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Why Blood Gene Expression has such a high correlation structure
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1. Because there are 3 common and dozens
of rare blood cell types, and any cell-type
biased gene expression correlates with
abundance of the cell-type.

2. Because the environment, including
disease status, modulates the expression
of up to thousands of genes in a
coordinated manner

by i 1 1| l Tlymphocyte B lymphocyte
Megakaryocyte A4 ‘) E.h’l af @
gt il Neutrophil Eosinophil Monocyte
Plesma cell 3. The genetic component of most individual
Thrombocytes
" a2 transcript abundance is regulated in trans,
- ® which also tends to lead to covariance —
HacITpg eg Stat1 mediates the interferon response
Wikipedia: White Bllood Cells
CIBERSORT

Existing deconvolution methods perform accurately on distinct cell subsets in mixtures with well-defined
composition (for example, blood), but are considerably less effective for discriminating closely related cell

types (for example, naive vs. memory B cells).

Input = reference gene expression signatures and unknown profile

Algorithm= linear support vector regression (SVR) — a machine learning approach robust to noise

Output = estimated abundances and p-value for the deconvolution

;
g

Newman et al (2015) Nature Methods 12: 453-457 “Robust enumeration of cell subsets from tissue expression profiles”
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Chaussabel Modules

Used k-means clustering to search for conserved modules of genes that are differentially expressed in 8 diseases,
namely 239 samples for SLE, JIA, T1D, melanoma, 2 types of bacteremia, influenza, or liver transplantation

Identified 28 modules involving 4742 transcripts (average of 170 per module)

'Hea‘khy (n=1é) vs. untreated SLE (n¥272)
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Chaussabel et al (2008) Immunity 29: 150-164 “A modular analysis framework for blood genomics studies: application to SLE”
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Update to 95 modulesin 2016

158 Pediatric SLE patients
924 longitudinal PB profiles (avg ~ 6 per patient)

First asked how modules correlate with disease,
and how many patients show the effect

M4.11 - F

M5.15 - phi

o e

H SLE

M1.2 - IFN Response
Ry e

512% 48.8%

Il overexpressed (median ratio >= 2)
["] unchanged (0.5 < median ratio < 2)
Il underexpressed (median ratio <= 0.5)

Banchereau et al (2016) Cell 165: 551-565 “Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients”
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Identifying Blood Transcript Modules

a Human blood I\qgs:t;%; network »
transcriptomes ,397 genes de novo T el
604,363 interactions 8522?;? and gearch SV
R Vo o Reverse = &
¢ y & a4 i i N
& 7 engineering | ' . /
540 data series 5
32,000 samples
e T TR
Databases for — e
context-specific P -
aralysis Wy, - TF targets £ 4
GO categories’ #_ L KEGG =&
Celltypes = ’ Biocarta =
Interactome 2 Z;e%?f?(t:e)d . PID - :
subnetworks eactome .

Li et al (2014) Nat Immunology 15: 195-204 “Molecular signatures of antibody responses derived from a systems biological study of 5 human vaccines”

The problem with gene ontology analysis on DE gene sets

1. Although powerful, DE analysis is also
intrinsically under-powered, so there is a

high false negative rate A B.
b 75
75 7
7 65
2. Consequently, when you see a gene set o o5 3
annotated as “perturbed by drug x in cell- & g - e Ak
type y of females with disease z”, beware! g 4 g W
Most likely a replicate of the experiment 2 55 1 (b AR
. . . 2 xy
would give a completely different list. 2 159 %
1 . .
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3. Conversely, some annotations, eg “Lupus- Rural-Urban Rural-Urban

associated genes” have multiple
completely different lists.
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Basic Workflow for Cluster analysis

