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1. What s a cell type?
2. Difference between cell type and cell state
3. What s classification? What is prediction?
4. Types of classification

a. Cluster-based vs. supervised
b. Probability vs. distance based
c. Hierarchical vs. linear

d. Univs. multimodal

5. Software
Discussion
7. Conclusions
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Classification in the context of a atlas

Merging
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Many data sets are acquired from multiple tissues,
and these are clustered and merged to identify
consistent cell types

Curation of the atlas is used to inform the construction
of a cell-type ontology and to identify markers for each
cell type.

New samples can be annotated with the standardized
nomenclature defined in the ontology either using
the cell-type markers or by projecting directly

R New data iy Marker2 onto the atlas to identify the cells that are most similar
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3 Kiselev et al. Nature Reviews Genetics 2019
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Cell type and cell states are not the same c e esca et
Cell types Cell states
e Function Related but distinct functions
e Morphology Partially overlapping sets of molecular
e Set of molecular constituents constituents
e End or start point of differentiation Interconversions possible
e No interconversions possible Transitional versus cell states
Examples: Examples:
o T-cell, hepatocyte, epithelial cell e Cell cycle
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Clustering (G Rt
Dimensionality reduction Cell-cell distances Unsupervised clustering
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Becht et al. Nat Biotech 2018 Duo et al. F1000 2018
There are lots of clustering methods, just don’t use K-means
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Clustering — things to consider (G Bt
Classification Prediction
Decision making e Probabilistic interpretation

Forced choice

e (ell type prediction is based on the premise that a set of features (e.g.
gene expression) are able to recapitulate the variance of the phenotype
we are interested in
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Multiple modes

Transcriptome
Epigenome

Proteome

Surface markers *
Metabolome
Morphology

Spatial transcriptomics

~

Cell types can be detected using various methods C{)
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Multiple modes When are two cells the same?

Epigenome e Graded definition

Surface markers * established cell ontology
Metabolome

Morphology

Spatial transcriptomics
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Cell types can be detected using various methods @

Transcriptome e Depends on the question

Proteome e Hierarchical definition using
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Uni modal vs multi modal

Unimodal

e Some cell types can be classified using
a single gene marker (e.g. erythrocytes)
or protein

Advantages

e Easier classification
e C(learinterpretation

Caveats
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Multimodal
e Correlated features explain cell identity
Advantages

e More information is used to classify a
cell type (coexpression)

Caveats

e Feature selection (HVG, DEGs, classic

e Context dependent (shared expression markers)

between cells)
RNA/protein lack of correlation
Expression variance
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inear vs hierarchica Q Rt
Linear Hierarchical

e All cells are classified in a single step
Advantages

e Simple
e Fast

Caveats

e Cell heterogeneity (outlier populations)
e Cell type relatedness
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e Takes into account cell organization
(e.g. hematopoietic lineage)

Advantages

e Based on biological knowledge of the
population

Caveats

e Slower depending on the complexity of
the hierarchy
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‘Unsupervised’ classification (3 it
Linear Hierarchical
e All cells are classified in a single step e Takes into account cell organization
(e.g. hematopoietic lineage)
Advantages
Advantages
e Simple
e Fast e Based on biological knowledge of the
population
Caveats
Caveats

e Cell heterogeneity (outlier populations)
e Cell type relatedness e Slower depending on the complexity of
the hierarchy
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WHENYOU ARBITRARILY,CLUSTER\YOUR
DATA'SO ITMATCHES YOUR EXPECTATIONS
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Supervised classification (Q it
e Atraining dataset is used as reference to guide the classification of cells
in the population of interest
Advantages

e Fast to apply once the reference is built
e Classification performance estimated in training step

Caveats

e Lack of reference (gold standard data)
e Consistent classification criteria when applied to different datasets

Distance Probability

e Cosine similarity, Manhattan distance, e A probabilistic interpretation of the
correlation classification
¢ Computationally fast e Based on a prediction model
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Feature selection

Create a subspace of S (namely R with n rows and r columns (dimensions)), such
that each dimension explains at least 0.01% of the variance of the matrix M

Two-tailed Wilcoxon rank sum test is performed for each principal component to
assess whether there is a significant difference in the distributions of principal

component scores for cells in different classes
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The resulting p-values are adjusted for multiple testing using a Benjamini-Hochberg

false discovery rate correction

From R, we create a subspace F with only f columns with associated adjusted p-

values less than 0.05.
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scPred algorithm
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Alquicira et al., Genome Biology In Press
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1. classification of Islets of Langerhans

subtypes

Classify a (alpha), B (beta), & (delta) and y (gamma)
cell subtypes

Training dataset

Dataset Protocol Number of cells
Muraro et al. CEL-Seq2 2,126
Segerstolpe et al. Smart-Seq?2 3,514
Xin et al. SMARTer 1,600

acini

Pancreatic ~ Pancreatic islet

(a, B, v, PP cells)

Fibrocytes
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Lobe
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Test dataset

Classification of Islets of Langerhans subtypes

Classify a (alpha), B (beta), & (delta) and y (gamma)
cell subtypes

Accurate prediction of cell subtypes

Dataset Protocol Number of cells
Baron et al. InDrop 4,964
Results
Training Test

Cell type  # cells # PCs # Support vectors # Cells Accuracy
a Alpha 2584 18 362 2302 98.3
5 Beta 1190 17 343 2454 96.1
4 Delta 356 14 283 596 97.1
~v Gamma, 383 15 215 254 99.2
Other 0 NA NA 2326 94.9
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Prediction of cancer cells from human

colorectal cancer
Classify cancer cells vs. healthy cells

Dataset

Dataset

Protocol

Number of cells

Li et al.

SMARTer/C1

275
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FIGURE 2.3: Prediction performance comparison of colorectal cancer stem/TA-like cells between
scPred and differentially expressed genes (DEGs). Median values for the area under the ROC curve
(AUC) are shown for method.
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Implemented in R Software

S4 objects

scPred class

scPred supports any classification model available from the caret
package
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