Phylogenetic Inference: Building Trees

Philippe Lemey and Marc A. Suchard
Rega Institute
Department of Microbiology and Immunology
K.U. Leuven, Belgium, and
Departments of Biomathematics and Human Genetics
David Geffen School of Medicine at UCLA
Department of Biostatistics
UCLA School of Public Health

Nature Reviews | Genetics
1195 env sequences from 9 HIV+ patients [taken from Rambaut et al. (2004)]

Retroviruses (and HBV) exist as a quasi-species within infected patients:

- Shared substitutions may be insufficient to resolve intra-host phylogenies

Improve resolution using joint model:

- Indel rates \geq substitution rates
- Opportunity to detect intra-host recombination

- Contentious issue among paleobiologists: Do Archaea (Euryarchaeota/Eocytes) form one or two domains? Weekly World News calls humans slime molds.

The Chicken or the (Small) Genome: Which Came First?

Maximum Parsimony (MP)

Most often used \neq "best", not even statistically consistent, but fast, fast, fast . . . if you know the tree

Key: Find tree with minimal \# of "suspected" substitutions (internal states are not observed, 0/1 model process)

- Counting minimum \# of substitutions is easy
- Enumerating (searching through) all possible trees is hard

Human-T T C C TGGAAT
Chimp -T ACCTGGAAT
Mouse - A ACCT- T T A T
Fly $\mathbf{- A} \mathbf{A} \mathbf{A}$ T C GTAT
Site:1 $2 \begin{array}{lllllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \text { Along Molecular Sequence }\end{array}$
Sites are independent

SISMID - p. 5

Maximum Parsimony (MP)

A little history:

- Anthony Edwards/Luca Cavalli-Sforza $(1963,1964)$
- Both students of R.A Fisher
- Introduced both parsimony and likelihood methods (for continuous quantities, e.g. gene frequencies) in one paper
- Camin and Sokal (1965) provide first program for molecular sequences
- Fitch and Margoliash (1967) provide efficient algorithm

Maximum Parsimony Algorithm

procedure Fitch and Margoliash (1967) Algorithm
cost $C \leftarrow 0$ \{Initialization\}
pointer $k \leftarrow 2 N-1$ \{at the root node\}
To obtain the set R_{k} of possible states at node k \{Recursion\}
if k is leaf then
$R_{k} \leftarrow$ observed character for taxon k
else
Compute R_{i}, R_{j} for daughters i, j of k
if $R_{i} \cap R_{j} \neq 0$ then
$R_{k} \leftarrow R_{i} \cap R_{j}$
else
$R_{k} \leftarrow R_{i} \cup R_{j}$
$C \leftarrow C+1$
end if
end if
minimum cost is C \{Termination\}

Searching for the MP Tree

Complexity:

- Find MP score is NP-complete
- Find MP tree is NP-hard

Recall that \# of N-taxon rooted trees is $3 \times 5 \times \cdots \times 2 N-3$ Attack exponential-order space Branch-and-Bound:

- Monotonic order: min $\mathrm{PS}_{2} \leq \min \mathrm{PS}_{3} \leq \ldots$
- Bound if min $\mathrm{PS}_{k}>$ best n-taxon PS found so far.

Neighbor-Joining (Saitou and Nei, 1987)

Computational algorithm: alignment \rightarrow single tree

- Advantages: very fast, great for 1000 s of sequences
- Disadvantages: no site-to-site rate variation, no natural ways to compare trees/measure data support

Neighbor-Joining

Caveat: Pairs i, j with $\min d_{i j}$ are not necessarily nearest neighbors.
E.g., $d_{\mathrm{AB}}=3<d_{\mathrm{AC}}=5$

Solution: Subtract off the average distances to all other leaves via

$$
D_{i j}=d_{i j}-\left(r_{i}+r_{j}\right), \quad r_{i}=\frac{1}{|L|-2} \sum_{k \in L} d_{i k},
$$

where L is the current set of leaves. Proof in Studier and Keppler (1988).

