
Phylogenetic Inference: Building
Trees

Philippe Lemey and Marc A. Suchard

Rega Institute
Department of Microbiology and Immunology

K.U. Leuven, Belgium, and
Departments of Biomathematics and Human Genetics

David Geffen School of Medicine at UCLA
Department of Biostatistics

UCLA School of Public Health

SISMID – p.1

Intra-Host Viral Evolution

1195 env sequences from 9 HIV+
patients [taken from Rambaut et al.
(2004)]

Retroviruses (and HBV) exist
as a quasi-species within infected
patients:
• Shared substitutions may be

insufficient to resolve intra-host
phylogenies

Improve resolution using joint
model:
• Indel rates ≥ substitution rates
• Opportunity to detect

intra-host recombination
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Reconstructing the Tree of
Life: Are Humans Just Big
Slime Molds?
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• Contentious issue among paleobiologists: Do Archaea
(Euryarchaeota/Eocytes) form one or two domains? Weekly World
News calls humans slime molds.
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The Chicken or the (Small)
Genome: Which Came First?
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Evolutionary History and Genome Sizes of
Reptiles, Dinosaurs, Birds and Mammals

Issue: Bird
genomes
are
markedly
smaller
than those
from other
vertebrates.
Question:
Did small
genomes
precede
flight or
co-evolve?
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Maximum Parsimony (MP)

Most often used "= “best”, not even statistically consistent,
but fast, fast, fast . . . if you know the tree

Key: Find tree with minimal # of “suspected” substitutions
(internal states are not observed, 0/1 model process)
• Counting minimum # of substitutions is easy

• Enumerating (searching through) all possible trees is
hard
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Maximum Parsimony (MP)

A little history:
• Anthony Edwards/Luca Cavalli-Sforza (1963,1964)

– Both students of R.A Fisher
– Introduced both parsimony and likelihood methods (for

continuous quantities, e.g. gene frequencies) in one
paper

• Camin and Sokal (1965) provide first program for
molecular sequences

• Fitch and Margoliash (1967) provide efficient algorithm
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Maximum Parsimony
Algorithm

procedure Fitch and Margoliash (1967) Algorithm
cost C ← 0 {Initialization}
pointer k← 2N − 1 {at the root node}
To obtain the set Rk of possible states at node k {Recursion}
if k is leaf then

Rk ← observed character for taxon k

else
Compute Ri, Rj for daughters i, j of k

if Ri ∩Rj $= 0 then
Rk ← Ri ∩Rj

else
Rk ← Ri ∪Rj

C ← C + 1

end if
end if

minimum cost is C {Termination}
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Searching for the MP Tree

Complexity:
• Find MP score is

NP-complete

• Find MP tree is NP-hard B C A
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Recall that # of N -taxon rooted trees is 3× 5× · · ·× 2N − 3

Attack exponential-order space Branch-and-Bound:
• Monotonic order: min PS2 ≤ min PS3 ≤ . . .
• Bound if min PSk > best n-taxon PS found so far.
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Neighbor-Joining
(Saitou and Nei, 1987)

Computational algorithm: alignment → single tree

neighbors

12*

Recompute distances (using 12*,3,4)

Join (closest)432
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• Advantages: very fast, great for 1000s of sequences
• Disadvantages: no site-to-site rate variation, no natural

ways to compare trees/measure data support
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Neighbor-Joining

Caveat: Pairs i, j with min dij are
not necessarily nearest neighbors.
E.g., dAB = 3 < dAC = 5

BA

C D

11 1

4 4

Solution: Subtract off the average distances to all other
leaves via

Dij = dij − (ri + rj), ri =
1

|L|− 2

∑

k∈L

dik,

where L is the current set of leaves. Proof in Studier and
Keppler (1988).

Computational: O(N 3)
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Likelihood-based Methods
(Felsenstein, 1973)

Statistical technique: assumes an unknown tree and a
stochastic model for character change along the tree

Unknown tree/internal node states
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Continuous−Time Markov Chain

• Advantages: site-to-site rate/tree variation is easy, can
formulate probability statements

• Disadvantages: must “search” tree-space → slow

Foundation of Bayesian Phylogenetics
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Traditional Phylogenetic
Reconstruction

Reconstruction Example

Human

Chimp

Mouse

Fly

4 5 6 7 8 9 10321Site:
A T G A TA G C TFly A

Along Molecular Sequence

C C T G G A A TT THuman
T A C C T G G A A TChimp

A C C T A TA − − TMouse

• Substitution: single residue
replaces another

• Insertion/deletion: residues
are inserted or deleted

Statistical Model
Assume: Homologous sites are iid
and site patterns (e.g. dotted box)

XY . . . Z ∼ Multinomial(pXY ...Z)

where pXY ...Z is determined by an
unknown tree τ , branch lengths
t ∈ T and continuous-time
Markov chain model (for residue
substitution) given by infinitesimal
rate matrix Q

P(X → Y in time t) = etQ
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CTMC(Q) = ε ∼ Normal(µ, σ2) of
Phylogenetics

Continuous in elapsed time
t, discrete in starting/ending
state!
Memory-less process in which
the probability that state b
replaces state a during (t, t +
s) = sqab + o(s)

time

T
C
G
A

s
t
a
t
e

• Infinitesimal generator matrix Q has off-diagonal
entries qab and row sums = 0

Think: Exponential waiting time with rate Ra =
∑

b qab until
chain leaves a. Then the new state b is independently
chosen with probabilities qab/Ra

