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Learning objectives

• This module will focus on the design of longitudinal studies,
exploratory data analysis, and application of regression techniques
based on estimating equations and mixed-effects models

• Focus will be on the practical application of appropriate analysis
methods, using illustrative examples in R and Stata

• Some theoretical background and details will be provided; our goal
is to translate statistical theory into practical application

• At the conclusion of this module, you should be able to apply
appropriate exploratory and regression techniques to summarize
and generate inference from longitudinal data
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Longitudinal regression models

Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children’s Health Study

Advanced topics
Conditional and marginal effects
Missing data
Time-dependent exposures

Summary and resources

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 3 / 160



Overview

Introduction to longitudinal studies

Longitudinal regression models

Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children’s Health Study

Advanced topics
Conditional and marginal effects
Missing data
Time-dependent exposures

Summary and resources

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 4 / 160



Longitudinal studies
Repeatedly collect information on the same individuals over time

Benefits

• Record incident events

• Ascertain exposure prospectively

• Separate time effects: cohort, period, age

Age
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Longitudinal studies

Separate time effects: cohort, period, age

• Cohort effects

I Differences between individuals at baseline

I “Level”

I Example: Younger individuals begin at a higher level

• Age effects

I Differences within individuals over time

I “Trend”

I Example: Outcomes increase over time for everyone

• Period effects may also matter if measurement date varies
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Longitudinal studies
Repeatedly collect information on the same individuals over time

Benefits

• Record incident events

• Ascertain exposure prospectively

• Separate time effects: cohort, period, age

• Distinguish changes over time within individuals

Cross-sectional: E[Yi1] = β0 + βCxi1

Longitudinal: E[Yij − Yi1] = βL(xij − xi1)

Single model: E[Yij ] = β0 + βCxi1 + βL(xij − xi1)

βL: expected change in outcome per unit change in age for a given subject
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Longitudinal studies
Repeatedly collect information on the same individuals over time

Benefits

• Record incident events

• Ascertain exposure prospectively

• Separate time effects: cohort, period, age

• Distinguish changes over time within individuals

• Offer efficiency gains over cross-sectional studies
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Efficiency in pre-post data analyses

• Randomized treatment studies
I Baseline equivalence ⇒ mean change over time can be estimated via

POST only, CHANGE, or POST/CHANGE controlling for baseline
[”ANCOVA”]

I Frison and Pocock (1992): we can order methods w.r.t. precision

ρ > 1/2 POST ≺ CHANGE ≺ ANCOVA

ρ < 1/2 CHANGE ≺ POST ≺ ANCOVA

• Observational data
I Baseline equivalence no longer guaranteed
I Methods no longer answer same scientific question
I CHANGE often most relevant, but sometimes ANCOVA is appropriate

[discussion in Fitzmaurice (2001) Nutrition article]
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Longitudinal studies
Repeatedly collect information on the same individuals over time

Benefits

• Record incident events

• Ascertain exposure prospectively

• Separate time effects: cohort, period, age

• Distinguish changes over time within individuals

• Offer efficiency gains over cross-sectional studies

• Help establish causal effect of exposure on outcome

e.g.statin use↔ glucose?

statin use→ later glucose
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Longitudinal studies

Repeatedly collect information on the same individuals over time

Challenges

• Determine causality when covariates vary over time

• Choose exposure lag when covariates vary over time

• Account for incomplete participant follow-up

• Require specialized methods that account for longitudinal correlation
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Longitudinal studies

Require specialized methods that account for longitudinal correlation

• Individuals are assumed to be independent

• Longitudinal dependence may be a secondary feature

• Ignoring dependence may lead to incorrect inference

I Longitudinal correlation usually positive

I Estimated standard errors may be too small

I Confidence intervals are too narrow; too often exclude true value

e.g. E[Yij ] = β0 + βCxi1 + βL(xij − xi1)

cannot be analyzed with simple linear regression
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Longitudinal data concepts

• Exploratory data analysis

• Regression model specification

• Parameter interpretation

• Covariance and correlation
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Exploratory data analysis

Exploratory data analysis for longitudinal data

• Summary statistics over time (by groups)

• Individual plots of observed and fitted values

• Empirical covariance structure (variance and correlation)

Goal: Summarize mean and covariance structure
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Exploratory data analysis: Guidelines

1. Show as much of the data as possible, rather than only summaries

2. Highlight aggregate patterns of potential scientific interest

3. Identify both cross-sectional and longitudinal patterns

4. Facilitate the identification of unusual individuals or observations
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Dental growth (Patthoff and Roy, 1964)

• Model growth among 11 females and 16 males, ages 8 to 14 years

• Distance between the pituitary gland and the pterygomaxillary fissure

• Characterize dental growth among children

• growth.RData or growth.dta on course website (SISCER Module 2)
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Dental growth: Data
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Dental growth: Summary statistics

Mean Length (mm)

Age 8 Age 10 Age 12 Age 14

Males 22.9 24.0 25.9 27.6

Females 21.2 22.2 23.1 24.1

Difference 1.8 1.7 2.8 3.5

On average. . .

• Trend: Dental length increases over time for males and females

• Cross-sectional: Males have larger dental length at every age

• Longitudinal: Increase in average dental length is larger for males
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Dental growth: Individual plots for females
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Dental growth: Individual plots for females

• Trend: Dental length in females increases over time

• Tracking: Females with large dental length at younger ages tend
to have large dental length at older ages

• Variability: Dental length appears to be slightly more variable
at older ages (verify using empirical estimates)

• Outliers

I Subjects 1, 5, and 9 have a periodic decrease in dental length

I Subject 10 appears to have small dental length, especially at age 8

I Subject 11 appears to have large dental length, especially at age 12

I NB: Outliers are hard to judge with only 11 subjects
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Individual plots: Difficulties

• Issue: Individual plots may not be useful for large datasets

• Issue: Random selection of individual lines may be arbitrary

• Solution: Produce plots for well-defined groups

I Example: Individual plots of dental growth for females

• Issue: Individual patterns may be difficult to detect in raw data

• Solution: Plot marginalized residuals versus time for individuals

I Example: Individual plots of dental growth residuals for females
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Dental growth: Individual plots of residuals
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Dental growth: Individual plots of residuals

Question: What are the advantages in examining residuals?

Answer

• Easier to identify individual patterns because it’s generally easier
to see variation across a flat line rather than a sloped line

• Facilitates the identification of unusual individuals or observations
given the average temporal trend

I Example: Dental length for subjects 8 and 10 increases over time,
but their increase is smaller than the average increase

? If we wish to study the random variation in the outcome over time,
?then we must remove the systemic variation due to temporal trends
?using residuals with a thorough and flexible adjustment for time
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Choosing time scale(s)

• Age: use Ageij as time variable
I Assumes: growth from age 8 to age 10 experienced 1990–1992

is the same as that from age 8 to age 10 experienced 2000–2002
I (e.g. no period effects)

• Age-since-entry: use Ageij − Agei1 as time variable
I Assumes: growth experienced 1990–1992 is same for children who aged

from 8 to 10 years old, and children who aged from 12 to 14 years old
I (e.g. no cohort effects)

• Age-at-entry: use Agei1 as time variable
I Assumes: children may be different at entry to study, but do not

change further during follow-up
I (e.g. no aging effects)
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Choosing model for time
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• Linear: constant rate of change
• Categorical: no change (flat) within each age, then jumps at new age
• Polynomials/Splines: non-constant rate of change
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Dental growth: Scientific questions as regression

• Questions concerning the rate of growth refer to the time slope
for dental length

E[Lengthij | xij = {Age, Gender}] = β∗0(xij) + β∗1(xij) · Timeij

• Does the rate of growth differ for males as compared to females?

E[Yij ] = β0 + β1(Ageij − 8) + β2Genderi + β3(Ageij − 8) · Genderi

How would you interpret these β parameters?
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Dental growth: Parameter interpretation

E[Yij ] = β0 + β1(Ageij − 8) + β2Genderi + β3(Ageij − 8) · Genderi

If Gender = {1 = male; 0 = female}

• β0 = expected dental length in 8-year-old females

• β1 = expected dental growth (per year) for females

• β2 = expected difference in dental length comparing
8-year-old males to 8-year-old females

• β3 = expected difference in dental growth (per year)
between males and females
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Dental growth: Regression model
model <- lm(length ~ I(age-8)*gender, data=growth)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.209 0.570 37.21 <2e-16 ***

I(age - 8) 0.480 0.152 3.15 0.0022 **

gendermale 1.491 0.750 1.99 0.0497 *

I(age - 8):gendermale 0.320 0.201 1.60 0.1133

Age (years)
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ng

th
 (

m
m

)

8 10 12 14

15
20

25
30 Male

Female
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Dependence and correlation

Issue Response variables measured on the same subject are correlated

• Observations are independent when deviation in one variable does
not predict deviation in the other variable

I Given two sujects with the same age and gender, then the dental
length for patient ID=14 is not predictive of the dental length
for patient ID=9

• Observations are dependent or correlated when one variable does
predict the value of another variable

I The dental length for patient ID=14 at age 10 is predictive
of the dental length for patient ID=14 at age 12
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Dependence and correlation: Variance review

• Recall: The variance of a variable Yij (fix time j) is defined as:

σ2j = E[(Yij − µj)2]

= E[(Yij − µj)(Yij − µj)]

• The variance measures the average distance that an observation falls
away from the mean
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Dependence and correlation: Covariance

• Define: The covariance of two variables Yij and Yik is

σjk = E[(Yij − µj)(Yik − µk)]

• The covariance measures whether, on average, departures in one
variable Yij − µj ‘go together with’ departures in a second variable
Yik − µk
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Dependence and correlation: Correlation

• Define: The correlation of two variables Yij and Yik is

ρjk =
E[(Yij − µj)(Yik − µk)]

σjσk

• The correlation is a measure of dependence that takes values
between −1 and +1

• Recall that a correlation of 0 implies that two measures
are unrelated (linearly)

• Recall that a correlation of 1 implies that the two measures fall
perfectly on a line – one exactly predicts the other!
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Notation

Define

mi = number of observations for subject i = 1, . . . , n

Yij = outcome for subject i at time j = 1, . . . ,mi

Xi = (xi1, xi2, . . . , ximi
)

xij = (xij1, xij2, . . . , xijp)

exposure, covariates

Stacks of data for each subject:

Yi =


Yi1

Yi2

...

