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EVOLUTIONARY TREE

(time scale = genetic distance)

Molecular Clock Models l PHYLOGENETICS

EVOLUTIONARY TREE

(time scale = years)




Molecular phylogenies

© most molecular phylogenies
» are unrooted (or the rooting is
due to prior information)

» have branch lengths
representing genetic change
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Molecular phylogenies

o the ideal molecular phylogeny

» is rooted (implies a branching
order)

» has branch lengths in units of
time (an evolutionary history)

@ how do we construct one of
these trees?
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A constant evolutionary rate through time

- to obtain a timed
phylogeny, the
evolutionary model
must assume a
relationship between
the accumulation of
genetic diversity and
time
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- Zuckerkandl and Pauling (1962): the rate of amino acid
replacements in animal haemoglobins was roughly
proportional to real time, as judged against the fossil record

A constant evolutionary rate through time

- the molecular clock is
particularly striking
when compared to
the obvious
differences in rates of

morphological
evolution...
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The molecular clock is not a metronome

e if mutation every MY
with Poisson variance
» 95% of the lineages

15MY old have 8-22
substitutions

» 8 substitutions also
could be <5 MY old

95% confidence limits:
157 subititutions
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§ Confidence limits based
g on Poisson distribution
I | I ]
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Number of substitutions

» Molecular Systematics, p532.

And there is no global molecular clock

nucleotide substitutions per site per year
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And there is no global molecular clock

- different genes, 100% T
different profiles

 variation in mutation
rate?

Fibrinopeptides

75%T

Hemoglobin
50%+
* variation in selection

% genetic divergence

genes coding for 25%7]

some molecules Histone IV

————— . t
under very strong 300 600 900 1200 1500
stabilizing selection

Time since divergence (Myr)

calibrating the molecular clock




From substitution units to time units

nodes with
point calibrations

Contemporary sample time
probabilistic calibrations

95% C.1.
20-30 Mya

95% C.1.
5-15 Mya

now

Node Calibrations

Fossils
biogeography

Kauai
(6.1 My 0 60 120 km
Oahu

(37My

Maui-Nui (W. Molokai)

(1 9/1.6 My)

® Q <
f Hawaii

(0.43 My)

/

Main Hawaiian Islands
host-pathogen co-divergence -

Felis catus FdPV1

Puma concolor PcPV1

Lynx rufus LrRPV1

Panthera leo PlpPV1

Panthera uncia UuPV1
Pli PIPV1
COPV
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Calibration using sampling times

contemporary sample, serial sample, with time

, ' divergence
no time structure ! structure
LT
Tip calibration: two major applications
RNA viruses o Substitutions accumulate
evolve quickly: between the times of sampling

10-3-105
substitutions per
site per year.

mpled sequences or
ous\sequences

datg
radiocarberi-dated LETTER

S pe CI l I Ie n S https://doi.org/10.1038/541586-018-0097-z

Ancient hepatitis B viruses from the Bronze Age to
the Medieval period

FECZTE




incorporating sampling time: naive method

observed number of substitutions

or genetic divergence
d

1

sampling time 1 sampling time 2
t1 to

substitution rate, u
=d/|t1 - tof

incorporating sampling time: naive method

ancestral
diversity

troot t2 t1




incorporating sampling time: naive method

ancestral

diversity

troot t

incorporating sampling time: naive method

troot t2 t1

U=(di-da/(t: -t




linear regression

H = di/ (ti - troot)
= 2:  Ccan be rearranged:
| di= H (ti - troot)

E[dl] =u.ti-u. troot

gradient is: U
y-intercept is: = Y . troot

x-intercept is: troot

Estimating the time-scale

e HINT/0O ‘Swine Fl' |
* Rate: 3.14E- =
mutations/genomic site/year
* tMRCA: 2009.041 e
(15-Jan-2009) .
» Correlation: 0.83
* R2:0.69 iy

009 20091 20092 20093 2009.4 2009.5 20096 20097 2009.8 2009.9 2010  2010.1
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A DNA virus (smallpox)

0.003 , Variola, Poxviridae, 190kb genome
Sampling 1946-1977
VARV
° R?=0.67862
S 0.002 1 °e
C Y [ ]
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©
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$ 0.001]
O
Rate estimate: 8.2 x 10-6 Subs/Site/Year
0 : : : .
1940 1950 1960 1970 1980
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root-to-tip divergence

Diagnostic tool

- divergence accumulation
- outliers

recombinant

1 B
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1985 1995

vaccine lineage

» Rambaut A. et al. (2016) Virus Evolution, 2(1), vewO7.