SISMID – p.13

From Infinitesimal to Finite
Time

Let pab(t) = the finite-time probability of the chain moving
from state a at time 0 to state b at time t, then matrix
P (t) = {pab(t)} satisfies

d
dt

P (t) = P (t)Q where P (0) = I

with solution

P (t) = etQ = I + tQ +
1

2
(tQ)2 + · · · =

∞
∑

k=0

1

k!
(tQ)k

as
d
dt

etQ = QetQ = etQQ for t real
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Example: Two-State Model

Consider purines (R) ↔ pyrimidines
(Y). Kolmogorov forward equation: β

α

YR

pRY(t + s) = pRR(t)αs + pRY(t)(1 − βs) + o(s)

yielding
d
dt

pRY(t) = αpRR(t) − βpRY(t)

Q =

(

−α α

β −β

)

with eigenvalues 0 and
−(α + β)

Solutions of P (t) = etQ

have the form

c + de−(α+β)t
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Standard CTMCs for
Phylogenetics

• Jukes and Cantor (JC69),
πa = 1

4 ,κ1 = κ2 = 1

• Kimura (K80), πa = 1
4 ,κ1 = κ2

• Hasegawa, Kishino and Yano
(HKY85), κ1 = κ2 (most common)

• Tamura and Nei (TN93), right
• General Time Reversible (GTR)

κ β1

κ β2

A
π π

G

C
π π

T

ββ

C T

GA
β β

Note identifiability concern in etQ. Common solution is to fix
1 d.f. such that

∑

a

qaaπa = −1

Scaling: t = 1 ⇒ 1 expected substitution per site
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Explicit Parameterization of
TN93

Nucleotides mutate according to a Markovian process

Pr(X → Y in time t) = etQNuc

where QNuc is a 4x4 infinitesimal rate matrix and t is a
branch length.

κ β1

κ β2

A
π π
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β β QNuc = β×

0

B

B

B

B

B

@

− κ1πG πC πT

κ1πA − πC πT

πA πG − κ2πT

πA πG κ2πC −

1

C

C

C

C

C

A

, where

κ1,κ2 are transition:transversion rate ratios and π is the
stationary distribution of {A,G,C,T}. β controls the overall
rate and can vary from site-to-site.

SISMID – p.17

Site-to-Site Rate Variation

Variation occurs quite naturally and is also an important inference

• short range: codon
phase
(slow-slow-fast)

• long range:
enzymatic active
sites, protein folding,
immunological
pressures/selection

Assume: infinitesimal rates for site k are rk × t × qab. Various priors on
rk with E(rk) = 1. Implicitly Bayesian
• Yang (1994) – discretized Gamma distribution
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General Time Reversible CTMC
Let

Q = RDπ

where R is symmetric and Dπ is a diagonal matrix
composed of the stationary distribution π.
• Detailed balance ⇔ πaqab = πbqba. Balance +

irreducibility ⇔ reversible
• Note Q is similar to R, as D1/2QD−1/2 = R

• Hence, Q must have real eigenvalues and real
eigenvectors

The properties speed up computation of the finite-time
transition matrix P (t) = etQ
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Calculating the Probability of a
Single Site Pattern Yi

Given the tree and unobserved internal node states, the probability is
the product of the finite time mutation probabilities over all branches:

1t t 2

t 3t 4 
t 5

A

A

G

T

Y
X

L(Yi) ∝ pAAGT =
∑

X

∑

Y

Pr(Y → A, t1) Pr(X → G, t2) ∗

Pr(X → T, t3) Pr(Y → A, t4) Pr(X → Y, t5)πX (1)

• Number of sumants grow rapidly in N → sum-product/peeling
algorithm to distribute sums across the product
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Pruning Algorithm
Felsenstein (1981)

Let P (Lk|a) = likelihood of leaves below node k given k is in state a. Then, recursively
compute P (Lk|a) given P (Li|b) and P (Lj |c) for daughters i, j of k:

Set pointer k ← 2N − 1 {the root, initialization}
Compute P (Lk|a) ∀ a as follows: {recursion}
if k is a leaf node then

if a is observed then
P (Lk|a) = 1

else
P (Lk|a) = 0

end if
else

Compute P (Li|a) and P (Lj |a) ∀a for daughters i, j of k {post-order traversal}
P (Lk|a) =

P

b

P

c Pr(a→ b, ti)P (Li|b)× Pr(a→ c, tj)P (Lj |c)

end if
L(Yi)←

P

a P (L2n−1|a)πa {termination}

P(Li|b)

P(Lj|c)

Node k

a − b

a − c
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ML Tree or MAP Tree?

Reporting uncertainty on tree estimates:

• The Bootstrap
– Most common
– Assumes evolutionary events are reproducible. “If I went back out to the field and

recollected exchangeable data . . . ”

• Bayesian inference
– Returns the probability of a tree given the observed data and model
– Requires MCMC (e.g., MrBayes or BEAST)
– Advantages

∗ Does not rely on asymptotics (hypothesis testing)
∗ Naturally incorporates uncertainty in all parameters (including discrete

quantities: trees, site-classifications, etc.)
∗ Arguably faster algorithms

– Disadvantages

∗ Must specify (justifiable) prior distributions
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