) if the correlation model is correctly specified

Comments

- GEE is specified by a mean model and a correlation model
 - 1. A regression model for the average outcome, e.g. linear, logistic
 - 2. A model for longitudinal correlation, e.g. independence, exchangeable
- GEE also computes an empirical variance estimator (aka sandwich, robust, or Huber-White variance estimator)
- Empirical variance estimator provides valid standard errors for $\hat{\beta}$ even if the correlation model is incorrect, but requires $n \ge 40$ and $n \gg m$

Question: If the correlation model does not need to be correctly specified to obtain a consistent estimator for β or valid standard errors for $\hat{\beta}$, why not always use an independence working correlation structure?

Answer: Selecting a non-independence or weighted correlation structure

- Permits use of the model-based variance estimator
- May provide improved efficiency for $\hat{\beta}$

Variance estimators

- **Independence estimating equation**: An estimation equation with a working independence correlation structure
 - Model-based standard errors are generally not valid
 - Empirical standard errors are valid given large n and $n \gg m$
- Weighted estimation equation: An estimation equation with a non-independence working correlation structure
 - Model-based standard errors are valid if correlation model is correct
 - Empirical standard errors are valid given large n and $n \gg m$

	Variance estimator			
Estimating equation	Model-based	Empirical		
Independence	—	+/-		
Weighted	-/+	+		

Inference for β : Wald test

Consider testing linear hypotheses of the form

$$H: Q\beta = 0$$

where Q a matrix of full rank with dim $(Q) = r \times p$ and r < p

• Obtain $\hat{\beta}$ and Cov[$\hat{\beta}$]; under the null hypothesis

$$\sqrt{n} Q \hat{\beta} \sim N_r(0, \ Q \mathsf{Cov}[\hat{\beta}] Q^\mathsf{T})$$

• Testing may proceed using a multivariable Wald statistic

$$n(Q\hat{\beta})^{\mathsf{T}}(Q\mathsf{Cov}[\hat{\beta}]Q^{\mathsf{T}})^{-1}Q\hat{\beta} \sim \chi_r^2$$

- Requires computation under the alternative hypothesis
- NB: Likelihood ratio test not available; not relied on a likelihood function

Dental growth

Characterize dental growth among males and females, ages 8 to 14 years

$$\mathsf{E}[Y_{ij}] = \beta_0 + \beta_1(\mathsf{Age}_{ij} - 8) + \beta_2\mathsf{Gender}_i + \beta_3(\mathsf{Age}_{ij} - 8) \cdot \mathsf{Gender}_i$$

- Consider various specifications for the 'working' correlation structure
 - Independence
 - Exchangeable
 - Auto-regressive
 - Unstructured

NB: In practice, selection of a working correlation structure should be guided by a priori knowledge and/or exploratory analysis

Dental growth: R

- Use the geeglm command in the geepack library
- NB: Ensure data are sorted by unique subject identifier and time library(geepack)

```
?geeglm
```

```
m_ols <- lm(length ~ I(age-8)*gender, data=growth)</pre>
```

Dental growth: R

```
geeglm(formula = length ~ I(age - 8) * gender, data = growth,
    id = id, corstr = "independence")
```

Coefficients: Estimate Std.err Wald Pr(>|W|) (Intercept) 21.2091 0.5604 1432.19 < 2e-16 *** I(age - 8) 0.4795 0.0631 57.70 3.1e-14 *** gendermale 1.4909 0.7940 3.53 0.0604 . I(age - 8):gendermale 0.3205 0.1214 6.97 0.0083 ** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Estimated Scale Parameters: Estimate Std.err (Intercept) 4.91 1.02 Correlation: Structure = independence Number of clusters: 26 Maximum cluster size: 4

Dental growth: R

Coefficients:

	Estimate	Std.err	Wald	Pr(> W)	
(Intercept)	21.2091	0.5604	1432.19	< 2e-16	***
I(age - 8)	0.4795	0.0631	57.70	3.1e-14	***
gendermale	1.4909	0.7940	3.53	0.0604	
I(age - 8):gendermale	0.3205	0.1214	6.97	0.0083	**
Signif. codes: 0 '***	⊧' 0.001	'**' 0.01	'*' 0.0	05'.'0.1	''1
Estimated Scale Parameters:					
(Intercept) 4.91	1.02				
Correlation: Structure	e = excha	ngeable	Link = i	dentity	
Estimated Correlation	Parameter	rs:			
Estimate Std.er	r -				
alpha 0.61 0.134	1				
Number of clusters:	26 Max:	imum clus	ster size	e: 4	

Dental growth

	\hat{eta}_0 (SE)	\hat{eta}_1 (SE)	\hat{eta}_2 (SE)	\hat{eta}_3 (SE)
Independence	21.2 (0.56)	0.48 (0.06)	1.49 (0.79)	0.32 (0.12)
Exchangeable	21.2 (0.56)	0.48 (0.06)	1.49 (0.79)	0.32 (0.12)
Auto-regressive	21.2 (0.59)	0.48 (0.06)	1.67 (0.85)	0.30 (0.13)
Unstructured	21.2 (0.56)	0.48 (0.06)	1.50 (0.78)	0.32 (0.12)
OLS	21.2 (0.57)	0.48 (0.15)	1.49 (0.75)	0.32 (0.20)

- Independence and OLS point estimates are identical
 - Independence estimating equation is identical to the score equation
- OLS standard errors for \hat{eta}_1 and \hat{eta}_3 are too big
 - Age is within-subject or time-dependent
- Independence and exchangeable provide identical results
 - Data are balanced and complete
- Unstructured provides similar results
- Auto-regressive provides different results

Dental growth

Exchangeable :	$ \left[\begin{array}{c} 1\\ 0.61\\ 0.61\\ 0.61 \end{array}\right] $	1 0.61 0.61	1 0.61	1	
Auto-regressive :	1 0.75 0.56 0.42	1 0.75 0.56	1 0.75	1	
Unstructured :	1 0.51 0.75 0.52	1 0.53 0.60	1 0.76	1	

Dental growth: Stata

* Declare the dataset to be "panel" data, grouped by id * with time variable age xtset id age

* Generate a new variable for centered age gen cage = age-8

* Fit models with an exchangeable correlation structure help xtgee xtgee length i.gender##c.cage, corr(exch) robust lincom cage + 2.gender#c.cage

* Examine working correlation structure estat wcorr

Dental growth: Stata

GEE population	-averaged model	L		Number o	f obs	= 104
Group variable	:		id	Number o	f groups	= 26
Link:		ider	ntity	Obs per	group: min	= 4
Family:		Gaus	ssian		avg	= 4.0
Correlation:		indeper	ndent		max	= 4
				Wald chi	2(3)	= 148.85
Scale parameter	r:	4.90	9594	Prob > c	hi2	= 0.0000
		((Std. Err.	adjusted	for cluste	ring on id)
	 	Robust				
length	Coef.	Std. Err.	Z	P> z	[95% Con	f. Interval]
gender	+ 					
male	1.490909	.8096977	1.84	0.066	0960691	3.077887
cage	.4795455	.0643829	7.45	0.000	.3533573	.6057336
•	l					
gender#c.cage	I					
male	.3204545	.1237715	2.59	0.010	.0778669	.5630422
	I					
_cons	21.20909	.5715302	37.11	0.000	20.08891	22.32927

Dental growth: Stata

. lincom cage	+ 2.gender#c	.cage				
(1) cage +	2.gender#c.c	age = 0				
length	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.8	.1057082	7.57	0.000	.5928157	1.007184