Time structure via tip calibration

Contemporary sample . Serial sample time
no time structure ' with time structure

:
! 1980
:
<l> 1990
|

£ l Q Q 2000

» Rambaut A. (2000) Bioinformatics, 16, 395-399.




Relaxing the molecular clock

Clock versus non-clock

+ unconstrained (unrooted) Felsenstein model:
Felsenstein (1981) JME, 17: 368 - 376

» each branch has its own rate independent of all others

» time and rate are confounded and can only be estimated as a
compound parameter (branch lengths)

- strict molecular clock:
Zuckerkand! & Pauling (1962) in Horizons in Biochemistry, pp. 189-225

» all lineages evolve at the same rate

» allows the estimation of the root of the tree and dates of
individual nodes




Need for a relaxed molecular clock

- the unrooted model of phylogeny and the strict molecular
clock model are two extremes of a continuum.

* dominate phylogenetic inference
- but both are biologically unrealistic:

» the real evolutionary process lies between these two
extremes

» model misspecification can produce positively misleading
results

\4

» Pybus (2006) Genome Biol. 4, e151

‘strict’” molecular clock

1 parameter virus1
(rate of evolution) Virus2
virus3
virus4
virusb
Virus6
virus?7
virus8
virus9

virus10
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2012 2013 2014




‘local’ molecular clock

high rate

virus1i
| virus2
! virus3
low rate virusa
virusb
I Virus6
| virus7
virus8
virus9
virus10
2012 | 2013 | 2014
host-specific local clock
hi
e pig»human humean
I human
! human
low rate bird pig  human
I pig
I pig
pig
bird
bird
bird

I T I T I
2012 2013 2014




autocorrelated relaxed clock

e virus1
. virus2
\x ; virus3
Iom/mne.3“" . : N virus4
3; virusd
Vvirust
virus?’
virus8
virus9
virus10
2012 2013 2014
lognormal uncorrelated relaxed clock
virus1i
virus2
virus3
low rate  high rate virus4
virusb
Virus6
virus7
virus8
virus9 2 parameters

virus10

(mean rate and
variance in rate among
branches)

I
2012

I
2013

2014




Relaxed clocks: (1) local molecular clocks

» specify Ho beforehand
» problem of identifiability

D

» Yoder and Yang (2000) Mol Biol & Evol 17: 1081-1090.

Bayesian local clocks

true (model) tree
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Autocorrelated relaxed clocks

- rates for each branch are drawn from a distribution centred
on the rate of the ancestor

» but what is the rate P e,
at the root? S
» A prior degree of hs )
autocorrelation? Fs T
» (not currently possible

to do phylogenetic ]/E‘r L
inference) T P A L———

a1

o

. »
"--....--"

.
r, ~ LogNormal(r, ;,,0°At,)

» e.g., Thorne JL, Kishino H, Painter IS (1998) Mol Biol & Evol 15: 1647-1657.

Uncorrelated relaxed clocks

« rates for each branch are drawn independently from an
identical distribution:

I
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» Drummond et al. (2006) Plos Biology 4: e88.
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Bayesian evolutionary analysis sampling trees

» Given sequence data that is temporally
spaced estimate true values of: E

ACGT

» substitution parameters (v and Q)

-0 0 >

» ancestral genealogy (g = E,, )

tree topology H
dates of divergence

» population history (8)

 Bayesian inference

P(9.u,6,Q|D)= ;_ Pr{D| i (910)f, (L)L (O)(Q)
“relaxed phylogenetics and
t={t,t t 3 dating with confidence”
1 7 " 2n1

R={r,r,...r,.}  f(Rlg)=f(R)=T\e"

Uncorrelated relaxed clocks: example

» Phylogenetic inference

» measuring autocorrelation

» measuring clock-likeness

>

dinorm(x,
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1980 1985 1990 1885 2000




Evaluating clock-like behaviour?