Yimi

 Xi =


xi11 xi12 · · · xi1p

xi21 xi22 · · · xi2p
...

...
. . .

...

ximi1 ximi2 · · · ximip
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Covariance: Something new to model

Cov[Yi ] =


Var[Yi1] Cov[Yi1,Yi2] · · · Cov[Yi1,Yimi

]

Cov[Yi2,Yi1] Var[Yi2] · · · Cov[Yi2,Yimi
]

...
...

. . .
...

Cov[Yimi
,Yi1] Cov[Yimi

,Yi2] · · · Var[Yimi
]



=


σ21 σ1σ2ρ12 · · · σ1σmiρ1mi

σ2σ1ρ21 σ22 · · · σ2σmiρ2mi

...
...

. . .
...

σmiσ1ρmi1 σmiσ2ρmi2 · · · σ2mi
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Dental growth: Covariances

Females

Age 8 Age 10 Age 12 Age 14

Age 8 4.51 3.35 4.33 4.36

Age 10 3.35 3.62 4.03 4.08

Age 12 4.33 4.03 5.59 5.47

Age 14 4.36 4.08 5.47 5.94

Males

Age 8 Age 10 Age 12 Age 14

6.39 2.30 3.74 1.56

2.30 4.48 1.96 2.58

3.74 1.96 7.16 3.05

1.56 2.58 3.05 4.20
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Dental growth: Correlations

Females

Age 8 Age 10 Age 12 Age 14

Age 8 1.0 0.83 0.86 0.84

Age 10 0.83 1.0 0.90 0.88

Age 12 0.86 0.90 1.0 0.95

Age 14 0.84 0.88 0.95 1.0

Males

Age 8 Age 10 Age 12 Age 14

1.0 0.43 0.55 0.30

0.43 1.0 0.35 0.59

0.55 0.35 1.0 0.56

0.30 0.59 0.56 1.0
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Dental growth: Questions on covariance structure

• Is there a trend over time in the variance? If so, how does it relate to
the trend over time in the mean?

• Does the variance differ in males vs females?

• Are observations on the same individual correlated? Is that correlation
dependent on gender and/or time?

• What challenges might arise when evaluating covariance/correlation
matrices?
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Dental growth: Comments on covariance structure

• In females, some indication that the variance increases over time, as
does the mean

• Similar magnitude of variance in males vs females

• Clear correlation among observations on the same individual,
though correlation in males lower than that in females

• Challenges

I Covariance of raw outcomes same as covariance of residuals
due to lack of covariates

I Must also examine sample size in each cell to assess relative confidence
in each estimate (here we have balanced and complete data)

I Producing covariance and correlation matrices requires categorizing
continuous time into a reasonable number of categories
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Dental growth

Goal: Characterize dental growth among children, ages 8 to 14 years

1. Estimate the average growth curve among all children

2. Estimate the growth curve for individual children

3. Characterize the degree of heterogeneity across children

4. Identify factors that predict growth
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Dental growth

Females

Age (years)

Le
ng

th
 (m

m
)

8 10 12 14

15
20

25
30

1
1

1

1

2 2

2

2

3

3 3

3

4
4 4

4

5

5 5
5

6
6 6

6
7

7 7

7

8 8 8 8

9
9

9 9

10

10 10 10

11 11

11 11

Males

Age (years)

Le
ng

th
 (m

m
)

8 10 12 14

15
20

25
30

12
12

12

12

13
13 13

13

14 14

14

14

15

15
15 15

16

16
16

16

17
17

17

17

18 18

18

18

19

19

19
19

20

20

20

20

21 21

21 21

22 22 22

22

23

23 23

23

24

24

24

24

25

25 25 25

26

26

26

26

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 42 / 160



GEE (Liang and Zeger, 1986)

? Contrast average outcome values across populations of individuals
? defined by covariate values, while accounting for correlation

• Focus on a generalized linear model with regression parameters β,
which characterize the systemic variation in Y across covariates X

Yi = (Yi1,Yi2, . . . ,Yimi
)T

Xi = (xi1, xi2, . . . , ximi
)T

xij = (xij1, xij2, . . . , xijp)

β = (β1, β2, . . . , βp)T

for i = 1, . . . , n; j = 1, . . . ,mi ; and k = 1, . . . , p

• Longitudinal correlation structure is a nuisance feature of the data
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Mean model

Assumptions

• Observations are independent across subjects

• Observations may be correlated within subjects

Mean model: Primary focus of the analysis

E[Yij | xij ] = µij

g(µij) = xijβ

• May correspond to any generalized linear model with link g(·)

Continuous outcome Count outcome Binary outcome

E[Yij | xij ] = µij E[Yij | xij ] = µij P[Yij = 1 | xij ] = µij

µij = xijβ log(µij) = xijβ logit(µij) = xijβ

• Characterizes a marginal mean regression model
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Marginal mean

Definition: µij does not condition on anything other than xij

• Mixed-effects model: Use subject-specific random effects γi
to induce a correlation structure

g(E[Yij | xij , γi ]) = xij(β
? + γi )

• Transition model: Model the conditional expectation as a function
of covariates and previous outcomes Yij

g(E[Yij | xij , Yij ]) = xijβ
?? + Yijα
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Covariance model

Longitudinal correlation is a nuisance; secondary to mean model of interest

1. Assume a form for variance that may depend on µij

Continuous outcome: Var[Yij | xij ] = σ2

Count outcome: Var[Yij | xij ] = µij

Binary outcome: Var[Yij | xij ] = µij(1− µij)

which may also include a scale or dispersion parameter φ > 0

2. Select a model for longitudinal correlation with parameters α

Independence: Corr[Yij ,Yij ′ | Xi ] = 0

Exchangeable: Corr[Yij ,Yij ′ | Xi ] = α

Auto-regressive: Corr[Yij ,Yij ′ | Xi ] = α|j−j
′|

Unstructured: Corr[Yij ,Yij ′ | Xi ] = αjj ′
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Covariance model: General notation

Longitudinal correlation is a nuisance; secondary to mean model of interest

• Assume a form for variance that depends on µ

• Select a model for longitudinal correlation with parameters α

Var[Yij | Xi ] = V (µij)

Si (µi ) = diag V (µij)

Corr[Yij , Yij ′ | Xi ] = ρ(α)

Ri (α) = matrix ρ(α)

Cov[Yi | Xi ] = Vi (β, α)

= S
1/2
i RiS

1/2
i
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Correlation models
Independence: Corr[Yij ,Yij ′ | Xi ] = 0

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Exchangeable: Corr[Yij ,Yij ′ | Xi ] = α

1 α α · · · α

α 1 α · · · α

α α 1 · · · α
...

...
...

. . .
...

α α α · · · 1
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Correlation models
Auto-regressive: Corr[Yij ,Yij ′ | Xi ] = α|j−j

′|
1 α α2 · · · αm−1

α 1 α · · · αm−2

α2 α 1 · · · αm−3

...
...

...
. . .

...

αm−1 αm−2 αm−3 · · · 1


Unstructured: Corr[Yij ,Yij ′ | Xi ] = αjj ′

1 α21 α31 · · · αm1

α12 1 α32 · · · αm2

α13 α23 1 · · · αm3
...

...
...

. . .
...

α1m α2m α3m · · · 1
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Correlation models

Correlation between any two observations on the same subject. . .

• Independence: . . . is assumed to be zero
I Always appropriate with use of robust variance estimator (large n)

• Exchangeable: . . . is assumed to be constant
I More appropriate for clustered data

• Auto-regressive: . . . is assumed to depend on time or distance
I More appropriate for equally-spaced longitudinal data

• Unstructured: . . . is assumed to be distinct for each pair
I Only appropriate for short series (small m) on many subjects (large n)
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Semi-parametric

• Specification of a mean model and correlation model does not identify
a complete probability model for the outcomes

• The [mean, correlation] model is semi-parametric because it only
specifies the first two moments of the outcomes

• Additional assumptions are required to identify a complete probability
model and a corresponding parametric likelihood function (GLMM)

Question: Without a likelihood function, how do we estimate β and
generate valid statistical inference, while accounting for correlation?