. estat wcorr

Estimated within-id correlation matrix R:

	c1	c2	c3	c4
r1	1			
r2	.6103379	1		
r3	.6103379	.6103379	1	
r4	.6103379	.6103379	.6103379	1

Summary

- In the GEE approach the primary focus of the analysis is a marginal mean regression model that corresponds to any GLM
- Longitudinal correlation is secondary to the mean model of interest and is treated as a nuisance feature of the data
- Requires selection of a 'working' correlation model
- Semi-parametric: Only the mean and correlation models are specified
- Lack of a likelihood function implies that likelihood ratio test statistics are unavailable; hypothesis testing with GEE uses Wald statistics
- Working correlation model does not need to be correctly specified to obtain a consistent estimator for β or valid standard errors for $\hat{\beta}$, but efficiency gains are possible if the correlation model is correct

Issues

- Accommodates only one source of correlation: Longitudinal or cluster
- GEE requires that any missing data are missing completely at random
- Issues arise with time-dependent exposures and covariance weighting

Sitlani (Module 2)

Longitudinal Data Analysis
Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Depression Study: Motivation and Design

- Gregoire et al (1996) published the results of an efficacy study on estrogen patches in treating postnatal depression.
- 61 women with major depression, which began within 3 months of childbirth and persisted for up to 18 months postnatally, participated in a double-blind, placebo-controlled study.
- Women were randomly assigned to active treatment (n=34) or placebo (n=27).
- Participants attended clinics monthly and at each visit self-ratings of depressive symptoms on the Edinburgh postnatal depression scale (EPDS) were measured.
- EPDS is a standardized, validated, self-rating scale consisting of 10 items, each rated on a 4-point scale of 0–3.
- **Goal**: Investigate the antidepressant efficacy of treatment with estrogen over time

Depression Study: Data

- Depression scores are assessed across m = 7 months for the n = 61 subjects in the study.
- Depression scores for visit *j* are the longitudinal components measured on subject *i*.

	+								
	subj	group	dep0	dep1	dep2	dep3	dep4	dep5	dep6
1.	1	placebo	18	17	18	15	17	14	15
2.	2	placebo	27	26	23	18	17	12	10
3.	3	placebo	16	17	14				.
4.	4	placebo	17	14	23	17	13	12	12
5.	5	placebo	15	12	10	8	4	5	5
6.	6	placebo	20	19	11.54	9	8	6.82	5.05
7.	7	placebo	16	13	13	9	7	8	7
8.	8	placebo	28	26	27				.
9.	9	placebo	28	26	24	19	13.94	11	9
10.	10	placebo	25	9	12	15	12	13	20

- 'Wide' form: A row for each subject
- Note that there are some missing data due to drop-out

Depression Study Questions: EDA

- 1. Summarize the depression scores by visit and treatment group.
- 2. Examine within-person correlations among depression scores, graphically and numerically.
- 3. Graph depression scores over time, by treatment group. Include a lowess line (smoother) for each group to summarize trends.
- 4. Plot individual trajectories by treatment group.

Depression Study Questions: Regression Analyses

- 5. Consider collapsing the longitudinal series for each subject into a summary statistic between the baseline and sixth depression scores. Use methods for independent data to evaluate the association between change in depression scores and estrogen treatment.
- 6. Reshape the data into long form and evaluate longitudinal associations between depression scores and treatment using GEE.
 - Use visit as a linear variable.
 - Use visit as a categorical variable.
 - Evaluate whether the treatment effect varies over time.

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Goal: Characterize dental growth among children, ages 8 to 14 years

- 1. Estimate the average growth curve among all children
- 2. Estimate the growth curve for individual children
- 3. Characterize the degree of heterogeneity across children
- 4. Identify factors that predict growth

Mixed-effects models (Laird and Ware, 1982)

- \star Contrast outcomes both within and between **individuals**
 - Assume that each subject has a regression model characterized by subject-specific parameters: a combination of **fixed-effects** parameters common to all individuals in the population and **random-effects** parameters unique to each individual subject
 - Although covariates allow for differences across subjects, typically cannot measure all factors that give rise to subject-specific variation
 - Subject-specific random effects induce a correlation structure

Set-up

For subject *i* the mixed-effects model is characterized by

$$\begin{split} Y_i &= (Y_{i1}, Y_{i2}, \dots, Y_{im_i})^{\mathsf{T}} \\ \beta^{\star} &= (\beta_1^{\star}, \beta_2^{\star}, \dots, \beta_p^{\star})^{\mathsf{T}} & \text{Fixed effects} \\ x_{ij} &= (x_{ij1}, x_{ij2}, \dots, x_{ijp}) \\ X_i &= (x_{i1}, x_{i2}, \dots, x_{im_i})^{\mathsf{T}} & \text{Design matrix for fixed effects} \\ \gamma_i &= (\gamma_{1i}, \gamma_{2i}, \dots, \gamma_{qi})^{\mathsf{T}} & \text{Random effects} \\ z_{ij} &= (z_{ij1}, z_{ij2}, \dots, z_{ijq}) \\ Z_i &= (z_{i1}, z_{i2}, \dots, z_{im_i})^{\mathsf{T}} & \text{Design matrix for random effects} \end{split}$$

for $i = 1, \ldots, n$; $j = 1, \ldots, m_i$; and $k = 1, \ldots, p$ with $q \leq p$

Linear mixed-effects model

Consider a linear mixed-effects model for a continuous outcome Yij

• Stage 1: Model for response given random effects

$$Y_{ij} = x_{ij}\beta + z_{ij}\gamma_i + \epsilon_{ij}$$

where

- x_{ij} is a vector a covariates
- z_{ij} is a subset of x_{ij}
- β is a vector of fixed-effects parameters
- γ_i is a vector of random-effects parameters
- *e*_{ij} is observation-specific measurement error
- Stage 2: Model for random effects

$$\gamma_i \sim N(0,G)$$

 $\epsilon_{ij} \sim N(0,\sigma^2)$

where γ_i and ϵ_{ij} are assumed to be independent

Choices for random effects

Consider the linear mixed-effects models that include

• Random intercepts

$$\begin{array}{rcl} Y_{ij} &=& \beta_0 + \beta_1 t_{ij} + \gamma_{0i} + \epsilon_{ij} \\ &=& (\beta_0 + \gamma_{0i}) + \beta_1 t_{ij} + \epsilon_{ij} \end{array}$$

• Random intercepts and slopes

$$\begin{array}{rcl} Y_{ij} & = & \beta_0 + \beta_1 t_{ij} + \gamma_{0i} + \gamma_{1i} t_{ij} + \epsilon_{ij} \\ & = & (\beta_0 + \gamma_{0i}) + (\beta_1 + \gamma_{1i}) t_{ij} + \epsilon_{ij} \end{array}$$

Choices for random effects

Choices for random effects

Choices for random effects: G

G quantifies random variation in trajectories across subjects

$$G = \left[\begin{array}{cc} G_{11} & G_{12} \\ G_{21} & G_{22} \end{array} \right]$$

- $\sqrt{G_{11}}$ is the typical deviation in the **level** of the response
- $\sqrt{G_{22}}$ is the typical deviation in the **change** in the response
- G_{12} is the covariance between subject-specific intercepts and slopes
 - $G_{12} = 0$ indicates subject-specific intercepts and slopes are uncorrelated
 - $G_{12} > 0$ indicates subjects with **high level** have **high rate** of change
 - $G_{12} < 0$ indicates subjects with **high level** have **low rate** of change

 $(G_{12} = G_{21})$

What is the correlation between measurements on the same subject?