Computational: $O\left(N^{3}\right)$

Likelihood-based Methods (Felsenstein, 1973)

Statistical technique: assumes an unknown tree and a stochastic model for character change along the tree

- Advantages: site-to-site rate/tree variation is easy, can formulate probability statements
- Disadvantages: must "search" tree-space \rightarrow slow

Foundation of Bayesian Phylogenetics

Reconstruction Example
Human-T TC C T G G A A T Chimp - T A C C T G G A A T Mouse - A A C T - - T A T Fly - A G A T C G T A T Site: $\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ & & \text { Along Molecular Sequence }\end{array}$

- Substitution: single residue replaces another
- Insertion/deletion: residues are inserted or deleted

Statistical Model

Assume: Homologous sites are iid and site patterns (e.g. dotted box)
$X Y \ldots Z \sim$ Multinomial $\left(p_{X Y \ldots Z}\right)$
where $p_{X Y \ldots Z}$ is determined by an unknown tree τ, branch lengths $t \in \mathbf{T}$ and continuous-time Markov chain model (for residue substitution) given by infinitesimal rate matrix \mathbf{Q}

$$
\mathbf{P}(X \rightarrow Y \text { in time } t)=e^{t \mathbf{Q}}
$$

CTMC(Q) = $\epsilon \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ of Phylogenetics

Continuous in elapsed time t, discrete in starting/ending state!
Memory-less process in which the probability that state b replaces state a during ($t, t+$
 $s)=s q_{a b}+o(s)$

- Infinitesimal generator matrix Q has off-diagonal entries $q_{a b}$ and row sums $=0$

Think: Exponential waiting time with rate $R_{a}=\sum_{b} q_{a b}$ until chain leaves a. Then the new state b is independently chosen with probabilities $q_{a b} / R_{a}$

From Infinitesimal to Finite Time

Let $p_{a b}(t)=$ the finite-time probability of the chain moving from state a at time 0 to state b at time t, then matrix $\boldsymbol{P}(t)=\left\{p_{a b}(t)\right\}$ satisfies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{P}(t)=\boldsymbol{P}(t) \boldsymbol{Q} \text { where } \boldsymbol{P}(0)=\boldsymbol{I}
$$

with solution

$$
\boldsymbol{P}(t)=e^{t \boldsymbol{Q}}=\boldsymbol{I}+t \boldsymbol{Q}+\frac{1}{2}(t \boldsymbol{Q})^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!}(t \boldsymbol{Q})^{k}
$$

as

$$
\frac{\mathbf{d}}{\mathbf{d} t} e^{t \boldsymbol{Q}}=\boldsymbol{Q} e^{t \boldsymbol{Q}}=e^{t \boldsymbol{Q}} \boldsymbol{Q} \text { for } t \text { real }
$$

Example: Two-State Model

Consider purines (R) \leftrightarrow pyrimidines (Y). Kolmogorov forward equation:

$$
p_{\mathrm{RY}}(t+s)=p_{\mathrm{RR}}(t) \alpha s+p_{\mathrm{RY}}(t)(1-\beta s)+o(s)
$$

yielding

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{\mathrm{RY}}(t)=\alpha p_{\mathrm{RR}}(t)-\beta p_{\mathrm{RY}}(t)
$$

$$
\boldsymbol{Q}=\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

with eigenvalues 0 and $-(\alpha+\beta)$

Solutions of $\boldsymbol{P}(t)=e^{t \boldsymbol{Q}}$ have the form

$$
c+d e^{-(\alpha+\beta) t}
$$

Standard CTMCs for Phylogenetics

- Jukes and Cantor (JC69),

$$
\pi_{a}=\frac{1}{4}, \kappa_{1}=\kappa_{2}=1
$$

- Kimura (K80), $\pi_{a}=\frac{1}{4}, \kappa_{1}=\kappa_{2}$
- Hasegawa, Kishino and Yano (HKY85), $\kappa_{1}=\kappa_{2}$ (most common)
- Tamura and Nei (TN93), right

- General Time Reversible (GTR)

Note identifiability concern in $e^{t Q}$. Common solution is to fix 1 d.f. such that

$$
\sum_{a} q_{a a} \pi_{a}=-1
$$

Scaling: $t=1 \Rightarrow 1$ expected substitution per site

Explicit Parameterization of TN93

Nucleotides mutate according to a Markovian process

$$
\operatorname{Pr}(X \rightarrow Y \text { in time } t)=e^{t Q_{\text {Nuc }}}
$$

where $Q_{\text {Nuc }}$ is a 4×4 infinitesimal rate matrix and t is a branch length.

κ_{1}, κ_{2} are transition:transversion rate ratios and π is the stationary distribution of $\{\mathrm{A}, \mathrm{G}, \mathrm{C}, \mathrm{T}\}$. β controls the overall rate and can vary from site-to-site.