Answer: Construct an unbiased estimating function
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Estimating functions

The estimating function for estimation of β is given by

Uβ(β, α) =
n∑

i=1

DT
i V
−1
i (Yi − µi )

µi = g−1(Xiβ)

Di =
∂µi
∂β

• Vi is the ‘working’ variance-covariance matrix: Cov[Yi | Xi ]
I Depends on the assumed form for the variance: Var[Yij | xij ]
I Depends on the specified correlation model: Corr[Yij ,Yij′ | Xi ]

• Vi may also be written as a covariance weight matrix: Wi = V−1i

• Uβ(β, α) depends on the model or value for α
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Generalized estimating equations

Setting an estimation function equal to 0 defines an estimating equation

0 = Uβ(β̂, α)

=
n∑

i=1

DT
i V
−1
i (Yi − µ̂i )

with µ̂i = g−1(Xi β̂)

• ‘Generalized’ because it corresponds to a GLM with link function g(·)
• Solution to the estimation equation defines an estimator β̂

• Uβ(β̂, α) depends on the model or value for α
I Moment-based estimation of α based on residuals
I A second set of estimating equations for α
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Generalized estimating equations: Intuition

0 =
n∑

i=1

DT
i︸︷︷︸
3

V−1i︸︷︷︸
2

(Yi − µ̂i︸ ︷︷ ︸
1

)

1 The model for the mean, µi (β), is compared to the observed data,
Yi ; setting the equations to equal 0 tries to minimize the difference
between observed and expected

2 Estimation uses the inverse of the variance (covariance) to weight
the data from subject i ; more weight is given to differences
between observed and expected for those subjects who contribute
more information

3 This is simply a ‘change of scale’ from the scale of the mean, µi (β),
to the scale of the regression coefficients (covariates)
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Properties of β̂

Suppose Yi is continuous so that E[Yi | Xi ] = Xiβ and Cov[Yi | Xi ] = Vi

β̂ =

(
n∑

i=1

XT
i V
−1
i Xi

)−1 n∑
i=1

XT
i V
−1
i Yi

• β̂ is unbiased assuming E[Yi | Xi ] = Xiβ is correct

E[β̂] =

(
n∑

i=1

XT
i V
−1
i Xi

)−1 n∑
i=1

XT
i V
−1
i E[Yi ]

=

(
n∑

i=1

XT
i V
−1
i Xi

)−1 n∑
i=1

XT
i V
−1
i Xiβ

= β
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Properties of β̂

• β̂ is efficient assuming Cov[Yi | Xi ] = Vi is correct

Cov[β̂] =

(
n∑

i=1

XT
i V
−1
i Xi

)−1

×

(
n∑

i=1

XT
i V
−1
i Cov[Yi ]V

−1
i Xi

)

×

(
n∑

i=1

XT
i V
−1
i Xi

)−1

=

(
n∑

i=1

XT
i V
−1
i Xi

)−1
which is known as the model-based variance estimator
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Properties of β̂

If Cov[Yi | Xi ] 6= Vi , then use an empirical estimator

Cov[β̂] =

(
n∑

i=1

XT
i V
−1
i Xi

)−1

×

(
n∑

i=1

XT
i V
−1
i (Yi − µi )(Yi − µi )TV−1i Xi

)

×

(
n∑

i=1

XT
i V
−1
i Xi

)−1

• Also known as sandwich, robust, or Huber-White variance estimator

• Requires sufficiently large sample size (n ≥ 40)

• Requires sufficiently large sample size relative to cluster size (n� m)
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Cov[β̂]

(Yi − µi )(Yi − µi )T is a poor estimate of Cov[Yi ] for each i

• However, a good estimate for each i is not required

• Rather, need a good estimate of the average (total) covariance

Bn =
1

n

n∑
i=1

DT
i V
−1
i Cov[Yi ]V

−1
i Di

B̂n =
1

n

n∑
i=1

DT
i V
−1
i (Yi − µi )(Yi − µi )TV−1i Di

• B̂n can be well estimated with sufficient independent replication,
i.e. sufficiently large sample size relative to cluster size
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Properties of β̂

• β̂ is a consistent estimator for β even if the model for longitudinal
correlation is incorrectly specified, i.e. β̂ is ‘robust’ to correlation
model mis-specification

• However, the variance of β̂ must capture the correlation in the data,
either by choosing the correct correlation model, or via an alternative
variance estimator

• Selecting an approximately correct correlation model will yield a more
efficient estimator for β, i.e. β̂ has the smallest variance (standard
error) if the correlation model is correctly specified
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Comments

• GEE is specified by a mean model and a correlation model

1. A regression model for the average outcome, e.g. linear, logistic
2. A model for longitudinal correlation, e.g. independence, exchangeable

• GEE also computes an empirical variance estimator (aka sandwich,
robust, or Huber-White variance estimator)

• Empirical variance estimator provides valid standard errors for β̂ even
if the correlation model is incorrect, but requires n ≥ 40 and n� m

Question: If the correlation model does not need to be correctly specified
to obtain a consistent estimator for β or valid standard errors for β̂, why
not always use an independence working correlation structure?

Answer: Selecting a non-independence or weighted correlation structure

• Permits use of the model-based variance estimator

• May provide improved efficiency for β̂
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Variance estimators

• Independence estimating equation: An estimation equation with a
working independence correlation structure

I Model-based standard errors are generally not valid
I Empirical standard errors are valid given large n and n� m

• Weighted estimation equation: An estimation equation with a
non-independence working correlation structure

I Model-based standard errors are valid if correlation model is correct
I Empirical standard errors are valid given large n and n� m

Variance estimator

Estimating equation Model-based Empirical

Independence − +/−
Weighted −/+ +
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Inference for β: Wald test

Consider testing linear hypotheses of the form

H: Qβ = 0

where Q a matrix of full rank with dim(Q) = r × p and r < p

• Obtain β̂ and Cov[β̂]; under the null hypothesis

√
nQβ̂ ∼ Nr (0, QCov[β̂]QT)

• Testing may proceed using a multivariable Wald statistic

n (Qβ̂)T(QCov[β̂]QT)−1Qβ̂ ∼ χ2
r

• Requires computation under the alternative hypothesis

NB: Likelihood ratio test not available; not relied on a likelihood function
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Dental growth

Characterize dental growth among males and females, ages 8 to 14 years

E[Yij ] = β0 + β1(Ageij − 8) + β2Genderi + β3(Ageij − 8) · Genderi

• Consider various specifications for the ‘working’ correlation structure

I Independence
I Exchangeable
I Auto-regressive
I Unstructured

NB: In practice, selection of a working correlation structure
should be guided by a priori knowledge and/or exploratory analysis
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Dental growth: R

• Use the geeglm command in the geepack library
• NB: Ensure data are sorted by unique subject identifier and time

library(geepack)

?geeglm

m_ind <- geeglm(length ~ I(age-8)*gender, id=id,

corstr="independence", data=growth)

m_exc <- geeglm(length ~ I(age-8)*gender, id=id,

corstr="exchangeable", data=growth)

m_ar1 <- geeglm(length ~ I(age-8)*gender, id=id,

corstr="ar1", data=growth)

m_uns <- geeglm(length ~ I(age-8)*gender, id=id,

corstr="unstructured", data=growth)

m_ols <- lm(length ~ I(age-8)*gender, data=growth)
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Dental growth: R

geeglm(formula = length ~ I(age - 8) * gender, data = growth,

id = id, corstr = "independence")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) 21.2091 0.5604 1432.19 < 2e-16 ***

I(age - 8) 0.4795 0.0631 57.70 3.1e-14 ***

gendermale 1.4909 0.7940 3.53 0.0604 .

I(age - 8):gendermale 0.3205 0.1214 6.97 0.0083 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 4.91 1.02

Correlation: Structure = independence

Number of clusters: 26 Maximum cluster size: 4
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Dental growth: R

geeglm(formula = length ~ I(age - 8) * gender, data = growth,

id = id, corstr = "exchangeable")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) 21.2091 0.5604 1432.19 < 2e-16 ***

I(age - 8) 0.4795 0.0631 57.70 3.1e-14 ***

gendermale 1.4909 0.7940 3.53 0.0604 .