- Random intercepts model
 - Assuming $Var[\epsilon_{ij}] = \sigma^2$ and $Cov[\epsilon_{ij}, \epsilon_{ij'}] = 0$

$$\begin{array}{rcl} Y_{ij} & = & \beta_0 + \beta_1 t_{ij} + \gamma_{0i} + \epsilon_{ij} \\ Y_{ij'} & = & \beta_0 + \beta_1 t_{ij'} + \gamma_{0i} + \epsilon_{ij'} \end{array}$$

$$\begin{aligned} \mathsf{Var}[Y_{ij}] &= \mathsf{Var}_{\gamma}[\mathsf{E}_{Y}(Y_{ij} \mid \gamma_{0i})] + \mathsf{E}_{\gamma}[\mathsf{Var}_{Y}(Y_{ij} \mid \gamma_{0i})] \\ &= G_{11} + \sigma^{2} \end{aligned}$$

$$Cov[Y_{ij}, Y_{ij'}] = Cov_{\gamma}[E_{Y}(Y_{ij} | \gamma_{0i}), E_{Y}(Y_{ij'} | \gamma_{0i})] \\ + E_{\gamma}[Cov_{Y}(Y_{ij}, Y_{ij'} | \gamma_{0i})] \\ = G_{11}$$

• Random intercepts model (continued)

C

$$\begin{aligned} \operatorname{Forr}[Y_{ij}, Y_{ij'}] &= \frac{G_{11}}{\sqrt{G_{11} + \sigma^2} \sqrt{G_{11} + \sigma^2}} \\ &= \frac{G_{11}}{G_{11} + \sigma^2} \\ &= \frac{\operatorname{'Between'}}{\operatorname{'Between'} + \operatorname{'Within'}} \\ &\geq 0 \ (\operatorname{and} \leq 1) \end{aligned}$$

- Any two measurements on the same subject have the same correlation; does not depend on time nor the distance between measurements
- Equivalent to an exchangeable correlation structure
- Longitudinal correlation is constrained to be positive ($G_{11} \ge 0, \sigma^2 \ge 0$)

- Random intercepts and slopes model
 - Assuming $Var[\epsilon_{ij}] = \sigma^2$ and $Cov[\epsilon_{ij}, \epsilon_{ij'}] = 0$

$$Y_{ij} = (\beta_0 + \beta_1 t_{ij}) + (\gamma_{0i} + \gamma_{1i} t_{ij}) + \epsilon_{ij}$$

$$Y_{ij'} = (\beta_0 + \beta_1 t_{ij'}) + (\gamma_{0i} + \gamma_{1i} t_{ij'}) + \epsilon_{ij'}$$

$$\begin{aligned} \mathsf{Var}[Y_{ij}] &= \mathsf{Var}_{\gamma}[\mathsf{E}_{Y}(Y_{ij} \mid \boldsymbol{\gamma}_{i})] + \mathsf{E}_{\gamma}[\mathsf{Var}_{Y}(Y_{ij} \mid \boldsymbol{\gamma}_{i})] \\ &= G_{11} + 2G_{12}t_{ij} + G_{22}t_{ij}^{2} + \sigma^{2} \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[Y_{ij}, Y_{ij'}] &= \mathsf{Cov}_{\gamma}[\mathsf{E}_{Y}(Y_{ij} \mid \boldsymbol{\gamma}_{i}), \, \mathsf{E}_{Y}(Y_{ij'} \mid \boldsymbol{\gamma}_{i})] \\ &+ \mathsf{E}_{\gamma}[\mathsf{Cov}_{Y}(Y_{ij}, \, Y_{ij'} \mid \boldsymbol{\gamma}_{i})] \\ &= G_{11} + G_{12}(t_{ij} + t_{ij'}) + G_{22}t_{ij}t_{ij'} \end{aligned}$$

• Random intercepts and slopes model (continued)

$$\operatorname{Corr}[Y_{ij}, Y_{ij'}] = \frac{G_{11} + G_{12}(t_{ij} + t_{ij'}) + G_{22}t_{ij}t_{ij'}}{\sqrt{G_{11} + 2G_{12}t_{ij} + G_{22}t_{ij}^2 + \sigma^2}\sqrt{G_{11} + 2G_{12}t_{ij'} + G_{22}t_{ij'}^2 + \sigma^2}} \\ \equiv \rho_{ijj'}$$

Any two measurements on the same subject may not have the same correlation; depends on the specific observation times

C

Generalized linear mixed-effects models

A GLMM is defined by random and systematic components

• **Random**: Conditional on γ_i the outcomes $Y_i = (Y_{i1}, \dots, Y_{im_i})^T$ are mutually independent and have an exponential family density

$$f(Y_{ij} \mid \beta^{\star}, \gamma_i, \phi) = \exp\{[Y_{ij}\theta_{ij} - \psi(\theta_{ij})]/\phi + c(Y_{ij}, \phi)\}$$

for i = 1, ..., n and $j = 1, ..., m_i$ with a scale parameter $\phi > 0$ and $\theta_{ij} \equiv \theta_{ij}(\beta^*, \gamma_i)$

Generalized linear mixed-effects models

A GLMM is defined by random and systematic components

 Systematic: μ^{*}_{ij} is modeled via a linear predictor containing fixed regression parameters β^{*} common to all individuals in the population and subject-specific random effects γ_i with a known link function g(·)

$$g(\mu_{ij}^{\star}) = x_{ij}\beta^{\star} + z_{ij}\gamma_i \Leftrightarrow \mu_{ij}^{\star} = g^{-1}(x_{ij}\beta^{\star} + z_{ij}\gamma_i)$$

where the random effects γ_i are mutually independent with a common underlying multivariate distribution, typically assumed to be

$$\gamma_i \sim N_q(0, G)$$

so that G quantifies random variation across subjects

Likelihood-based estimation of β

Requires specification of a complete probability distribution for the data

• Likelihood-based methods are designed for fixed effects, so integrate over the assumed distribution for the random effects

$$\mathcal{L}_{Y}(\beta,\sigma,G) = \prod_{i=1}^{n} \int f_{Y|\gamma}(Y_{i} \mid \gamma_{i},\beta,\sigma) \times f_{\gamma}(\gamma_{i} \mid G) d\gamma_{i}$$

where f_{γ} is typically the density function of a Normal random variable

- For linear models the required integration is straightforward because Y_i and γ_i are both normally distributed (easy to program)
- For non-linear models the integration is difficult and requires either approximation or numerical techniques (hard to program)

Estimation of β using maximum likelihood

- Treat the random effects as unobserved nuisance variables and integrate over their assumed distribution to obtain the marginal likelihood for β; typically assume γ_i ~ N(0, G)
- mixed, melogit, and mepoisson in Stata
- lmer and glmer in R package lme4
- Comparisons are based on within- and between-subject contrasts
- Requires a correctly-specified distribution for subject-specific effects
- Do not control for unmeasured characteristics because random effects are almost always assumed to be uncorrelated with covariates

Inference for β

Consider testing fixed effects in nested linear mixed-effects models

$$H: \ \beta = \left[\begin{array}{c} \beta_1 \\ 0 \end{array} \right] \quad \text{versus} \quad \mathcal{K}: \ \beta = \left[\begin{array}{c} \beta_1 \\ \beta_2 \end{array} \right],$$

i.e., $H: \beta_2 = 0$

- Likelihood ratio test is valid if ML estimation is used
- · Likelihood ratio test may not be valid with other estimation methods
- Wald test is generally valid, though reference distribution is not generally agreed upon