1. Construct Similarity Matrix of Samples -

2. Generate Modules with WGCNA (or MMC, or ...)

3. Perform Gene Ontology enrichment analysis on the Modules IIIXAI

4. Compare Module Preservation across datasets ' |
J i

5. Associate Module Eigenvectors with Traits OR
search for Molecular Drivers of the Modules -l

General Framework for Coexpression Network Analysis

1. Generate gene expression data (Microarray or RNASeq)

2. Measure Pearson correlations between all gene pairs

3. Dichotomize the matrix with some cutoff for the strength of
correlation to generate an UNWEIGHTED adjacency matrix

4. OR Weight the correlations to generate a more nuanced
network, for example using a power function:

a, =l cor(x,x)) |

Zhang and Horvath (2005) SAGMB 4: 17. A general framework for weighted gene co-expression network analysis.
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Topological Overlap Matrices

Gene Modules correspond to Branches of the weighted hierarchical tree

Each Modules is given a color — there may be dozens of them

TOM plot
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>< |~ TOM matrix
/Module:
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Genes correspond to rows
and columns

Hierarchical clustering— |
dendrogram '
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The integrative nature of transcriptional regulation
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https://www.encodeproject.org/

[Coann ™| [T wor [y |

Twitter : News

- December releases: 48 ChiP-seq from the Reddy Lab
Scince Maganne
=

The ENCODE Project Consortium (2011) PLOS Biology 9: 1001046

Greg Gibson 7


https://www.encodeproject.org/

SISG Module 15, Lecture 8

7/11/2019

DHS and TFBS: DNAse hypersensitive sites and TF Binding
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Histone modification

A combination of different
molecules can attach to the ‘tails’
of proteins called histones. These
alter the activity of the DNA
wrapped around them,

Histones

H3K4Mes3 tends to be active,
H3K27Me3 tends to be repressive.
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ENCODE Nature threads 2012

| ENCODE hg : Topic

1 | Teads | Addiioni News and Comenent | About | Sponsor

Transcription Factor Motifs
Chromatin patterns at Transcription Factor Binding Sites
Characterization of Intergenic Regions and Gene definition
RNA and Chromatin Modification patterns around Promoters
Epigeneticregulation of RNA Processing
Non-coding RNA characterization
DNA methylation

ENCODE e )
Rt Enhancer discovery and characterization
Choose athread
Three-Dimensional connections across the Genome
Characterization of Network Topology
Machine Learning Approaches to Genomics

ENCODE

Impact of Functional Information on understanding Variation
Impact of Evolutionary Selection on functional regions

http://www.nature.com/encode/#/threads

Roadmap Epigenomics ﬁv ROADMAP

i epIgenomics -
Consortium ﬁ

|___woue | _parmicieants | srowsepara | promocoLs coupLETE EpiceNomes | _toots | __pusLicATIONS

Nature, 2015: INTEGRATIVE ANALYSIS
OF 111 REFERENCE HUMAN EPIGENOMES

Uniformly re-processed data, Integrative analysis
products and Interactive browser sessions can be found
at the supplementary website for the 2015 Consortium
paper at http://compbio.mit.edu/roadmap

VIEW DATA 3

Data Releases Download Data

http .//WWW road ma DEDigenOmiCS.Org/ « Supplementary website for the 2015 Consortium paper
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Model Organism ENCODE

http://www.modencode.org/

The Natonal

Research insttute

Natonal
odel crganai ENCycoped Of DYA Eemerts

About modENCODE

Documentation Contact Us Project Wiki

“The modENCODE Project will try to identify all of the sequence-based functional elements in the Caenorhabditis elegans and

Drosophila melanogaster genomes. ”

modMine

Explore a hierarchical view of
regulatory networks for fly and

Norm.
wor Networks

[rsssrss | risrs o]

LYY o rorce J oweseic |

- The entire modENCODE data set Find, view and Download released
v available for analysis in the Amazon  download datasets  data using the
Pt s compute cloud. in bulk traditional FTP

interface

Choose an organism below to see GBrowse, Dataset Search links

22

e
GBrowse @mcn
Browse Projects

Chromatin structure
Copy Number Variation
Gene Structure
Genome Sequence

Histone and

G boginae

s a2

C remaoel D, meanogaster O
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Genome-wide Chromatin Profiling in Drosophila
Pi- Steven Henikoff Labs: Kamran Ahmad  Submissions: 7
biochemical fraction, cell line, extraction time, sodium chioride concentration

Histone Variants

Metadata only

Other chromatin binding sites.