I(age - 8):gendermale 0.3205 0.1214 6.97 0.0083 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 4.91 1.02

Correlation: Structure = exchangeable Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha 0.61 0.134

Number of clusters: 26 Maximum cluster size: 4
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Dental growth

β̂0 (SE) β̂1 (SE) β̂2 (SE) β̂3 (SE)

Independence 21.2 (0.56) 0.48 (0.06) 1.49 (0.79) 0.32 (0.12)

Exchangeable 21.2 (0.56) 0.48 (0.06) 1.49 (0.79) 0.32 (0.12)

Auto-regressive 21.2 (0.59) 0.48 (0.06) 1.67 (0.85) 0.30 (0.13)

Unstructured 21.2 (0.56) 0.48 (0.06) 1.50 (0.78) 0.32 (0.12)

OLS 21.2 (0.57) 0.48 (0.15) 1.49 (0.75) 0.32 (0.20)

• Independence and OLS point estimates are identical
I Independence estimating equation is identical to the score equation

• OLS standard errors for β̂1 and β̂3 are too big
I Age is within-subject or time-dependent

• Independence and exchangeable provide identical results
I Data are balanced and complete

• Unstructured provides similar results

• Auto-regressive provides different results
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Dental growth

Exchangeable :


1

0.61 1

0.61 0.61 1 0.60

0.61 0.61 0.61 1



Auto-regressive :


1

0.75 1

0.56 0.75 1 0.60

0.42 0.56 0.75 1



Unstructured :


1

0.51 1

0.75 0.53 1 0.60

0.52 0.60 0.76 1
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Dental growth: Stata

* Declare the dataset to be "panel" data, grouped by id

* with time variable age

xtset id age

* Generate a new variable for centered age

gen cage = age-8

* Fit models with an exchangeable correlation structure

help xtgee

xtgee length i.gender##c.cage, corr(exch) robust

lincom cage + 2.gender#c.cage

* Examine working correlation structure

estat wcorr
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Dental growth: Stata

GEE population-averaged model Number of obs = 104

Group variable: id Number of groups = 26

Link: identity Obs per group: min = 4

Family: Gaussian avg = 4.0

Correlation: independent max = 4

Wald chi2(3) = 148.85

Scale parameter: 4.909594 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)

-------------------------------------------------------------------------------

| Robust

length | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------------+----------------------------------------------------------------

gender |

male | 1.490909 .8096977 1.84 0.066 -.0960691 3.077887

cage | .4795455 .0643829 7.45 0.000 .3533573 .6057336

|

gender#c.cage |

male | .3204545 .1237715 2.59 0.010 .0778669 .5630422

|

_cons | 21.20909 .5715302 37.11 0.000 20.08891 22.32927

-------------------------------------------------------------------------------
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Dental growth: Stata

. lincom cage + 2.gender#c.cage

( 1) cage + 2.gender#c.cage = 0

------------------------------------------------------------------------------

length | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .8 .1057082 7.57 0.000 .5928157 1.007184

------------------------------------------------------------------------------

. estat wcorr

Estimated within-id correlation matrix R:

| c1 c2 c3 c4

------+--------------------------------------------

r1 | 1

r2 | .6103379 1

r3 | .6103379 .6103379 1

r4 | .6103379 .6103379 .6103379 1
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Summary

• In the GEE approach the primary focus of the analysis is a marginal
mean regression model that corresponds to any GLM

• Longitudinal correlation is secondary to the mean model of interest
and is treated as a nuisance feature of the data

• Requires selection of a ‘working’ correlation model

• Semi-parametric: Only the mean and correlation models are specified

• Lack of a likelihood function implies that likelihood ratio test statistics
are unavailable; hypothesis testing with GEE uses Wald statistics

• Working correlation model does not need to be correctly specified
to obtain a consistent estimator for β or valid standard errors for β̂,
but efficiency gains are possible if the correlation model is correct

Issues

• Accommodates only one source of correlation: Longitudinal or cluster

• GEE requires that any missing data are missing completely at random

• Issues arise with time-dependent exposures and covariance weighting
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Overview

Introduction to longitudinal studies

Longitudinal regression models

Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children’s Health Study

Advanced topics
Conditional and marginal effects
Missing data
Time-dependent exposures

Summary and resources
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Depression Study: Motivation and Design

• Gregoire et al (1996) published the results of an efficacy study on
estrogen patches in treating postnatal depression.

• 61 women with major depression, which began within 3 months of
childbirth and persisted for up to 18 months postnatally, participated
in a double-blind, placebo-controlled study.

• Women were randomly assigned to active treatment (n=34) or
placebo (n=27).

• Participants attended clinics monthly and at each visit self-ratings of
depressive symptoms on the Edinburgh postnatal depression scale
(EPDS) were measured.

• EPDS is a standardized, validated, self-rating scale consisting of 10
items, each rated on a 4-point scale of 0–3.

• Goal: Investigate the antidepressant efficacy of treatment with
estrogen over time
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Depression Study: Data

• Depression scores are assessed across m = 7 months for the n = 61
subjects in the study.

• Depression scores for visit j are the longitudinal components
measured on subject i .

+-----------------------------------------------------------------------+

| subj group dep0 dep1 dep2 dep3 dep4 dep5 dep6 |

|-----------------------------------------------------------------------|

1. | 1 placebo 18 17 18 15 17 14 15 |

2. | 2 placebo 27 26 23 18 17 12 10 |

3. | 3 placebo 16 17 14 . . . . |

4. | 4 placebo 17 14 23 17 13 12 12 |

5. | 5 placebo 15 12 10 8 4 5 5 |

6. | 6 placebo 20 19 11.54 9 8 6.82 5.05 |

7. | 7 placebo 16 13 13 9 7 8 7 |

8. | 8 placebo 28 26 27 . . . . |

9. | 9 placebo 28 26 24 19 13.94 11 9 |

10. | 10 placebo 25 9 12 15 12 13 20 |

|-----------------------------------------------------------------------|

• ’Wide’ form: A row for each subject

• Note that there are some missing data due to drop-out
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Depression Study Questions: EDA

1. Summarize the depression scores by visit and treatment group.

2. Examine within-person correlations among depression scores,
graphically and numerically.

3. Graph depression scores over time, by treatment group. Include a
lowess line (smoother) for each group to summarize trends.

4. Plot individual trajectories by treatment group.
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Depression Study Questions: Regression Analyses

5. Consider collapsing the longitudinal series for each subject into a
summary statistic between the baseline and sixth depression scores.
Use methods for independent data to evaluate the association
between change in depression scores and estrogen treatment.

6. Reshape the data into long form and evaluate longitudinal
associations between depression scores and treatment using GEE.

I Use visit as a linear variable.
I Use visit as a categorical variable.
I Evaluate whether the treatment effect varies over time.
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Overview

Introduction to longitudinal studies

Longitudinal regression models

Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children’s Health Study

Advanced topics
Conditional and marginal effects
Missing data
Time-dependent exposures

Summary and resources
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Dental growth

Goal: Characterize dental growth among children, ages 8 to 14 years

1. Estimate the average growth curve among all children

2. Estimate the growth curve for individual children

3. Characterize the degree of heterogeneity across children

4. Identify factors that predict growth
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Mixed-effects models (Laird and Ware, 1982)

? Contrast outcomes both within and between individuals

• Assume that each subject has a regression model characterized
by subject-specific parameters: a combination of fixed-effects
parameters common to all individuals in the population and
random-effects parameters unique to each individual subject

• Although covariates allow for differences across subjects, typically
cannot measure all factors that give rise to subject-specific variation

• Subject-specific random effects induce a correlation structure
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Set-up

For subject i the mixed-effects model is characterized by

Yi = (Yi1,Yi2, . . . ,Yimi
)T

β? = (β?1 , β
?
2 , . . . , β

?
p)T Fixed effects

xij = (xij1, xij2, . . . , xijp)

Xi = (xi1, xi2, . . . , ximi
)T Design matrix for fixed effects

γi = (γ1i , γ2i , . . . , γqi )
T Random effects

zij = (zij1, zij2, . . . , zijq)

Zi = (zi1, zi2, . . . , zimi
)T Design matrix for random effects

for i = 1, . . . , n; j = 1, . . . ,mi ; and k = 1, . . . , p with q ≤ p
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Linear mixed-effects model

Consider a linear mixed-effects model for a continuous outcome Yij

• Stage 1: Model for response given random effects

Yij = xijβ + zijγi + εij

where
I xij is a vector a covariates
I zij is a subset of xij
I β is a vector of fixed-effects parameters
I γi is a vector of random-effects parameters
I εij is observation-specific measurement error

• Stage 2: Model for random effects

γi ∼ N(0,G )

εij ∼ N(0, σ2)

where γi and εij are assumed to be independent
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Choices for random effects

Consider the linear mixed-effects models that include

• Random intercepts

Yij = β0 + β1tij + γ0i + εij

= (β0 + γ0i ) + β1tij + εij

• Random intercepts and slopes

Yij = β0 + β1tij + γ0i + γ1i tij + εij

= (β0 + γ0i ) + (β1 + γ1i )tij + εij
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Choices for random effects
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Choices for random effects

0 2 4 6 8 10

0
2

4
6

8
10

Fixed intercept, random slope

t i j

Y
ij

0 2 4 6 8 10

0
2

4
6

8
10

Random intercept, random slope

t i j

Y
ij

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 85 / 160



Choices for random effects: G

G quantifies random variation in trajectories across subjects

G =

[
G11 G12

G21 G22

]
•
√
G11 is the typical deviation in the level of the response

•
√
G22 is the typical deviation in the change in the response

• G12 is the covariance between subject-specific intercepts and slopes

I G12 = 0 indicates subject-specific intercepts and slopes are uncorrelated
I G12 > 0 indicates subjects with high level have high rate of change
I G12 < 0 indicates subjects with high level have low rate of change

(G12 = G21)
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Basic models: Correlation

What is the correlation between measurements on the same subject?