Inference for G

Consider testing whether a random intercept model is adequate

$$H: \ G = \left[\begin{array}{cc} G_{11} & 0 \\ 0 & 0 \end{array} \right] \quad \text{versus} \quad K: \ G = \left[\begin{array}{cc} G_{11} \\ G_{12} & G_{22} \end{array} \right],$$

i.e., $H: G_{12} = G_{22} = 0$

- Adequate covariance modeling is useful for the interpretation of the random variation in the data
- Over-parameterization of the covariance structure leads to inefficient estimation of fixed effects parameters β
- Covariance model choice determines the standard error estimates for $\hat{\beta}$; correct model is required for correct standard error estimates

Inference for G

- $G_{22} = 0$ is on the boundary of the parameter space
 - \blacktriangleright Violates the standard assumption used to establish the typical χ^2 distribution of the likelihood ratio test statistic
 - Null hypothesis is accepted too often, leading to an incorrect simplification of the covariance structure of the data

(see Stata output for dental growth example)

- Correct distribution of test statistic is a mixture of χ^2 distributions
 - Example: Consider testing H: $G_{11} = 0$
 - Correct distribution is a mixture of χ_1^2 and χ_0^2 , each with weight 0.5
 - χ^2_0 gives probability mass 1 to the value 0
- Generally recommend against this inferential procedure
 - Specification for the covariance structure should be guided by a priori scientific knowledge and exploratory data analysis

Assumptions

Valid inference from a linear mixed-effects model relies on

- Mean model: As with any regression model for an average outcome, need to correctly specify the functional form of x_{ii}β (here also z_{ii}γ_i)
 - Included important covariates in the model
 - Correctly specified any transformations or interactions
- Covariance model: Correct covariance model (random-effects specification) is required for correct standard error estimates for $\hat{\beta}$
- **Normality**: Normality of ϵ_{ij} and γ_i is required for normal likelihood function to be the correct likelihood function for Y_{ij}
- *n* sufficiently large for **asymptotic inference** to be valid
- \star These assumptions must be verified to evaluate any fitted model

Dental growth

Characterize dental growth among males and females, ages 8 to 14 years

 $\mathsf{E}[Y_{ij}] = \beta_0 + \beta_1(\mathsf{Age}_{ij} - 8) + \beta_2\mathsf{Gender}_i + \beta_3(\mathsf{Age}_{ij} - 8) \cdot \mathsf{Gender}_i$

• Consider various specifications for the random effects structure

- Random intercepts
- Random intercepts and slopes (for age)

NB: In practice, selection of a random effects structure should be guided by a priori knowledge and/or exploratory analysis, or specified as relevant to the scientific question of interest

- Use the lmer command in the lme4 library library(lme4) ?lmer
 - m_ri <- lmer(length ~ (1 | id) + I(age-8)*gender, data=growth)</pre>
 - m_rs <- lmer(length ~ (I(age-8) | id) + I(age-8)*gender, data=growth)</pre>

Dental growth: R

```
> summary(m_ri)
```

Random effects: Groups Name Variance Std.Dev. id (Intercept) 3.27 1.81 Residual 1.96 1.40 Number of obs: 104, groups: id, 26

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	21.2091	0.6500	32.6
I(age - 8)	0.4795	0.0945	5.1
gendermale	1.4909	0.8558	1.7
<pre>I(age - 8):gendermale</pre>	0.3205	0.1244	2.6

Dental growth: R

> summary(m_rs)

```
Random effects:
Groups Name
               Variance Std.Dev. Corr
id (Intercept) 3.3209 1.822
        I(age - 8) 0.0331 0.182 -0.15
                   1.7543 1.325
Residual
Number of obs: 104, groups: id, 26
Fixed effects:
                   Estimate Std. Error t value
(Intercept)
                    21.209 0.643 33.0
                    0.480 0.105 4.6
I(age - 8)
gendermale
                     1.491 0.847 1.8
I(age - 8):gendermale 0.320 0.138 2.3
```

Dental growth: R

Dental growth

- + $\hat{G}_{12} < 0$ indicates subjects with high length have low rate of growth
- \hat{G}_{11} indicates mild variability in level of dental length
- \hat{G}_{22} indicates mild variability in change in length over time
- AIC and LR indicate model 1 is a reasonable fit to the data

$$\operatorname{Corr}[Y_{ij}, Y_{ij'}] = \frac{1.81^2}{1.81^2 + 1.40^2} = 0.63$$

- Consistent with exploratory and GEE analyses that indicated exchangeable correlation structure is adequate
- $\hat{\beta}_3$ indicates increase in average dental length is larger for males
- Reject the null hypothesis that β₃ = 0 with p = 0.009
 [Stata assumes asymptotic normality; possible to use ImerTest in R, but somewhat controversial]

* Declare the dataset to be "panel" data, grouped by id * with time variable age xtset id age

```
* Fit models with random intercepts and slopes
help mixed
gen cage = age-8
mixed length i.gender##c.cage || id:, stddeviations
est store ri
estat ic
```

```
mixed length i.gender##c.cage || id: cage, ///
cov(unstructured) stddeviations
est store rs
estat ic
```

* Use likelihood ratio test and AIC to compare models lrtest ri rs

Mixed-effects Group variable		Number (Number (of obs of groups	= =	104 26		
				Obs per	group: mi	in =	4
					av	vg =	4.0
					ma	ax =	4
				Wald ch	i2(3)	=	137.79
Log likelihood	= -207.08327		Prob >	chi2	=	0.0000	
longth	Coof	Std Frr		DN 171			
Tengen	+			F / [2]			Incervarj
gender							
male	1.490909	.8265567	1.80	0.071	12911	124	3.110931
cage	.4795455 	.0932514	5.14	0.000	.2967	776	.6623149
gender#c.cage							
male	.3204545 	.1227712	2.61	0.009	.07982	274	.5610817
_cons	, 21.20909	.6278149	33.78	0.000	19.97	786	22.43959

]	Random-eff	ects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
id	: Identity	 sd(_cons)	1.731043	.2792446	1.261815	2.374762
		sd(Residual)	1.383142	.11074	1.182269	1.618146
LR	test vs.	linear regression:	chibar2(01)	= 46.46	Prob >= chibar2	2 = 0.0000

 Akaike's information criterion and Bayesian information criterion

 Model |
 Obs
 11(null)
 11(model)
 df
 AIC
 BIC

 ri |
 104
 .
 -207.0833
 6
 426.1665
 442.0329

Mixed-effects Group variable	Number of obs = 1 Number of groups =						
				Obs per	group: min	=	4
					avg	; =	4.0
					max	=	4
				Wald ch	i2(3)	=	118.63
Log likelihood	= -206.75403		Prob >	chi2	=	0.0000	
length	Coer.	Sta. Err.	Z	P> Z	[95% 00	nī.	Intervalj
gender	+ 						
male	1.490909	.8134256	1.83	0.067	103375	7	3.085194
cage	.4795455 	.1006929	4.76	0.000	.28219	1	.6768999
gender#c.cage	I						
male	.3204545 	.1325684	2.42	0.016	.060625	3	.5802838
_cons	21.20909	.6178411	34.33	0.000	19.9981	4	22.42004
Dental growth: Stata

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
id: Unstructured				
sd(cage)	.1543156	.1146815	.0359608	.6622021
sd(_cons)	1.723651	.3449757	1.164362	2.55159
<pre>corr(cage,_cons) </pre>	0934221	.5302289	8151116	.7418963
sd(Residual)	1.32451	.1298788	1.09292	1.605175
LR test vs. linear regression:	chi2(3	3) = 47.12	Prob > chi2	2 = 0.0000

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
rs	104		-206.754	8	429.5081	450.6632

Dental growth: Stata

. lrtest ri rs

Likelihood-ratio test	LR chi2(2) =	0.66
(Assumption: ri nested in rs)	Prob > chi2 =	0.7195

Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.