Site-to-Site Rate Variation

Variation occurs quite naturally and is also an important inference

- short range: codon phase (slow-slow-fast)
- long range: enzymatic active sites, protein folding, immunological pressures/selection

Assume: infinitesimal rates for site k are $r_{k} \times t \times q_{a b}$. Various priors on r_{k} with $\mathbf{E}\left(r_{k}\right)=1$. Implicitly Bayesian

- Yang (1994) - discretized Gamma distribution

General Time Reversible CTMC

Let

$$
Q=R D_{\pi}
$$

where R is symmetric and D_{π} is a diagonal matrix composed of the stationary distribution π.

- Detailed balance $\Leftrightarrow \pi_{a} q_{a b}=\pi_{b} q_{b a}$. Balance + irreducibility \Leftrightarrow reversible
- Note \boldsymbol{Q} is similar to \boldsymbol{R}, as $\boldsymbol{D}^{1 / 2} \boldsymbol{Q} \boldsymbol{D}^{-1 / 2}=\boldsymbol{R}$
- Hence, Q must have real eigenvalues and real eigenvectors

The properties speed up computation of the finite-time transition matrix $\boldsymbol{P}(t)=e^{t \boldsymbol{Q}}$

Calculating the Probability of a Single Site Pattern Y_{i}

Given the tree and unobserved internal node states, the probability is the product of the finite time mutation probabilities over all branches:

$$
\begin{align*}
& L\left(\boldsymbol{Y}_{i}\right) \propto p_{\text {AAGT }}=\sum_{X} \sum_{Y} \operatorname{Pr}\left(Y \rightarrow \mathbf{A}, t_{1}\right) \operatorname{Pr}\left(X \rightarrow \mathbf{G}, t_{2}\right) * \\
& \operatorname{Pr}\left(X \rightarrow \mathbf{T}, t_{3}\right) \operatorname{Pr}\left(Y \rightarrow \mathbf{A}, t_{4}\right) \operatorname{Pr}\left(X \rightarrow Y, t_{5}\right) \pi_{X} \tag{1}
\end{align*}
$$

- Number of sumants grow rapidly in $N \rightarrow$ sum-product/peeling algorithm to distribute sums across the product

Pruning Algorithm Felsenstein (1981)

Let $P\left(L_{k} \mid a\right)=$ likelihood of leaves below node k given k is in state a. Then, recursively compute $P\left(L_{k} \mid a\right)$ given $P\left(L_{i} \mid b\right)$ and $P\left(L_{j} \mid c\right)$ for daughters i, j of k :

```
Set pointer \(k \leftarrow 2 N-1\) \{the root, initialization\}
Compute \(P\left(L_{k} \mid a\right) \forall a\) as follows: \{recursion\}
if \(k\) is a leaf node then
    if \(a\) is observed then
                \(P\left(L_{k} \mid a\right)=1\)
            else
                \(P\left(L_{k} \mid a\right)=0\)
            end if
```



```
else
            Compute \(P\left(L_{i} \mid a\right)\) and \(P\left(L_{j} \mid a\right) \forall a\) for daughters \(i, j\) of \(k\) \{post-order traversal\}
            \(P\left(L_{k} \mid a\right)=\sum_{b} \sum_{c} \operatorname{Pr}\left(a \rightarrow b, t_{i}\right) P\left(L_{i} \mid b\right) \times \operatorname{Pr}\left(a \rightarrow c, t_{j}\right) P\left(L_{j} \mid c\right)\)
end if
\(L\left(\boldsymbol{Y}_{i}\right) \leftarrow \sum_{a} P\left(L_{2 n-1} \mid a\right) \pi_{a}\{\) termination \(\}\)
```


ML Tree or MAP Tree?

Reporting uncertainty on tree estimates:

- The Bootstrap
- Most common
- Assumes evolutionary events are reproducible. "If I went back out to the field and recollected exchangeable data ..."
- Bayesian inference
- Returns the probability of a tree given the observed data and model
- Requires MCMC (e.g., MrBayes or BEAST)
- Advantages
* Does not rely on asymptotics (hypothesis testing)
* Naturally incorporates uncertainty in all parameters (including discrete quantities: trees, site-classifications, etc.)
* Arguably faster algorithms
- Disadvantages
* Must specify (justifiable) prior distributions