• Random intercepts model
I Assuming Var[εij ] = σ2 and Cov[εij , εij′ ] = 0

Yij = β0 + β1tij + γ0i + εij

Yij ′ = β0 + β1tij ′ + γ0i + εij ′

Var[Yij ] = Varγ [EY (Yij | γ0i )] + Eγ [VarY (Yij | γ0i )]

= G11 + σ2

Cov[Yij , Yij ′ ] = Covγ [EY (Yij | γ0i ), EY (Yij ′ | γ0i )]

+ Eγ [CovY (Yij , Yij ′ | γ0i )]

= G11
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Basic models: Correlation

• Random intercepts model (continued)

Corr[Yij ,Yij ′ ] =
G11√

G11 + σ2
√

G11 + σ2

=
G11

G11 + σ2

=
‘Between’

‘Between’ + ‘Within’

≥ 0 (and ≤ 1)

I Any two measurements on the same subject have the same correlation;
does not depend on time nor the distance between measurements

I Equivalent to an exchangeable correlation structure
I Longitudinal correlation is constrained to be positive (G11 ≥ 0, σ2 ≥ 0)
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Basic models: Correlation

• Random intercepts and slopes model
I Assuming Var[εij ] = σ2 and Cov[εij , εij′ ] = 0

Yij = (β0 + β1tij) + (γ0i + γ1i tij) + εij

Yij ′ = (β0 + β1tij ′) + (γ0i + γ1i tij ′) + εij ′

Var[Yij ] = Varγ [EY (Yij | γ i )] + Eγ [VarY (Yij | γ i )]

= G11 + 2G12tij + G22t
2
ij + σ2

Cov[Yij ,Yij ′ ] = Covγ [EY (Yij | γ i ), EY (Yij ′ | γ i )]

+ Eγ [CovY (Yij , Yij ′ | γ i )]

= G11 + G12(tij + tij ′) + G22tij tij ′

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 89 / 160



Basic models: Correlation

• Random intercepts and slopes model (continued)

Corr[Yij ,Yij ′ ]

=
G11 + G12(tij + tij ′) + G22tij tij ′√

G11 + 2G12tij + G22t2ij + σ2
√

G11 + 2G12tij ′ + G22t2ij ′ + σ2

≡ ρijj ′

I Any two measurements on the same subject may not have the same
correlation; depends on the specific observation times
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Generalized linear mixed-effects models

A GLMM is defined by random and systematic components

• Random: Conditional on γi the outcomes Yi = (Yi1, . . . ,Yimi
)T

are mutually independent and have an exponential family density

f (Yij | β?, γi , φ) = exp{[Yijθij − ψ(θij)]/φ+ c(Yij , φ)}

for i = 1, . . . , n and j = 1, . . . ,mi with a scale parameter φ > 0
and θij ≡ θij(β?, γi )
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Generalized linear mixed-effects models

A GLMM is defined by random and systematic components

• Systematic: µ?ij is modeled via a linear predictor containing fixed
regression parameters β? common to all individuals in the population
and subject-specific random effects γi with a known link function g(·)

g(µ?ij) = xijβ
? + zijγi ⇔ µ?ij = g−1(xijβ

? + zijγi )

where the random effects γi are mutually independent with a
common underlying multivariate distribution, typically assumed to be

γi ∼ Nq(0, G )

so that G quantifies random variation across subjects
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Likelihood-based estimation of β

Requires specification of a complete probability distribution for the data

• Likelihood-based methods are designed for fixed effects, so integrate
over the assumed distribution for the random effects

LY (β, σ,G ) =
n∏

i=1

∫
fY |γ(Yi | γi , β, σ)× fγ(γi | G )dγi

where fγ is typically the density function of a Normal random variable

• For linear models the required integration is straightforward because
Yi and γi are both normally distributed (easy to program)

• For non-linear models the integration is difficult and requires either
approximation or numerical techniques (hard to program)
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Estimation of β using maximum likelihood

• Treat the random effects as unobserved nuisance variables and
integrate over their assumed distribution to obtain the marginal
likelihood for β; typically assume γi ∼ N(0,G )

• mixed, melogit, and mepoisson in Stata

• lmer and glmer in R package lme4

• Comparisons are based on within- and between-subject contrasts

• Requires a correctly-specified distribution for subject-specific effects

• Do not control for unmeasured characteristics because random effects
are almost always assumed to be uncorrelated with covariates
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Inference for β

Consider testing fixed effects in nested linear mixed-effects models

H: β =

[
β1
0

]
versus K : β =

[
β1
β2

]
,

i.e., H: β2 = 0

• Likelihood ratio test is valid if ML estimation is used

• Likelihood ratio test may not be valid with other estimation methods

• Wald test is generally valid, though reference distribution is not
generally agreed upon
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Inference for G

Consider testing whether a random intercept model is adequate

H: G =

[
G11 0

0 0

]
versus K : G =

[
G11

G12 G22

]
,

i.e., H: G12 = G22 = 0

• Adequate covariance modeling is useful for the interpretation of the
random variation in the data

• Over-parameterization of the covariance structure leads to inefficient
estimation of fixed effects parameters β

• Covariance model choice determines the standard error estimates
for β̂; correct model is required for correct standard error estimates
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Inference for G

• G22 = 0 is on the boundary of the parameter space
I Violates the standard assumption used to establish the typical χ2

distribution of the likelihood ratio test statistic
I Null hypothesis is accepted too often, leading to an incorrect

simplification of the covariance structure of the data

(see Stata output for dental growth example)

• Correct distribution of test statistic is a mixture of χ2 distributions
I Example: Consider testing H: G11 = 0
I Correct distribution is a mixture of χ2

1 and χ2
0, each with weight 0.5

I χ2
0 gives probability mass 1 to the value 0

• Generally recommend against this inferential procedure
I Specification for the covariance structure should be guided by a priori

scientific knowledge and exploratory data analysis
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Assumptions

Valid inference from a linear mixed-effects model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of xijβ (here also zijγi )

I Included important covariates in the model
I Correctly specified any transformations or interactions

• Covariance model: Correct covariance model (random-effects
specification) is required for correct standard error estimates for β̂

• Normality: Normality of εij and γi is required for normal likelihood
function to be the correct likelihood function for Yij

• n sufficiently large for asymptotic inference to be valid

? These assumptions must be verified to evaluate any fitted model
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Dental growth

Characterize dental growth among males and females, ages 8 to 14 years

E[Yij ] = β0 + β1(Ageij − 8) + β2Genderi + β3(Ageij − 8) · Genderi

• Consider various specifications for the random effects structure
I Random intercepts
I Random intercepts and slopes (for age)

NB: In practice, selection of a random effects structure
should be guided by a priori knowledge and/or exploratory analysis,
or specified as relevant to the scientific question of interest
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Dental growth: R

• Use the lmer command in the lme4 library

library(lme4)

?lmer

m_ri <- lmer(length ~ (1 | id) + I(age-8)*gender, data=growth)

m_rs <- lmer(length ~ (I(age-8) | id) + I(age-8)*gender, data=growth)
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Dental growth: R

> summary(m_ri)

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 3.27 1.81

Residual 1.96 1.40

Number of obs: 104, groups: id, 26

Fixed effects:

Estimate Std. Error t value

(Intercept) 21.2091 0.6500 32.6

I(age - 8) 0.4795 0.0945 5.1

gendermale 1.4909 0.8558 1.7

I(age - 8):gendermale 0.3205 0.1244 2.6
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Dental growth: R

> summary(m_rs)

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 3.3209 1.822

I(age - 8) 0.0331 0.182 -0.15

Residual 1.7543 1.325

Number of obs: 104, groups: id, 26

Fixed effects:

Estimate Std. Error t value

(Intercept) 21.209 0.643 33.0

I(age - 8) 0.480 0.105 4.6

gendermale 1.491 0.847 1.8

I(age - 8):gendermale 0.320 0.138 2.3
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Dental growth: R

> anova(m_ri, m_rs)

refitting model(s) with ML (instead of REML)

Data: growth

Models:

m_ri: length ~ (1 | id) + I(age - 8) * gender

m_rs: length ~ (I(age - 8) | id) + I(age - 8) * gender

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

m_ri 6 426 442 -207 414

m_rs 8 430 451 -207 414 0.66 2 0.72
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Dental growth

• Ĝ12 < 0 indicates subjects with high length have low rate of growth

• Ĝ11 indicates mild variability in level of dental length

• Ĝ22 indicates mild variability in change in length over time

• AIC and LR indicate model 1 is a reasonable fit to the data

Corr[Yij ,Yij ′ ] =
1.812

1.812 + 1.402
= 0.63

I Consistent with exploratory and GEE analyses that indicated
exchangeable correlation structure is adequate

• β̂3 indicates increase in average dental length is larger for males

• Reject the null hypothesis that β3 = 0 with p = 0.009

[Stata assumes asymptotic normality; possible to use lmerTest in R,
but somewhat controversial]
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Dental growth: Stata

* Declare the dataset to be "panel" data, grouped by id

* with time variable age

xtset id age

* Fit models with random intercepts and slopes

help mixed

gen cage = age-8

mixed length i.gender##c.cage || id:, stddeviations

est store ri

estat ic

mixed length i.gender##c.cage || id: cage, ///

cov(unstructured) stddeviations

est store rs

estat ic

* Use likelihood ratio test and AIC to compare models

lrtest ri rs
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Dental growth: Stata
Mixed-effects ML regression Number of obs = 104