Summary

- Mixed-effects models assume that each subject has a regression model characterized by subject-specific parameters; a combination of fixed effects parameters common to all individuals in the population and random subject-specific perturbations
- Likelihood-based estimation and inference requires a complete parametric probability distribution for subject-specific random effects and error terms that must be verified for valid inference
- Estimates for the random effects are available (a.k.a. prediction), e.g., provider profiling
- See help files for specification of hierarchical random effects

Issues

- Interpretation depends on outcomes and random-effects specification
- GLMM requires that any missing data are missing at random
- Issues arise with time-dependent exposures and covariance weighting

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations
- Case Study: Longitudinal Depression Scores
- Generalized linear mixed-effects models

Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Indonesia Children's Health Study (ICHS)

- Determine the effects of vitamin A deficiency in preschool children
- n = 275 children examined for respiratory infection at up to 6 visits
- Xeropthalmia is an ocular manifestation of vitamin A deficiency
- Goal: Evaluate association between vitamin A deficiency and risk of respiratory infection

		Age (years)							
Xeropthalmia	Infection	0	1	2	3	4	5	6	7
No	No	77	229	154	196	176	143	65	5
No	Yes	8	30	30	15	9	7	1	0
Yes	No	0	1	9	10	15	8	4	1
Yes	Yes	0	0	4	3	0	0	0	0

ICHS: Data

. list id age time infection xerop gender hfora cost sint

	+								
	id	age	time	infect~n	xerop	gender	hfora	cost	sint
1	1 121013	31	1	0	0				0
2.	121013	34	2	0	0	0	-3	0	-1
3.	121013	37	3	0	0	0	-2	1	0
4.	1 121013	40	4	0	0	0	-2	0	1
5.	121013	43	5	1	0	0	-2	-1	0
6.	121013	46	6	0	0	0	-3	0	-1
7.	121113	-9	1	0	0	1	2	-1	0
8.	121113	-6	2	0	0	1	0	0	-1
9.	121113	-3	3	0	0	1	-1	1	0
10.	121113	0	4	0	0	1	-2	0	1
11.	121113	3	5	1	0	1	-3	-1	0
12.	121113	6	6	0	0	1	-3	0	-1
13.	121114	-26	1	0	0	0	8	-1	0
14.	121114	-23	2	0	0	0	5	0	-1
15.	121114	-20	3	0	0	0	3	1	0
16.	121114	-17	4	1	0	0	0	0	1
17.	121114	-14	5	1	0	0	0	-1	0
18.	121114	-11	6	0	0	0	0	0	-1

Multiple records per person, with age in months, centered at 36 months, and time indicating visit number

Sitlani (Module 2)

Longitudinal Data Analysis

- 1. Plot vitamin A deficiency and infection status, by age, for a sample of individuals.
- 2. Plot percent with respiratory infection versus age, by presence or absence of vitamin A deficiency.
- 3. Explore correlation structure by visit number, and calculate percent with respiratory infection at each visit.

ICHS Questions: Regression Analyses

- 4. Evaluate the association between respiratory infection and vitamin A deficiency using an ordinary logistic regression model.
- 5. Use GEE to estimate the population-averaged odds ratio for respiratory infection, comparing those with vitamin A deficiency to those without, given equivalent values of other covariates. Explore multiple specifications of working correlation.
- 6. Use GLMM to estimate the conditional odds ratio for respiratory infection, comparing a typical individual with vitamin A deficiency to a typical individual without, given equivalent values of other covariates. Estimate the variability in the probability of respiratory infection across individuals.

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations
- Case Study: Longitudinal Depression Scores
- Generalized linear mixed-effects models
- Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

- Parameter estimates obtained from a marginal model (as obtained via a GEE) estimate population-averaged contrasts
- Parameter estimates obtained from a **conditional** model (as obtained via a GLMM) estimate **subject-specific** contrasts
- In a linear model for a Gaussian outcome with an identity link these contrasts are equivalent; not the case with non-linear models
 - Depends on the outcome distribution
 - Depends on the specified random effects

Parameters in the LMM may be interpreted as population-level contrasts

• Random intercepts

$$\begin{split} \mathsf{E}[Y_{ij} \mid t_{ij} = t + 1] - \mathsf{E}[Y_{ij} \mid t_{ij} = t] \\ &= \mathsf{E}_{\gamma}[\mathsf{E}_{Y}(Y_{ij} \mid t_{ij} = t + 1, \gamma_{0i})] - \mathsf{E}_{\gamma}[\mathsf{E}_{Y}(Y_{ij} \mid t_{ij} = t, \gamma_{0i})] \\ &= \mathsf{E}_{\gamma}[\beta_{0} + \beta_{1}(t + 1) + \gamma_{0i}] - \mathsf{E}_{\gamma}[\beta_{0} + \beta_{1}t + \gamma_{0i}] \\ &= \beta_{1} \end{split}$$

• Random intercepts and slopes

$$\begin{split} \mathsf{E}[Y_{ij} \mid t_{ij} = t + 1] - \mathsf{E}[Y_{ij} \mid t_{ij} = t] \\ &= \mathsf{E}_{\gamma}[\mathsf{E}_{Y}(Y_{ij} \mid t_{ij} = t + 1, \gamma_{0i}, \gamma_{1i})] - \mathsf{E}_{\gamma}[\mathsf{E}_{Y}(Y_{ij} \mid t_{ij} = t, \gamma_{0i}, \gamma_{1i})] \\ &= \mathsf{E}_{\gamma}[\beta_{0} + \beta_{1}(t + 1) + \gamma_{0i} + \gamma_{1i}(t + 1)] - \mathsf{E}_{\gamma}[\beta_{0} + \beta_{1}t + \gamma_{0i} + \gamma_{1i}t] \\ &= \beta_{1} \end{split}$$

		Fitted conditional model				
Outcome	Coefficient	Random intercept	Random intercept/slope			
Continuous	Intercept	Marginal	Marginal			
	Slope	Marginal	Marginal			
Count	Intercept	Conditional	Conditional			
	Slope	Marginal	Conditional			
Binary	nary Intercept Co		Conditional			
	Slope	Conditional	Conditional			

★ Marginal = population-averaged; conditional = subject-specific

Conditional and marginal effects: Example

Consider a logistic regression model with subject-specific intercepts

$$\mathsf{logit}(\mathsf{P}[Y_{ij}=1 \mid \gamma_{0i}]) = \beta_0^{\star} + \beta_1^{\star} x_{ij} + \gamma_{0i}$$

where each subject has their own baseline risk of the disease ($Y_{ij} = 1$)

$$\frac{\exp(\beta_0^{\star} + \gamma_{0i})}{1 + \exp(\beta_0^{\star} + \gamma_{0i})}$$

which is multiplied by $\exp(\beta_1^{\star})$ if the subject becomes exposed $(x_{ij} = 1)$