RNA exoression orofiling

-wide Chromatin Profiling Histone Variants

Pi: Steven Henikoff Labs: Kamran Ahmad, Steven Henikoff  Su

s:32
developmental stage. biochemical fraction, cell line, extraction time, sodium
chioride concentration

Expes

e Tracks: 32

International Human
Epigenome Consortium

http://ihec-epigenomes.org/

IHEC

mational Human Epigenome Consortium

IHEC celebrates major
coordinated paper release

Cell Papers

8y setting quality standards and providing
efficient communication structures IHEC fosters
continuous exchange among scientists. It
promotes rapid data sharing and minimizes
redundancy between different individual
research projects. Learn more about the
research activities of IHEC

BLUEPRINT Papers

Epigenomics research and human health are
closely linked to each other. Progress in this field
of research will thus add to an improved
understanding of diseases, and how to better
treat and prevent them. Find out what makes
epigenomics and the endeavor of IHEC 5o
fascinating.

About Research IHEC Data Portal News+Events Contact

Cell Press Spec

International Human

Epigenome (:onsortluﬁl
Collection

NIH Roadmap Papers

Annual Meeting

IHEC Data Portal

IHEC makes available comprehensive sets of
reference epigenomes relevant to health and
disease. You may view, search and download the
data already released by the different IHEC-
associated projects via the IHEC Data Portal.

Greg Gibson
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CellPress

is available below the graphic

=

http://www.cell.com/consortium/IHEC

Insights from the International Human Epigenome Consortium

Cell Press is proud to announce the publication of Insights from the ntemational Human Epigenome Consortium (IHEC). This one-of-a-kind, open access
collection comprises 24 papers published in Cell and other Cell Press joumals plus 17 papers published elsewhere. The collection offers readers

epigenetic datasets for primary human tissues and analyses from researchers around the globe studying the cellular mechanisms associated with complex
human disease. We hope you will enjoy exploring the Cell Press articles with this interactive graphic. A complete list of all the consortium papers published

IHEC Cell threads 2016

Al Content [l Advanced Search

S0 deectons

B icc Pogeloaa

Genetic Drivers of Epigenetic and
Transcriptional Variation in Human Immune
Cells

Characterizing the mulifaceted contribution of genetic and epienetic

mojor <
medicine. W carmied out high-resoktion genstic, epigenstsc and

major humen D1
monocytes, CO16+ neutrophis, and naive O+ T cells) from up o 157
indhicuals, We assess, quanteatiely, the relathe contrbuton of cs-
genetic and epigeneti: foctors o transcription and evaluate thei impact os.
potentiel sources of confounding in epigenome-wide assaciation studies.
Further, we characterize high coordinated genetic efects on gene.
expression, methylation, and histone variation through quanttative rait
locus (QTL) mapping and alele-specfic (4S) analyses. Finaly, we.

o : o sat345 "
cisease ko This exponsive, high-resolution atis of muomics changes
yeids insigh cfic correlation between o

inputs, more generalzable correlations between these inputs, and efines
molecular events that may underpin complex disease ri

24 Papers published in Nov 2016 (Cell, Cell Reports, Cell Stem Cell, Cancer Cell)

75% of 5,130 GWAS peak SNPs are in a DHS, many
specifically in a tissue expected to relate to pathology

419 of these pair with active promoters by Chia-PET,
40% acting over 250kb and 80% not with the closest gene

20% - 40% show allelic imbalance for chromatin accessibility

Maurano et al (2012) Science 337: 1190-1195

Enrichment of regulatory elements at GWAS loci

93% of GWAS peak SNPs are located in regulatory regions rather than affecting the protein sequence