Group variable: id Number of groups = 26

Obs per group: min = 4

avg = 4.0

max = 4

Wald chi2(3) = 137.79

Log likelihood = -207.08327 Prob > chi2 = 0.0000

-------------------------------------------------------------------------------

length | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------------+----------------------------------------------------------------

gender |

male | 1.490909 .8265567 1.80 0.071 -.1291124 3.110931

cage | .4795455 .0932514 5.14 0.000 .296776 .6623149

|

gender#c.cage |

male | .3204545 .1227712 2.61 0.009 .0798274 .5610817

|

_cons | 21.20909 .6278149 33.78 0.000 19.9786 22.43959

-------------------------------------------------------------------------------

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

id: Identity |

sd(_cons) | 1.731043 .2792446 1.261815 2.374762

-----------------------------+------------------------------------------------

sd(Residual) | 1.383142 .11074 1.182269 1.618146

------------------------------------------------------------------------------
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Dental growth: Stata

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

id: Identity |

sd(_cons) | 1.731043 .2792446 1.261815 2.374762

-----------------------------+------------------------------------------------

sd(Residual) | 1.383142 .11074 1.182269 1.618146

------------------------------------------------------------------------------

LR test vs. linear regression: chibar2(01) = 46.46 Prob >= chibar2 = 0.0000

Akaike’s information criterion and Bayesian information criterion

-----------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------

ri | 104 . -207.0833 6 426.1665 442.0329

-----------------------------------------------------------------------------
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Dental growth: Stata

Mixed-effects ML regression Number of obs = 104

Group variable: id Number of groups = 26

Obs per group: min = 4

avg = 4.0

max = 4

Wald chi2(3) = 118.63

Log likelihood = -206.75403 Prob > chi2 = 0.0000

-------------------------------------------------------------------------------

length | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------------+----------------------------------------------------------------

gender |

male | 1.490909 .8134256 1.83 0.067 -.1033757 3.085194

cage | .4795455 .1006929 4.76 0.000 .282191 .6768999

|

gender#c.cage |

male | .3204545 .1325684 2.42 0.016 .0606253 .5802838

|

_cons | 21.20909 .6178411 34.33 0.000 19.99814 22.42004

-------------------------------------------------------------------------------
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Dental growth: Stata

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

id: Unstructured |

sd(cage) | .1543156 .1146815 .0359608 .6622021

sd(_cons) | 1.723651 .3449757 1.164362 2.55159

corr(cage,_cons) | -.0934221 .5302289 -.8151116 .7418963

-----------------------------+------------------------------------------------

sd(Residual) | 1.32451 .1298788 1.09292 1.605175

------------------------------------------------------------------------------

LR test vs. linear regression: chi2(3) = 47.12 Prob > chi2 = 0.0000

Akaike’s information criterion and Bayesian information criterion

-----------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------

rs | 104 . -206.754 8 429.5081 450.6632

-----------------------------------------------------------------------------
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Dental growth: Stata

. lrtest ri rs

Likelihood-ratio test LR chi2(2) = 0.66

(Assumption: ri nested in rs) Prob > chi2 = 0.7195

Note: The reported degrees of freedom assumes the null hypothesis is not on the

boundary of the parameter space. If this is not true, then the reported test is

conservative.
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Summary

• Mixed-effects models assume that each subject has a regression
model characterized by subject-specific parameters; a combination of
fixed effects parameters common to all individuals in the population
and random subject-specific perturbations

• Likelihood-based estimation and inference requires a complete
parametric probability distribution for subject-specific random effects
and error terms that must be verified for valid inference

• Estimates for the random effects are available (a.k.a. prediction),
e.g., provider profiling

• See help files for specification of hierarchical random effects

Issues

• Interpretation depends on outcomes and random-effects specification

• GLMM requires that any missing data are missing at random

• Issues arise with time-dependent exposures and covariance weighting
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Indonesia Children’s Health Study (ICHS)

• Determine the effects of vitamin A deficiency in preschool children

• n = 275 children examined for respiratory infection at up to 6 visits

• Xeropthalmia is an ocular manifestation of vitamin A deficiency

• Goal: Evaluate association between vitamin A deficiency and risk of
respiratory infection

Age (years)

Xeropthalmia Infection 0 1 2 3 4 5 6 7

No No 77 229 154 196 176 143 65 5

No Yes 8 30 30 15 9 7 1 0

Yes No 0 1 9 10 15 8 4 1

Yes Yes 0 0 4 3 0 0 0 0
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ICHS: Data

. list id age time infection xerop gender hfora cost sint

+------------------------------------------------------------------------+

| id age time infect~n xerop gender hfora cost sint |

|------------------------------------------------------------------------|

1. | 121013 31 1 0 0 0 -3 -1 0 |

2. | 121013 34 2 0 0 0 -3 0 -1 |

3. | 121013 37 3 0 0 0 -2 1 0 |

4. | 121013 40 4 0 0 0 -2 0 1 |

5. | 121013 43 5 1 0 0 -2 -1 0 |

|------------------------------------------------------------------------|

6. | 121013 46 6 0 0 0 -3 0 -1 |

7. | 121113 -9 1 0 0 1 2 -1 0 |

8. | 121113 -6 2 0 0 1 0 0 -1 |

9. | 121113 -3 3 0 0 1 -1 1 0 |

10. | 121113 0 4 0 0 1 -2 0 1 |

|------------------------------------------------------------------------|

11. | 121113 3 5 1 0 1 -3 -1 0 |

12. | 121113 6 6 0 0 1 -3 0 -1 |

13. | 121114 -26 1 0 0 0 8 -1 0 |

14. | 121114 -23 2 0 0 0 5 0 -1 |

15. | 121114 -20 3 0 0 0 3 1 0 |

|------------------------------------------------------------------------|

16. | 121114 -17 4 1 0 0 0 0 1 |

17. | 121114 -14 5 1 0 0 0 -1 0 |

18. | 121114 -11 6 0 0 0 0 0 -1 |

Multiple records per person, with age in months, centered at 36 months,
and time indicating visit number
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ICHS Questions: EDA

1. Plot vitamin A deficiency and infection status, by age, for a sample of
individuals.

2. Plot percent with respiratory infection versus age, by presence or
absence of vitamin A deficiency.

3. Explore correlation structure by visit number, and calculate percent
with respiratory infection at each visit.
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ICHS Questions: Regression Analyses

4. Evaluate the association between respiratory infection and vitamin A
deficiency using an ordinary logistic regression model.

5. Use GEE to estimate the population-averaged odds ratio for
respiratory infection, comparing those with vitamin A deficiency to
those without, given equivalent values of other covariates. Explore
multiple specifications of working correlation.

6. Use GLMM to estimate the conditional odds ratio for respiratory
infection, comparing a typical individual with vitamin A deficiency to
a typical individual without, given equivalent values of other
covariates. Estimate the variability in the probability of respiratory
infection across individuals.
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Conditional and marginal effects

• Parameter estimates obtained from a marginal model (as obtained
via a GEE) estimate population-averaged contrasts

• Parameter estimates obtained from a conditional model (as obtained
via a GLMM) estimate subject-specific contrasts

• In a linear model for a Gaussian outcome with an identity link these
contrasts are equivalent; not the case with non-linear models

I Depends on the outcome distribution
I Depends on the specified random effects
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Conditional and marginal effects

Parameters in the LMM may be interpreted as population-level contrasts

• Random intercepts

E[Yij | tij = t + 1]− E[Yij | tij = t]

= Eγ [EY (Yij | tij = t + 1, γ0i )]− Eγ [EY (Yij | tij = t, γ0i )]

= Eγ [β0 + β1(t + 1) + γ0i ]− Eγ [β0 + β1t + γ0i ]

= β1

• Random intercepts and slopes

E[Yij | tij = t + 1]− E[Yij | tij = t]

= Eγ [EY (Yij | tij = t + 1, γ0i , γ1i )]− Eγ [EY (Yij | tij = t, γ0i , γ1i )]

= Eγ [β0 + β1(t + 1) + γ0i + γ1i (t + 1)]− Eγ [β0 + β1t + γ0i + γ1i t]

= β1
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Conditional and marginal effects

Fitted conditional model

Outcome Coefficient Random intercept Random intercept/slope

Continuous Intercept Marginal Marginal

Slope Marginal Marginal

Count Intercept Conditional Conditional

Slope Marginal Conditional

Binary Intercept Conditional Conditional

Slope Conditional Conditional

? Marginal = population-averaged; conditional = subject-specific
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Conditional and marginal effects: Example

Consider a logistic regression model with subject-specific intercepts

logit(P[Yij = 1 | γ0i ]) = β?0 + β?1xij + γ0i

where each subject has their own baseline risk of the disease (Yij = 1)

exp(β?0 + γ0i )

1 + exp(β?0 + γ0i )

which is multiplied by exp(β?1) if the subject becomes exposed (xij = 1)
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Conditional and marginal effects: Example

The population rate of infection is the average risk across individuals

P[Yij = 1] =

∫
P[Yij = 1 | γ0i ] dF (γ0i )

=

∫
exp(β?0 + β?1xij + γ0i )

1 + exp(β?0 + β?1xij + γ0i )
f (γ0i | τ) dγ0i

where typically γ0i ∼ N(0, τ2)

• Assuming [β?0 , β
?
1 ] = [−2, 0.4] and τ2 = 2 the population rates are

P[Yij = 1 | xij = 0] = 0.18

P[Yij = 1 | xij = 1] = 0.23

where the odds ratio associated with exposure is exp(0.4) = 1.5
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Conditional and marginal effects: Example