Conditional and marginal effects: Example

The population rate of infection is the average risk across individuals

$$P[Y_{ij} = 1] = \int P[Y_{ij} = 1 | \gamma_{0i}] dF(\gamma_{0i})$$

= $\int \frac{\exp(\beta_0^* + \beta_1^* x_{ij} + \gamma_{0i})}{1 + \exp(\beta_0^* + \beta_1^* x_{ij} + \gamma_{0i})} f(\gamma_{0i} | \tau) d\gamma_{0i}$

where typically $\gamma_{0i} \sim N(0, \tau^2)$

• Assuming $[\beta_0^\star,\beta_1^\star]=[-2,0.4]$ and $au^2=2$ the population rates are

$$P[Y_{ij} = 1 | x_{ij} = 0] = 0.18$$
$$P[Y_{ij} = 1 | x_{ij} = 1] = 0.23$$

where the odds ratio associated with exposure is exp(0.4) = 1.5

Conditional and marginal effects: Example

A **marginal** model ignores heterogeneity among individuals and considers the **population-averaged** rate rather than the **conditional** rate

$$\mathsf{logit}(\mathsf{P}[Y_{ij}=1]) = \beta_0 + \beta_1 x_{ij}$$

where the infection rate among a population of unexposed individuals is

$$\mathsf{P}[Y_{ij} = 1 \mid x_{ij} = 0] = 0.18$$

and the population-averaged odds ratio associated with exposure is

$$\frac{\mathsf{P}[Y_{ij} = 1 \mid x_{ij} = 1]/(1 - \mathsf{P}[Y_{ij} = 1 \mid x_{ij} = 1])}{\mathsf{P}[Y_{ij} = 1 \mid x_{ij} = 0]/(1 - \mathsf{P}[Y_{ij} = 1 \mid x_{ij} = 0])} = 1.36$$

so that $[\beta_0, \beta_1] = [logit(0.18), log(1.36)] = [-1.23, 0.31]$

* Marginal parameters are "attenuated" w.r.t. conditional parameters

Sitlani (Module 2)

After "Will the real subject-specific odds ratio please stand up?" by Thomas Lumley

Suppose we are evaluating an anti-smoking intervention and observe

- Y_i = Indicator whether subject *i* smoked during the past week
- x_i = Indicator whether subject *i* received the intervention

for $i = 1, \ldots, n$

• Logistic regression model is given by

 $\operatorname{logit}(\mathsf{E}[Y_i]) = \beta_0 + \beta_1 x_i$

Effect of the intervention is measured by the odds ratio exp(β₁)

After "Will the real subject-specific odds ratio please stand up?" by Thomas Lumley

I forgot to tell you that each person is evaluated three times so that

$$\begin{aligned} \mathsf{logit}(\mathsf{E}[Y_{ij}]) &= \beta_0 + \beta_1 x_{ij} \\ \mathsf{logit}(\mathsf{E}[Y_{ij} \mid \gamma_i]) &= \beta_0^\star + \beta_1^\star x_{ij} + \gamma_i \end{aligned}$$

where γ_i quantifies variation across subjects

- First is a marginal model; second is a conditional model
- $\exp(\beta_1^{\star})$ is the subject-specific odds ratio measuring intervention effect
- β_1^{\star} measures actual intervention effect and β_1 has been attenuated

After "Will the real subject-specific odds ratio please stand up?" by Thomas Lumley

I also forgot to tell you that this is group-discussion intervention so that

where $\gamma_{\rm g}$ quantifies variation across groups

- $\exp(\beta_1^{\star\star})$ is the real subject-specific odds ratio
- $\exp(\beta_1^{\star})$ is an attenuated version; it is the group-specific odds ratio

After "Will the real subject-specific odds ratio please stand up?" by Thomas Lumley

I also forgot to tell you that the discussion was facilitated by a physician, where the study was actually randomized by medical practice, so that

$$logit(\mathsf{E}[Y_{pgij}]) = \beta_0 + \beta_1 x_{pgij}$$
$$logit(\mathsf{E}[Y_{pgij} \mid \gamma_i, \gamma_g, \gamma_p]) = \beta_0^{\star\star\star} + \beta_1^{\star\star\star} x_{pgij} + \gamma_i + \gamma_g + \gamma_p$$

where $\gamma_{\it p}$ quantifies variation across physicians

- Now the subject-specific odds ratio is really exp(β₁^{***})
- Marginal odds ratio is still boringly stuck at exp(β₁)

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations
- Case Study: Longitudinal Depression Scores
- Generalized linear mixed-effects models
- Case Study: Indonesia Children's Health Study

Advanced topics

Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Missing data

- Missing values arise in longitudinal studies whenever the intended serial observations collected on a subject over time are incomplete
- Important to distinguish between missing data and unbalanced data, although missing data necessarily result in unbalanced data
- Missing data require consideration of the factors that influence the missingness of intended observations
- Also important to distinguish between intermittent missing values (non-monotone) and dropouts in which all observations are missing after subjects are lost to follow-up (monotone)

Pattern	t_1	t_2	t ₃	t4	t_5
Monotone	3.8	3.1	2.0		
Non-monotone	4.1		3.8		

Strategies

- 1. Complete-case analyses based only on complete measurement series
 - Easy to implement; may be valid with small amount of missing data
 - Otherwise may lead to serious bias and loss of efficiency
- 2. Imputation-based procedures to fill-in any missing data
 - Examples: Hot deck, mean, regression, and multiple imputation
 - Allows use of standard estimation methods on resulting complete data
- 3. Weighted procedures to adjust for non-response as if part of design
 - Developed from sample-survey techniques for non-response weighting
 - Example: Weighted generalized estimating equations (WGEE)
- 4. Model-based procedures based on a model for the observed data
 - ► Examples: Selection, pattern mixture, and random effects models
 - Facilitate evaluation of assumptions underlying the fitted models
- 5. Others that should rarely, if ever, be used
 - Example: Last observation carried forward

Taxonomy (Little and Rubin, 2002)

Partition the complete set of intended observations into the observed and missing data; what factors influence missingness of intended observations?

- Missing completely at random (MCAR) Missingness does not depend on **either** the observed or missing data
- Missing at random (MAR)
 Missingness depends only on the observed data
- **Missing not at random** (MNAR) Missingness depends on **both** the observed and missing data

MNAR also referred to as informative or non-ignorable missingness; thus MAR and MCAR as non-informative or ignorable missingness

Examples and implications

• MCAR: Administrative censoring at a fixed calendar time

- Generalized estimating equations are valid
- Mixed-effects models are valid
- MAR: Individuals with no current weight loss in a weight-loss study
 - Generalized estimating equations are not valid
 - Weighted estimating equations are valid
 - Mixed-effects models are valid

• MNAR: Subjects in a prospective study based on disease prognosis

- Generalized estimating equations are not valid
- Mixed-effects models are not valid

 \star MAR and MCAR may be evaluated using the observed data

Implication of MCAR and MAR

Likelihood-based inference based on the observed data is valid

$$f(Y^{o}, M) = \int f(Y^{c}, M) dY^{m}$$

$$= \int f(Y^{c}) f(M | Y^{c}) dY^{m}$$

$$= f(M) \int f(Y^{c}) dY^{m} \text{ or } f(M | Y^{o}) \int f(Y^{c}) dY^{m}$$

$$= f(M)f(Y^{o}) \text{ or } f(M | Y^{o}) f(Y^{o})$$

$$\propto f(Y^{o})$$

although this result relies on assumptions that the

- Likelihood for the observed data is correctly specified (as always)
- Distributions are separately parameterized; otherwise efficiency losses
- Unconditional distribution $f(Y^o)$ represents the target of inference