Maurano et al performed DNAse-Seq on 349 cell and tissue samples, identifying ~ 200,000 DHS per sample (2% of DNA)
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Maurano et al (2012) Science 337: 1190-1195

Disease associations cluster in regulatory pathways
(A) Monogenic diabetes locus TFBS are enriched at GWAS / DHS sites for Types 1 and 2 diabetes
(B) Transcription factors associated with multiple autoimmune diseases are enriched at GWAS / DHS sites

Similar results observed for several types of cancer and neurological disorders

B
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CADD (combined annotation dependent
depletion) is an index from the Shendure
lab at UW that summarizes evidence from
63 annotations encompassing:

¢ Functional or regulatory annotation
* Allele frequency and diversity
* Evolutionary conservation

The raw C-score is scaled to a relative CADD
score as the —10*log10(rank/total), namely:
30 is the top 0.1% of likely deleterious

20 is in the top 1%

10is in the top 10%

The score attempts unbiased prediction of
“deleteriousness”, based on machine
learning comparison of 15M observed and
simulated human variants

Kircher et al (2014) Nature Genetics 46: 310-315

CADD score annotation of likely deleteriousness
http://cadd.gs.washington.edu/
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Some (concise) definitions

GWAS: Genome-wide association study — search for SNPs significantly associated with a trait (eSNPs)

TWAS:  Transcriptome-wide association study — search for transcripts significantly associated with a trait (QTT)

EpiWAS: Epigenome-wide association study — search for epigenetic marks significantly associated with a trait
(EWAS also used, but earlier used to refer to Environment-wide association study)

eQTL: a SNP which influences the abundance of a transcript. Cis-eQTL act locally (~ within + 500kb)

eGene: a gene whose transcript abundance is regulated by a locally-acting SNP

meQTL: a genotype which is associated with the degree of methylation at a CpG site

Methyl B: typical measure of the degree of methylation, ranging from 0 to 1 (none to complete)

hQTL:  agenotype that is associated with the intensity of a histone mark (may be acetylation or methylation)

ccQTL:  agenotype thatinfluences the level of chromatin conformation / cross-linking

Greg Gibson
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Methyl450 array study of whole blood DNA for 5,387 Europeans and Asians
Identified 278 CpG sites in 207 genes associated with BMI at p<107: consistent across ethnicities, 90% replicated

Similar effects observed in T cells and neutrophils in independent sample of 60 adults,
about half of the sites also associated with BMI in fat, liver, muscle

Epigenome-Wide Association Studies (EpiWAS) for Metabolic Disease

However, Mendelian randomization of SNPs that associate with both BMI and methylation level (meQTL)
implies that only a single site is causal — the majority are responsive to obesity
and in turn are explained by variation in blood glucose and lipids which may mediate the methylation

Ventham et al (2016) Nature Communications 7: 13507

Chromosome 17 position (hg18) (kb)

a e b o s s i v i Methylation Risk Score predicts T2D somewhat
so] O A independent of classical risk factors
SNP —> BMI 26/ GRS - CpG
4.0
gz.o ,’/ %: 18 = Woovmaymm P Puend
¥ ool caie |38y o | 3 % -
N 22 5 *:" I - CR R
3 ot j s Py s S—
<ol o ) s moEE =
-6.0 - R
. sl S e e |
60 4.0 -20 20 40 60 54 -36 -18 18 36 54 o saet 510 1070 - -
Predicted effect Predicted effect e ]
Odds ratio
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- DNAse Hypersensitivity Site Sequencing (DNaseSeq)

- Assay for Transcriptionally Active Chromatin (ATAC-Seq)

ATAC-Seq and enhancer detection

There are three basic approaches for detecting active chromatin, which is interpreted as enhancers:

- Chromatin immunoprecipitation Sequencing with CTCF, other TFs (ChIP-Seq)

An emerging software for allele-specific ATAC-Seq (and RNASeq) analysis is RASQUAL
(Robust Allele-Specific Quantitation and Quality Control)
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Perturb-Seq
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