A marginal model ignores heterogeneity among individuals and considers
the population-averaged rate rather than the conditional rate

logit(P[Yij = 1]) = β0 + β1xij

where the infection rate among a population of unexposed individuals is

P[Yij = 1 | xij = 0] = 0.18

and the population-averaged odds ratio associated with exposure is

P[Yij = 1 | xij = 1]/(1− P[Yij = 1 | xij = 1])

P[Yij = 1 | xij = 0]/(1− P[Yij = 1 | xij = 0])
= 1.36

so that [β0, β1] = [logit(0.18), log(1.36)] = [−1.23, 0.31]

? Marginal parameters are “attenuated” w.r.t. conditional parameters
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Conditional and marginal effects
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Conditional and marginal effects
After “Will the real subject-specific odds ratio please stand up?” by Thomas Lumley

Suppose we are evaluating an anti-smoking intervention and observe

Yi = Indicator whether subject i smoked during the past week

xi = Indicator whether subject i received the intervention

for i = 1, . . . , n

• Logistic regression model is given by

logit(E[Yi ]) = β0 + β1xi

• Effect of the intervention is measured by the odds ratio exp(β1)
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Conditional and marginal effects
After “Will the real subject-specific odds ratio please stand up?” by Thomas Lumley

I forgot to tell you that each person is evaluated three times so that

logit(E[Yij ]) = β0 + β1xij

logit(E[Yij | γi ]) = β?0 + β?1xij + γi

where γi quantifies variation across subjects

• First is a marginal model; second is a conditional model

• exp(β?1) is the subject-specific odds ratio measuring intervention effect

• β?1 measures actual intervention effect and β1 has been attenuated
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Conditional and marginal effects
After “Will the real subject-specific odds ratio please stand up?” by Thomas Lumley

I also forgot to tell you that this is group-discussion intervention so that

logit(E[Ygij ]) = β0 + β1xgij

logit(E[Ygij | γi , γg ]) = β??0 + β??1 xgij + γi + γg

where γg quantifies variation across groups

• exp(β??1 ) is the real subject-specific odds ratio

• exp(β?1) is an attenuated version; it is the group-specific odds ratio
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Conditional and marginal effects
After “Will the real subject-specific odds ratio please stand up?” by Thomas Lumley

I also forgot to tell you that the discussion was facilitated by a physician,
where the study was actually randomized by medical practice, so that

logit(E[Ypgij ]) = β0 + β1xpgij

logit(E[Ypgij | γi , γg , γp]) = β???0 + β???1 xpgij + γi + γg + γp

where γp quantifies variation across physicians

• Now the subject-specific odds ratio is really exp(β???1 )

• Marginal odds ratio is still boringly stuck at exp(β1)
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Missing data

• Missing values arise in longitudinal studies whenever the intended
serial observations collected on a subject over time are incomplete

• Important to distinguish between missing data and unbalanced data,
although missing data necessarily result in unbalanced data

• Missing data require consideration of the factors that influence the
missingness of intended observations

• Also important to distinguish between intermittent missing values
(non-monotone) and dropouts in which all observations are missing
after subjects are lost to follow-up (monotone)

Pattern t1 t2 t3 t4 t5

Monotone 3.8 3.1 2.0 2 2

Non-monotone 4.1 2 3.8 2 2

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 130 / 160



Strategies

1. Complete-case analyses based only on complete measurement series
I Easy to implement; may be valid with small amount of missing data
I Otherwise may lead to serious bias and loss of efficiency

2. Imputation-based procedures to fill-in any missing data
I Examples: Hot deck, mean, regression, and multiple imputation
I Allows use of standard estimation methods on resulting complete data

3. Weighted procedures to adjust for non-response as if part of design
I Developed from sample-survey techniques for non-response weighting
I Example: Weighted generalized estimating equations (WGEE)

4. Model-based procedures based on a model for the observed data
I Examples: Selection, pattern mixture, and random effects models
I Facilitate evaluation of assumptions underlying the fitted models

5. Others that should rarely, if ever, be used
I Example: Last observation carried forward
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Taxonomy (Little and Rubin, 2002)

Partition the complete set of intended observations into the observed and
missing data; what factors influence missingness of intended observations?

• Missing completely at random (MCAR)
Missingness does not depend on either the observed or missing data

• Missing at random (MAR)
Missingness depends only on the observed data

• Missing not at random (MNAR)
Missingness depends on both the observed and missing data

MNAR also referred to as informative or non-ignorable missingness;
thus MAR and MCAR as non-informative or ignorable missingness

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 132 / 160



Examples and implications

• MCAR: Administrative censoring at a fixed calendar time
I Generalized estimating equations are valid
I Mixed-effects models are valid

• MAR: Individuals with no current weight loss in a weight-loss study
I Generalized estimating equations are not valid
I Weighted estimating equations are valid
I Mixed-effects models are valid

• MNAR: Subjects in a prospective study based on disease prognosis
I Generalized estimating equations are not valid
I Mixed-effects models are not valid

? MAR and MCAR may be evaluated using the observed data
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Implication of MCAR and MAR
Likelihood-based inference based on the observed data is valid

f (Y o , M) =

∫
f (Y c , M) dYm

=

∫
f (Y c) f (M | Y c) dYm

= f (M)

∫
f (Y c) dYm or f (M | Y o)

∫
f (Y c) dYm

= f (M)f (Y o) or f (M | Y o) f (Y o)

∫
∝ f (Y o)

∫
although this result relies on assumptions that the

• Likelihood for the observed data is correctly specified (as always)

• Distributions are separately parameterized; otherwise efficiency losses

• Unconditional distribution f (Y o) represents the target of inference
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GEE

Estimating equations based on the observed data are valid under MCAR

Uβ(β, α;Y o
i ,Xi ) =

n∑
i=1

(1−Mi )Uβ(β, α;Y c
i ,Xi )

so that for E[Uβ(β, α;Y o
i ,Xi )] = 0 and hence consistency of β̂ we obtain

EY c ,X ,M [(1−Mi )Uβ(β, α;Y c
i ,Xi )]

= EY c ,X{EM|Y c ,X [(1−Mi )Uβ(β, α;Y c
i ,Xi )]}

= EY c ,X{Uβ(β, α;Y c
i ,Xi )EM|Y c ,X [(1−Mi )]}

= EY c ,X{Uβ(β, α;Y c
i ,Xi )P[Mi = 0 | Y c

i ,Xi ]}
= EY c ,X{Uβ(β, α;Y c

i ,Xi )P[Mi = 0 | Xi ]}
= EX{P[Mi = 0 | Xi ]EY c |X [Uβ(β, α;Y c

i ,Xi )]}
= 0
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GEE: Comments

• Under MCAR point estimators and robust standard error estimators
are consistent even if the correlation structure is incorrectly specified

• Under MAR point estimators are consistent only if the correlation
structure is correctly specified, although the robust standard error
estimators may be inconsistent (Kenward and Molenberghs, 1998)

• Requires correct specification for µ and sufficiently large n (as always)

• Weighted estimating equations (WGEE) are valid under MAR
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WGEE (Robins et al., 1995)

Extend marginal GEE approach to situations with MAR missing data

• Also known as the inverse probability of censoring weighted GEE

• Provides unbiased inference in longitudinal studies with drop-outs

• Observations (or person-visits) in the estimating function are assigned
a weight inversely proportional to their probability of being observed

Uβ(β, α, θ) =
n∑

i=1

Di (β)TVi (β, α)−1Wi (θ)[Y c
i − µi (β)]

so that the drop-out process is taken into account by specification
of an (m ×m) diagonal matrix of visit-specific weights

Wi (θ) = diag[(1−Mi1)wi1, . . . , (1−Mim)wim]

where Mij = 0 if the i th individual’s outcome is observed at visit j ;
hence the weight is wij for observed visits and 0 for unobserved visits
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WGEE: Comments

• Accommodates drop-outs but not intermittent missing data patterns

Y c
i = {Y o

i , Y
m
i }

Y o
i = {Yi1, . . . ,Yik−1}

Ym
i = {Yik , . . . ,Yim}

• Valid under MAR even if the correlation model is incorrectly specified,
provided the model for the probability of missing outcome is correct

I As with GEE use of the robust variance estimator in WGEE provides
robustness to misspecification of the correlation structure

I With consistent estimation of weights provided by a correctly specified
drop-out model, WGEE does not require a correct specification for the
correlation structure to estimate consistently β and its covariance

• As with GEE choice of the working correlation matrix affects efficiency

• Requires correct specification for µ and sufficiently large n (as always)

• Estimation of (β, α) requires either a priori knowledge of the weights
or estimation of wij using a correctly specified drop-out model
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Last observation carried forward

• Extrapolate the last observed measurement to the remainder of the
intended serial observations for subjects with any missing data

ID t1 t2 t3 t4 t5

1 3.8 3.1 2.0 2.0 2.0

2 4.1 3.5 3.8 2.4 2.8

3 2.7 2.4 2.9 3.5 3.5

• May result in serious bias in either direction

• May result in anti-conservative p-values; variance is understated

• Has been thoroughly repudiated, but still appears in published articles

• A refinement would extrapolate based on a regression model for the
average trend, which may reduce bias, but still understates variance

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 139 / 160



Last observation carried forward
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Longitudinal studies

Help establish the causal effect of exposure on outcome by determining
the temporal order of exposure and outcome (exposure precedes outcome)

• Cross-sectional study

Egg → Chicken

Chicken → Egg

• Longitudinal study

Bacterium → Dinosaur → Chicken

? There are several other challenges to generating causal inference
from longitudinal data, particularly observational longitudinal data
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Issues

Important analytical issues arise with time-dependent exposures

1. May be necessary to correctly specify the lag relationship over time
between outcome Yi (t) and exposure Xi (t), Xi (t − 1), Xi (t − 2), . . .
to characterize the underlying biological latency in the relationship

I Example: Air pollution studies may examine the association between
mortality on day t and pollutant levels on days t, t − 1, t − 2, . . .