GEE

Estimating equations based on the observed data are valid under MCAR

$$\mathcal{U}_{\beta}(\beta,\alpha;Y_{i}^{o},X_{i}) = \sum_{i=1}^{n} (1-M_{i}) \mathcal{U}_{\beta}(\beta,\alpha;Y_{i}^{c},X_{i})$$

so that for $E[\mathcal{U}_{\beta}(\beta, \alpha; Y_i^o, X_i)] = 0$ and hence consistency of $\hat{\beta}$ we obtain

$$\begin{split} \mathsf{E}_{Y^{c},X,M}[(1-M_{i})\mathcal{U}_{\beta}(\beta,\alpha;Y_{i}^{c},X_{i})] \\ &= \mathsf{E}_{Y^{c},X}\{\mathsf{E}_{M|Y^{c},X}[(1-M_{i})\mathcal{U}_{\beta}(\beta,\alpha;Y_{i}^{c},X_{i})]\} \\ &= \mathsf{E}_{Y^{c},X}\{\mathcal{U}_{\beta}(\beta,\alpha;Y_{i}^{c},X_{i})\mathsf{E}_{M|Y^{c},X}[(1-M_{i})]\} \\ &= \mathsf{E}_{Y^{c},X}\{\mathcal{U}_{\beta}(\beta,\alpha;Y_{i}^{c},X_{i})\mathsf{P}[M_{i}=0 \mid Y_{i}^{c},X_{i}]\} \\ &= \mathsf{E}_{Y^{c},X}\{\mathcal{U}_{\beta}(\beta,\alpha;Y_{i}^{c},X_{i})\mathsf{P}[M_{i}=0 \mid X_{i}]\} \\ &= \mathsf{E}_{X}\{\mathsf{P}[M_{i}=0 \mid X_{i}]\mathsf{E}_{Y^{c}|X}[\mathcal{U}_{\beta}(\beta,\alpha;Y_{i}^{c},X_{i})]\} \\ &= \mathsf{0} \end{split}$$

GEE: Comments

- Under MCAR point estimators and robust standard error estimators are consistent even if the correlation structure is incorrectly specified
- Under MAR point estimators are consistent only if the correlation structure is correctly specified, although the robust standard error estimators may be inconsistent (Kenward and Molenberghs, 1998)
- Requires correct specification for μ and sufficiently large n (as always)
- Weighted estimating equations (WGEE) are valid under MAR

WGEE (Robins et al., 1995)

Extend marginal GEE approach to situations with MAR missing data

- Also known as the inverse probability of censoring weighted GEE
- Provides unbiased inference in longitudinal studies with drop-outs
- Observations (or person-visits) in the estimating function are assigned a weight inversely proportional to their probability of being observed

$$\mathcal{U}_{\beta}(\beta,\alpha,\theta) = \sum_{i=1}^{n} D_{i}(\beta)^{\mathsf{T}} V_{i}(\beta,\alpha)^{-1} W_{i}(\theta) [Y_{i}^{c} - \mu_{i}(\beta)]$$

so that the drop-out process is taken into account by specification of an $(m \times m)$ diagonal matrix of visit-specific weights

$$W_i(\theta) = \mathsf{diag}[(1 - M_{i1})w_{i1}, \dots, (1 - M_{im})w_{im}]$$

where $M_{ij} = 0$ if the *i*th individual's outcome is observed at visit *j*; hence the weight is w_{ij} for observed visits and 0 for unobserved visits

WGEE: Comments

• Accommodates drop-outs but not intermittent missing data patterns

$$\begin{array}{rcl} Y_{i}^{c} & = & \{Y_{i}^{o}, Y_{i}^{m}\} \\ Y_{i}^{o} & = & \{Y_{i1}, \dots, Y_{ik-1}\} \\ Y_{i}^{m} & = & \{Y_{ik}, \dots, Y_{im}\} \end{array}$$

- Valid under MAR even if the correlation model is incorrectly specified, provided the model for the probability of missing outcome is correct
 - As with GEE use of the robust variance estimator in WGEE provides robustness to misspecification of the correlation structure
 - With consistent estimation of weights provided by a correctly specified drop-out model, WGEE does not require a correct specification for the correlation structure to estimate consistently β and its covariance
- As with GEE choice of the working correlation matrix affects efficiency
- Requires correct specification for μ and sufficiently large n (as always)
- Estimation of (β, α) requires either a priori knowledge of the weights or estimation of w_{ij} using a correctly specified drop-out model

Last observation carried forward

• Extrapolate the last observed measurement to the remainder of the intended serial observations for subjects with any missing data

ID	t_1	t_2	t ₃	t ₄	t ₅
1	3.8	3.1	2.0	2.0	2.0
2	4.1	3.5	3.8	2.4	2.8
3	2.7	2.4	2.9	3.5	3.5

- May result in serious bias in either direction
- May result in anti-conservative *p*-values; variance is understated
- Has been thoroughly repudiated, but still appears in published articles
- A refinement would extrapolate based on a regression model for the average trend, which may reduce bias, but still understates variance

Last observation carried forward

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations
- Case Study: Longitudinal Depression Scores
- Generalized linear mixed-effects models
- Case Study: Indonesia Children's Health Study

Advanced topics

Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Longitudinal studies

Help establish the causal effect of exposure on outcome by determining the temporal order of exposure and outcome (exposure precedes outcome)

• Cross-sectional study

 $\begin{array}{rcl} \mathsf{Egg} & \to & \mathsf{Chicken} \\ \mathsf{Chicken} & \to & \mathsf{Egg} \end{array}$

• Longitudinal study

 $\mathsf{Bacterium} \ \rightarrow \ \mathsf{Dinosaur} \ \rightarrow \ \mathsf{Chicken}$

 \star There are several other challenges to generating causal inference from longitudinal data, particularly observational longitudinal data

Issues

Important analytical issues arise with time-dependent exposures

- 1. May be necessary to correctly specify the **lag** relationship over time between outcome $Y_i(t)$ and exposure $X_i(t)$, $X_i(t-1)$, $X_i(t-2)$,... to characterize the underlying biological latency in the relationship
 - **Example**: Air pollution studies may examine the association between mortality on day t and pollutant levels on days t, t 1, t 2,...
- 2. May exist exposure **endogeneity** in which the outcome at time t predicts the exposure at times t' > t; motivates consideration of alternative targets of inference and corresponding estimation methods
 - Example: If Y_i(t) is a symptom measure and X_i(t) is an indicator of drug treatment, then past symptoms may influence current treatment

Definitions

Factors that influence $X_i(t)$ require consideration when selecting analysis methods to relate a time-dependent exposure to longitudinal outcomes

Exogenous: An exposure X_i(t) is exogenous with respect to the outcome process if the exposure at time t is conditionally independent of the history of the outcome process Y_i(t) = {Y_i(s) | s ≤ t} given the history of the exposure process X_i(t) = {X_i(s) | s ≤ t}

$$[X_i(t) \mid \mathcal{Y}_i(t), \mathcal{X}_i(t)] = [X_i(t) \mid \mathcal{X}_i(t)]$$

• Endogenous: Not exogenous

$$[X_i(t) \mid \mathcal{Y}_i(t), \mathcal{X}_i(t)] \neq [X_i(t) \mid \mathcal{X}_i(t)]$$
Examples