: ”\\
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Model testing using Bayes factors

¢ A Bayesian alternative to classical hypothesis testing: the Bayes
factor (a summary of the evidence provided by the data in favor of
one scientific theory, represented by a statistical model, as opposed
to another; Kass & Raftery, 1995).

* Bayes factor Bo1 =

¢ \When two models Mo and M1 are being compared, one defines
the Bayes factor in favor of My over Mg as the ratio of their
respective marginal likelihoods

¢ \When there are unknown parameters, the Bayes Factor Bo1 has
in a sense the form of a likelihood ratio




Model testing using Bayes factors

e However, the densities are * Posterior:
obtained by integrating p(6]Y,M) =

over parameter space:
p(Y16,M) p(6|M)
p(YIM) = jepme,M) p(6IM) d6 p(YIM)

e So for model fit, the marginal likelihood p(Y|M) or integrated
likelihood, i.e. the normalizing constant (cancels out in the
calculation of the MH acceptance ratio), is of primary
importance, but awfully hard to calculate.

Reminder: MHG MCMC Sampling

The algorithm starts from a random state (8) and
‘proposes’ a new state (6%)

The new state is accepted with probability:

N (1, p(6D) , P (616") )
p(6D)  p(el0)

)
,.'---.\n‘\\u‘\"\\"\\|“‘|'|‘|‘,\'\l|1l“|‘.||‘l‘,.\,
* s * m\“““\l‘“\ il “\“t D
= min (1, p (DIE") p (E)P(D)  f(6]6") ) ’”‘?‘\\“\?&\%“?&k\“\?ﬁﬁﬁﬁﬁ“‘“
""""" P
TR g
p (DI6)p (6 f(6% 6) W R
Tk it
& il
the two marginal likelihoods cancel out i, ,'l,':,,’lz,,j'n,’/f
R il

and don’t have to be computed !

it
i

= min (1, f(DI6")  f(6) (616 )
f(Dle)  f(8) f(6°1 6)
Likelihood ratio Prior ratio  Proposal ratio




Calculating marginal likelihoods

Methods of general applicability:

. Ghe posterior arithmetic mean estimator (cAME; Aitkin, 1991) )
 the arithmetic mean estimator (AME/ILP; but a misnomer)

« (the importance sampling estimators, and particularly the harmonic mean
estimator (HME) (Newton and Raftery, 1994)

* | the stabilized harmonic mean estimator (SHME) (Redelings and Suchard, 2005)

L (No additional analysis required]

. rpa’[h sampling (Gelman, 1998; Ogata, 1989), applied in phylogenetics (I_artillot\
and Philippe, 2006)

.. . . Y
* | stepping-stone sampling (Xie et al., 2011) (Addltl0n3| analysis required
. Lgeneralised stepping-stone sampling (Fan et al., 2011; Baele et al., 2016)

Calculating marginal likelihoods

Methods of general applicability:

ior arithmetic mean estimator (bDAME; Aitkin, 1991)
imator (AME/ILP; but a misno
arly the harmonic mean

¢ the arithmetic m

. (the importance sampling esti
estimator (HME) (Newton and

* | the stabilized har ean estimator (sHME) (Redel Suchard, 2005)

(No additional analysis req

« (path sampling (Gelman, 1998; Ogata, 1989), applied in phylogenetics (Lartillot
and Philippe, 2006)

.. B R N
« | stepping-stone sampling (Xie et al., 2011) (Addltlonal analysis required
. Lgeneralised stepping-stone sampling (Fan et al., 2011; Baele et al., 2016)




path sampling and stepping-stone sampling

* requires samples from a se

ries of power posteriors, along a

path between prior and posterior:

As(6) = p(Y | 6,M)Fp(6 | M)

reduces to the posterior when 3 = 1

reduces to the prior when 3 =0

'350 T T T T T T T T
-400 p=1
B=0.8
-450 E A - A BN = -1
B=0.6
D -500 - - 4
B=0.4
-550 = s - .
> B=02 L
600 [ 5 .
_650 1 1 1 1 1
0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1
# iterations B

path sampling and stepping-stone sampling

Constant vs. Exponential ~ 0.01

Constant vs. Exponential ~ 0.025
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FIG. 2. Evaluation of log BF estimates using PS (SS yields an undistinguishable plot), AICM, and the HME to compare model fit, with four pairwise
comparisons being shown: a constant population size versus an exponential population size with growth rates of 0.01, 0.025, 0.05, and 0.10. An
increasingly strong discriminatory behavior (low false positive rates and high true positive rates) can be seen for PS (and SS) up to a growth rate of
0.10, whereas the HME retains questionable performance. AICM performance lies in between that of the HME and PS/SS. Color-coded area under

the curve values are given at the bottom right of each plot.




Generalised stepping-stone sampling

requires samples from a series of power posteriors, along a
path between reference/working distribution and posterior:

as(6) = [p(Y | 6,M)p(6 | M)IBpo( | M)!-#

* reduces to the original SS method if the reference/working distribution is
equal to the actual prior

* in practice, samples from the posterior distribution (3 = 1) are used to
parameterize the joint reference/working distribution po(6|M)

« we will use kernel density estimation (KDE) to construct reference/
working priors for each of the parameters being estimated

GSS: decreased run time

HIV-1 - Timings for different demographic priors

140
|

B PS/SS
W GSS POEL
O GSsMCM

Run time (in hours)
40 80 100 120
1 1 1 I

20
1

Constant Exponential Expansion
* GSS does not need to explore the prior, which avoids computing the likelihood
for highly unlikely parameter values, which may lead to numerical instabilities

* combined with a “shorter” path to be traversed, this leads to a considerable
performance increase (dependent on the actual reference/working prior)




Bayesian model testing

* Don’t compare all possible model combinations (evolutionary model,
clock models, coalescent tree prior, ...) to one another!

» Test/compare those models if
- it is part of the hypothesis your testing,
- or if your hypothesis test is sensitive to the model choice

Bayesian model selection vs model averaging

Model selection refers to the problem of using the data to
select one model from the list of candidate models

Model averaging refers to the process of estimating some
quantity under each model and then averaging the estimates
according to how likely each model is.




—
Extensions for testing e
evolutionary rate hypotheses

© Jennifer Gardy
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Pybus and Rambaut, NGR, 2009
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Lemey et al 2006 AIDS Rev




Independent parameter estimation
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Hierarchical phylogenetic models

Edo-Matas et al., MBE, 2011




Hierarchical model with fixed effects

/

Ui U2

Mixed effects model:
log 1= fo + BX; +e:

(i is red or blue)

Edo-Matas et al., MBE, 2011

Hierarchical model with fixed effects
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lOgH; = ﬁo + 5LTNP,B|_TNP|-TNP:' + 6A32ﬁA32A32i + &

Evolutionary Parameter Effect Support/Size LTNP Effect
Nucleotide substitution rate Posterior probability Sefrece = 1 0.72

BFefrect 26

Bettect|Betiec = 1° —0.275 (—0.524, —0.016)
Codon substitution rate Posterior probability Sefrece = 1 0.726

BFefece 2.6

Bettect|Bettece = 1° —0.265 (—0.523,0.019)
dy/ds Posterior probability Sefrece = 1 0.502

BFeffect
N
Beftect|Fefrece = 1

1.0
0.083 (—0.101,0.25)

Edo-Matas et al., MBE, 2011




beast-users »
Comparing evolutionary rates using a t-test?

7 posts by 3 authors @) |8+

s Joseph Hughes Jul 16 *w |~

Hi all,

We have run beast analysis on a set of sequences of Feline Immunodeficiency Virus for a number of
cats. Some cats are kept in nice conditions, others are in a cat home that could be considered
"stressful". The sequences from each cat are monophyletic and | have estimated the evolutionary rate of
FIV in each cat. BEAST was run estimating independent trees for each cat.

Can | use the estimated ucld.mean from each cat to compare the rates between the cats kept in good
conditions versus those under stress?

What drives the tempo of pathogen evolution?

Pathogen factors

% Mutation rate

Life cycle/replication
dynamics

Life history
Seasonality
‘;ﬂ Metabolic rate etc.