2. May exist exposure endogeneity in which the outcome at time t
predicts the exposure at times t ′ > t; motivates consideration of
alternative targets of inference and corresponding estimation methods

I Example: If Yi (t) is a symptom measure and Xi (t) is an indicator of
drug treatment, then past symptoms may influence current treatment
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Definitions

Factors that influence Xi (t) require consideration when selecting analysis
methods to relate a time-dependent exposure to longitudinal outcomes

• Exogenous: An exposure Xi (t) is exogenous with respect to the
outcome process if the exposure at time t is conditionally independent
of the history of the outcome process Yi (t) = {Yi (s) | s ≤ t}
given the history of the exposure process Xi (t) = {Xi (s) | s ≤ t}

[Xi (t) | Yi (t), Xi (t)] = [Xi (t) | Xi (t)]

• Endogenous: Not exogenous

[Xi (t) | Yi (t), Xi (t)] 6= [Xi (t) | Xi (t)]
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Examples

Exogeneity may be assumed based on the design or evaluated empirically

• Observation time: Any analysis that uses scheduled observation time
as a time-dependent exposure can safely assume exogeneity because
time is “external” to the system under study and thus not stochastic

• Cross-over trials: Although treatment assignment over time is
random, in a randomized study treatment assignment and treatment
order are independent of outcomes by design and therefore exogenous

• Empirical evaluation: Endogeneity may be empirically evaluated
using the observed data by regressing current exposure Xi (t) on
previous outcomes Yi (t − 1), adjusting for previous exposure Xi (t − 1)

g(E[Xi (t)]) = θ0 + θ1Yi (t − 1) + θ2Xi (t − 1)

and using a model-based test to evaluate the null hypothesis: θ1 = 0
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Implications

The presence of endogeneity determines specific analysis strategies

• If exposure is exogenous, then the analysis can focus on specifying the
lag dependence of Yi (t) on Xi (t), Xi (t − 1), Xi (t − 2), . . .

• If exposure is endogenous, then analysts must focus on selecting a
meaningful target of inference and valid estimation methods
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Targets of inference

With longitudinal outcomes and a time-dependent exposure there are
several possible conditional expectations that may be of scientific interest

• Fully conditional model: Include the entire exposure process

E[Yi (t) | Xi (1),Xi (2), . . . ,Xi (Ti )]

• Partly conditional models: Include a subset of exposure process

E[Yi (t) | Xi (t)]

E[Yi (t) | Xi (t − k)] for k ≤ t

E[Yi (t) | Xi (t) = {Xi (1),Xi (2), . . . ,Xi (t)}]

? An appropriate target of inference that reflects the scientific question
of interest must be identified prior to selection of an estimation method

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 147 / 160



Pepe and Anderson (1994)

Suppose that primary scientific interest lies in a cross-sectional mean model

µi (t) ≡ E[Yi (t) | Xi (t)] = β0 + β1Xi (t)

To ensure consistency of a generalized estimating equation or likelihood-
based mixed-model estimator for β, it is sufficient to assume that

E[Yi (t) | Xi (t)] = E[Yi (t) | Xi (1),Xi (2), . . . ,Xi (Ti )]

Otherwise an independence estimating equation should be used

• Known as the full covariate conditional mean assumption

• Implies that with time-dependent exposures must assume exogeneity
when using a covariance-weighting estimation method

• The full covariate conditional mean assumption is often overlooked
and should be verified as a crucial element of model verification
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Time-dependent confounders

Traditional epidemiology classifies a variable that is related to both
exposure and outcome as either a confounder or intermediary variable

• Confounder: A variable Z that is associated with exposure X and
outcome Y ; if ignored will lead to biased exposure effect estimates

• Intermediary: A variable Z that is in the causal pathway between
exposure X and outcome Y ; should not be controlled for in analysis

X Y

Z

X Y

Z

? A longitudinal outcome can be both a confounder and an intermediary
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Time-dependent confounders: Example

Consider an observational study of HIV-infected patients in which interest
lies in the benefit on CD4+ cell count attributable to AZT treatment

• Current CD4+ count is likely to predict future CD4+ count

• Current CD4+ count may also predict future treatment choices

• Current CD4+ count is the outcome associated with prior treatment,
but is also a predictor of and thus a confounder for future treatment

• A regression of current CD4+ count on prior treatment may reveal a
lower mean CD4+ count among treated subjects, reflecting the fact
that patients who are more sick are more likely to receive treatment
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Time-dependent confounders: Example

Feedback: Outcome is a both a confounder and an intermediary

X(0) Y(1)

X(1) Y(2)

• Y (1) is a confounder for X (1)→ Y (2)

• Y (1) is an intermediary for X (0)→ Y (2)

? No standard regression methods can be used to generate causal inference
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Summary

• Parameter estimates obtained from a marginal model (GEE) estimate
population-averaged contrasts; parameter estimates obtained from a
conditional model (GLMM) estimate subject-specific contrasts; in
some situations these contrasts are equivalent

• The presence of missing data determines situations in which certain
estimation methods are valid (GEE for MCAR; GLMM for MAR)

• Any time-dependent exposures motivate consideration of alternative
targets of inference and specific assumptions that must be verified
for certain estimation methods to be appropriate

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 152 / 160



Overview

Introduction to longitudinal studies

Longitudinal regression models

Generalized estimating equations

Case Study: Longitudinal Depression Scores

Generalized linear mixed-effects models

Case Study: Indonesia Children’s Health Study

Advanced topics
Conditional and marginal effects
Missing data
Time-dependent exposures

Summary and resources

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 153 / 160



Big picture: GEE

• Marginal mean regression model

• Model for longitudinal correlation

• Semi-parametric model: mean + correlation

• Form an unbiased estimating function

• Estimates obtained as solution to estimating equation

• Model-based or empirical variance estimator

• Robust to correlation model mis-specification

• Large sample: n ≥ 40

• Testing with Wald tests

• Marginal or population-averaged inference

• Efficiency of non-independence correlation structures

• Missing completely at random (MCAR)

• Time-dependent covariates and endogeneity

• Only one source of positive or negative correlation

• R package geepack; Stata command xtgee
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Big picture: GLMM

• Conditional mean regression model

• Model for population heterogeneity

• Subject-specific random effects induce a correlation structure

• Fully parametric model based on exponential family density

• Estimates obtained from likelihood function

• Conditional (fixed effects) and maximum (random effects) likelihood

• Approximation or numerical integration to integrate out γ

• Requires correct parametric model specification

• Testing with likelihood ratio and Wald tests

• Conditional or subject-specific inference

• Induced marginal mean structure and ‘attenuation’

• Missing at random (MAR)

• Time-dependent covariates and endogeneity

• Multiple sources of positive correlation

• R package lme4; Stata commands mixed, melogit
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Final summary

Generalized estimating equations

• Provide valid estimates and standard errors for regression parameters
of interest even if the correlation model is incorrectly specified (+)

• Empirical variance estimator requires sufficiently large sample size (−)

• Always provide population-averaged inference regardless of the
outcome distribution; ignores subject-level heterogeneity (+/−)

• Accommodate only one source of correlation (−/+)

• Require that any missing data are missing completely at random (−)
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Final summary

Generalized linear mixed-effects models

• Provide valid estimates and standard errors for regression parameters
only under stringent model assumptions that must be verified (−)

• Provide population-averaged or subject-specific inference depending
on the outcome distribution and specified random effects (+/−)

• Accommodate multiple sources of correlation (+/−)

• Require that any missing data are missing at random (−/+)

Sitlani (Module 2) Longitudinal Data Analysis SISCER 2019 157 / 160



Advice

• Analysis of longitudinal data is often complex and difficult

• You now have versatile methods of analysis at your disposal

• Each of the methods you have learned has strengths and weaknesses

• Do not be afraid to apply different methods as appropriate

• Statistical modeling should be informed by exploratory analyses

• Always be mindful of the scientific question(s) of interest
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Resources

Introductory

• Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis.
Wiley, 2004.

• Gelman A, Hill J. Data Analysis Using Regression and Multilevel/
Heirarchical Models. Cambridge University Press, 2007.

• Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley, 2006.

Advanced

• Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of Longitudinal
Data, 2nd Edition. Oxford University Press, 2002.

• Molenbergs G, Verbeke G. Models for Discrete Longitudinal Data.
Springer Series in Statistics, 2006.

• Verbeke G, Molenbergs G. Linear Mixed Models for Longitudinal
Data. Springer Series in Statistics, 2000.
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Thank you!
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