Exogeneity may be assumed based on the design or evaluated empirically

- **Observation time**: Any analysis that uses scheduled observation time as a time-dependent exposure can safely assume exogeneity because time is "external" to the system under study and thus not stochastic
- **Cross-over trials**: Although treatment assignment over time is random, in a randomized study treatment assignment and treatment order are independent of outcomes by design and therefore exogenous
- Empirical evaluation: Endogeneity may be empirically evaluated using the observed data by regressing current exposure $X_i(t)$ on previous outcomes $Y_i(t-1)$, adjusting for previous exposure $X_i(t-1)$

$$g(\mathsf{E}[X_i(t)]) = \theta_0 + \frac{\theta_1}{Y_i(t-1)} + \theta_2 X_i(t-1)$$

and using a model-based test to evaluate the null hypothesis: $\theta_1 = 0$

The presence of endogeneity determines specific analysis strategies

- If exposure is exogenous, then the analysis can focus on specifying the lag dependence of $Y_i(t)$ on $X_i(t)$, $X_i(t-1)$, $X_i(t-2)$,...
- If exposure is endogenous, then analysts must focus on selecting a meaningful target of inference and valid estimation methods

Targets of inference

With longitudinal outcomes and a time-dependent exposure there are several possible conditional expectations that may be of scientific interest

• Fully conditional model: Include the entire exposure process

$$\mathsf{E}[Y_i(t) \mid X_i(1), X_i(2), \ldots, X_i(T_i)]$$

• Partly conditional models: Include a subset of exposure process

$$\begin{split} & \mathsf{E}[Y_i(t) \mid X_i(t)] \\ & \mathsf{E}[Y_i(t) \mid X_i(t-k)] \text{ for } k \leq t \\ & \mathsf{E}[Y_i(t) \mid \mathcal{X}_i(t) = \{X_i(1), X_i(2), \dots, X_i(t)\}] \end{split}$$

 \star An appropriate target of inference that reflects the scientific question of interest must be identified prior to selection of an estimation method

Pepe and Anderson (1994)

Suppose that primary scientific interest lies in a cross-sectional mean model

$$\mu_i(t) \equiv \mathsf{E}[Y_i(t) \mid X_i(t)] = \beta_0 + \beta_1 X_i(t)$$

To ensure consistency of a generalized estimating equation or likelihoodbased mixed-model estimator for β , it is sufficient to assume that

$$\mathsf{E}[Y_i(t) \mid X_i(t)] = \mathsf{E}[Y_i(t) \mid X_i(1), X_i(2), \dots, X_i(T_i)]$$

Otherwise an independence estimating equation should be used

- Known as the full covariate conditional mean assumption
- Implies that with time-dependent exposures must assume exogeneity when using a covariance-weighting estimation method
- The **full covariate conditional mean** assumption is often overlooked and should be verified as a crucial element of model verification

Time-dependent confounders

Traditional epidemiology classifies a variable that is related to both exposure and outcome as either a confounder or intermediary variable

- **Confounder**: A variable Z that is associated with exposure X and outcome Y; if ignored will lead to biased exposure effect estimates
- Intermediary: A variable Z that is in the causal pathway between exposure X and outcome Y; should not be controlled for in analysis

* A longitudinal outcome can be both a confounder and an intermediary

Time-dependent confounders: Example

Consider an observational study of HIV-infected patients in which interest lies in the benefit on CD4+ cell count attributable to AZT treatment

- Current CD4+ count is likely to predict future CD4+ count
- Current CD4+ count may also predict future treatment choices
- Current CD4+ count is the outcome associated with prior treatment, but is also a predictor of and thus a confounder for future treatment
- A regression of current CD4+ count on prior treatment may reveal a lower mean CD4+ count among treated subjects, reflecting the fact that patients who are more sick are more likely to receive treatment

Time-dependent confounders: Example

Feedback: Outcome is a both a confounder and an intermediary

- Y(1) is a confounder for $X(1) \rightarrow Y(2)$
- Y(1) is an intermediary for X(0) o Y(2)

 \star No standard regression methods can be used to generate causal inference

Summary

- Parameter estimates obtained from a marginal model (GEE) estimate population-averaged contrasts; parameter estimates obtained from a conditional model (GLMM) estimate subject-specific contrasts; in some situations these contrasts are equivalent
- The presence of missing data determines situations in which certain estimation methods are valid (GEE for MCAR; GLMM for MAR)
- Any time-dependent exposures motivate consideration of alternative targets of inference and specific assumptions that must be verified for certain estimation methods to be appropriate

Overview

Introduction to longitudinal studies

- Longitudinal regression models
- Generalized estimating equations
- Case Study: Longitudinal Depression Scores
- Generalized linear mixed-effects models
- Case Study: Indonesia Children's Health Study

Advanced topics Conditional and marginal effects Missing data Time-dependent exposures

Summary and resources

Big picture: GEE

- Marginal mean regression model
- Model for longitudinal correlation
- Semi-parametric model: mean + correlation
- Form an unbiased estimating function
- Estimates obtained as solution to estimating equation
- Model-based or empirical variance estimator
- Robust to correlation model mis-specification
- Large sample: $n \ge 40$
- Testing with Wald tests
- Marginal or population-averaged inference
- Efficiency of non-independence correlation structures
- Missing completely at random (MCAR)
- Time-dependent covariates and endogeneity
- Only one source of positive or negative correlation
- R package geepack; Stata command xtgee

Big picture: GLMM

- Conditional mean regression model
- Model for population heterogeneity
- Subject-specific random effects induce a correlation structure
- Fully parametric model based on exponential family density
- Estimates obtained from likelihood function
- Conditional (fixed effects) and maximum (random effects) likelihood
- Approximation or numerical integration to integrate out $\boldsymbol{\gamma}$
- Requires correct parametric model specification
- Testing with likelihood ratio and Wald tests
- Conditional or subject-specific inference
- Induced marginal mean structure and 'attenuation'
- Missing at random (MAR)
- Time-dependent covariates and endogeneity
- Multiple sources of positive correlation
- R package lme4; Stata commands mixed, melogit

Final summary

Generalized estimating equations

- Provide valid estimates and standard errors for regression parameters of interest even if the correlation model is incorrectly specified (+)
- Empirical variance estimator requires sufficiently large sample size (-)
- Always provide population-averaged inference regardless of the outcome distribution; ignores subject-level heterogeneity (+/-)
- Accommodate only one source of correlation (-/+)
- Require that any missing data are missing completely at random (-)

Final summary

Generalized linear mixed-effects models

- Provide valid estimates and standard errors for regression parameters only under stringent model assumptions that must be verified (-)
- Provide population-averaged or subject-specific inference depending on the outcome distribution and specified random effects (+/-)
- Accommodate multiple sources of correlation (+/-)
- Require that any missing data are missing at random (-/+)

Advice

- Analysis of longitudinal data is often complex and difficult
- You now have versatile methods of analysis at your disposal
- Each of the methods you have learned has strengths and weaknesses
- Do not be afraid to apply different methods as appropriate
- Statistical modeling should be informed by exploratory analyses
- Always be mindful of the scientific question(s) of interest

Resources

Introductory

- Fitzmaurice GM, Laird NM, Ware JH. *Applied Longitudinal Analysis*. Wiley, 2004.
- Gelman A, Hill J. *Data Analysis Using Regression and Multilevel/ Heirarchical Models*. Cambridge University Press, 2007.
- Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley, 2006.

Advanced

- Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of Longitudinal Data, 2nd Edition. Oxford University Press, 2002.
- Molenbergs G, Verbeke G. *Models for Discrete Longitudinal Data*. Springer Series in Statistics, 2006.
- Verbeke G, Molenbergs G. *Linear Mixed Models for Longitudinal Data*. Springer Series in Statistics, 2000.

Thank you!