Historical factors

Pathogen phylogeny




Courtesy of D. Streicker

TbSAV
1.00 bV
Drv
NIV
Mv1
1.00 EfV1b
EfVia
1.00 PsV
1.00 Lnv
LxV

1.00 LbV1
1 1.00 0.92 LsV
LeV

Lbv2

-y LV
0.73 PhV

o9 ——————eee Vv2
0.99 Efv2
EfV3
0.79 EfSAV
MSAV

0.96

0.89

@ 8.79e-5-4.22e-4 O 4.23e-4-7.55e-4 O 7.56e-4-1.09e-3
O 1.10e-3-1.42e-3 O 1.43e-3-1.76e-3 @ 1.77e-3-2.09e-3

Streicker et al., 2012. PLoS Pathogens




Fixed-effect hierarchical phylogenetic models

log ui = fo+ pXi + &
Climate
Prior Basal metabolic rate
Torpid metabolic rate
Coloniality
Seasonal activity
Long-distance migration

Posterior

-~ -~

Edo-matas et al., 2011. MBE
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Fixed-effect hierarchical phylogenetic models

Climate

Basal metabolic rate
BSSVS Torpid metabolic rate
Prior Coloniality N
Seasonal activity
Long-distance migration
log u = Po + oriPriPi1+ opsfp2P2+...0PNBPNPN + €;
/

g
/.
-~

Posterior

-~ -~

Edo-matas et al., 2011. MBE
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Bat rabies virus evolutionary rates

Predictor Bayes factor B (95% HPD) |6=1
Climate 466.54 : [
Basal metabolic rate 0.82 *

Torpid metabolic rate 1.00 [ ]

Coloniality 0.46 n

Seasonal activity 0.46 B
Long-distance migration 0.69

®
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@
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Evolutionary rate
Substitutions/site/year
A~ O
o o
(0] 0]
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] 1

<>

n

o

o
N
1

P

Temperate Subtropics/tropics

O e — = =

Streicker et al., 2012. PLoS Pathogens

Katzourakis et al., Retrovirology, 2014.
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Time-dependent evolutionary rates

PFV
SFVcpz
SFVbnb

'West chimpanzee § 0.96
2.17
8.3

East chimpanzee,

Bonobo

Relationship between timescale of
measurement and node-to-tip average
evolutionary rate estimate

SFVgor Gorilla 1
SFV Orangutan 31.56 Em
Vora g 6 i E
SFVmac Macaque 311.50 <
SFVagm=African green monkey 7 43.47 E,;
©
0.2 SFVmar Squirrel monkey =m110.95 E,
0 ! 18 ]
sl 0 I SFVspm%Marmoset I/II?%M s 5
SFVsqu Spider monkey =— E
0 v 98.9 Q107 m nodet \
] PSFVgal Galago 1 g O node2 m node? A
0, BFV Bovine 87 =4 O node3 M nodes
9 o 9@8 , 5 5 noded W noded
V Equine > node5 M node10
10 q 10 < O node6 m node11
FFV Feline 5 "
— 10 10
0.06 10.0 Timescale of measurement (Myr)
Aiewsakun et al., BMC Evol Biol, 2015.
h modelling with TDR
log ui = po + piXi log (T7)
H e
Relationship between timescale of ’EFV
measurement and node-to-tip average 5 I_FV
evolutionary rate estimate BFV
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epoch modelling with TDR

/\
log ui= po + piXi log (T7)

l

_ : FFV

£1=-0.539 [-0.570,-0.511] _Lh 5 i

: BFV

* : PSFVgal
model InL SFVsqu

. 4 g

epoch TDR 33,667 SV
: ) ? SFVmac
strict 34,044 + t SFVagm

SFVora
L SFVgor
LgSFVbnb
PFV
SFVepz
| ]
100 80 60 40 20 0

1.77 x 10-9 subst./site/yr 2.64x10~3 subst./site/yr

- - -5 -5
Membrebe et al. 2019 vge 1105 % 1079,2.04 x 10-9] [2.02x10~5,3.52 x 10~5]

conclusions

* molecular clocks: rate constancy assumption and tick rate
calibration

e unconstrained <-> strict molecular clock
* relaxed clocks

* model testing: use wisely

* hypotheses -> incorporate them into your model







