## Estimating rates and dates from time-stamped sequences

Summary: This tutorial provides a step-by-step tutorial for analyzing a set of virus sequences which have been isolated at different points in time (heterochronc data). The most commonly cited hypothesis of the origin of yellow fever virus (YFV) in the Americas is that the virus was introduced from Africa, along with Aed aegypti mosquitoes, in the bilges of sailing vessels during the slave trade. Although the hypothesis of a slave trade introduction had often been suggested, pric paper by Bryant et al. (2007), it had not been subject to rigorous examination using gene sequence data and modern phylogenetic techniques for estimating divergence times. The aim of this exercise is to obtain an estimate of the rate of molecular evolution, an estimate of the date of the most recent common ances and to infer the phylogenetic relationships with appropriate measures of statistical support.

Table of Contents

- Introduction
- Loading the data into BEAUti
- Specifying a taxon set
- Setting the evolutionary mode
- Setting the clock model
- Setting the starting tree and tree prior
- Setting up the priors
- Setting up the operators
- Setting the MCMC options
- Saving and Loading BEAUti files
- Generating the BEAST XML file
- Running BEAST
- Analysing the BEAST output
- Summarizing the trees
- Viewing the annotated tree
- Relaxed molecular clock analysis
- References
- Help and documentation


## Introduction


 the output of BEAST in order to diagnose problems and to summarize the results.

${ }^{8}$ EAST - this package contains the BEAST (beast) program, BEAUti (beauti) and a couple of utility programs. At the time of writing, the current version is v1.10.4. BEAST releases are available for downlo form https://github.com/beast-dev/beast-mcmc/releases ©].
(beast)

Q8. 1 racer - this program is used to explore the output of BEAST (and other Bayesian MCMC programs). It graphically and quantitively summarizes the empirical distributions of continuous parameters and provides diagnostic information. At the time of writing, the current version is v1.7.1. It is available for download from https://github.com/beast-dev/tracer/ $\boldsymbol{\pi}$. (tracer)

FigTree - this is an application for displaying and printing molecular phylogenies, in particular those obtained using BEAST. At the time of writing, the current version is v1.4.3. It is available for download rom http://tree.bio.ed.ac.uk/software/figtree/ [〕
(figtree)
 et al. (Bryant JE, Holmes EC, Barrett ADT, 2007 Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas. PLoS Pathog 3(5): e75 [ $\overline{\text { I }}$ ).
$\boldsymbol{\nu}_{\mathbf{m}}$ All the files needed for this tutorial can be downloaded from here (/tutorials/workshop_rates_and_dates/files/YFVtutorialFiles.zip). If you download this zipped folder, there is no need to download other files/fold linked further in the tutorial.

## Loading the data into BEAUti

音 The data file is called 'YFV. nex' and can be downloaded from here (/tutorials/workshop_rates_and_dates/files/YFV._nex). nalysis.


Double-click on the File Name in the table (but not on Partition Name) to display the actual sequence alignment:


## Specifying a taxon set

 the small "plus" button at the bottom left of the panel:

Data: 71 taxa, 1 partition

 clade.

 African taxa (the country of sampling is included at the end of the taxa names). Check there are only African countries on the left (there should be 21) and only American countries on the right (there should be 50).

For more information on creating taxon sets, see this page (taxon_sets)
After these operations, the screen should look like this:


## Setting the tip dates



 to specify the dates of the sequences in BEAUti is to use the Parse Dates button at the top of the Tips panel. Clicking this will make a dialog box appear:

 field (such as the some YFV sequences, above) then you can specify how to find the one that corresponds to the date of sampling. See this page for details about the various options for setting dates in this panel (tip_dates). For the YFV sequences you can keep the default Defined just by its order and Order: first (but make sure that the Parse as a number option is selected).
 case, no additional settings are needed. So, we can press OK.


The Height column lists the ages of the tips relative to time 0 (in our case 2009).

Tip: There are many other options for reading and parsing tip dates in different formats. See this page for a more detailed description of these options. (tip dates.html).
 accommodate the sampling time uncertainty - see here (sampling_tipdates).

## Setting the evolutionary model

 amino acids (or traits). This tutorial assumes that you are familiar with the evolutionary models available - however there are a couple of points to note about selecting a model in BEAUti:

## Substitution Model:

For nucleotide data, this is a choice of JC, HKY, GTR or TN93. Other substitution models are possible by constraining one of these model. See this page for more details (custom_substitution_models).

## Base frequencies:

The nucleotide base frequencies can be Estimated (estimated as a parameter in the model), Empirical (estimated emprically from the data and then fixed) or All equal (fixed to be 0.25 each).

## Site Heterogeneity Model:

A choice of the discrete gamma distribution model, the invariant site model or both.

## Partition into codon positions

Selecting the Partition into codon positions option assumes that the data are aligned as codons. This option will then estimate a separate rate of substitution for each codon position, or for $1+2$ versus depending on the setting.

## Unlink substitution model across codon positions:

Selecting the Unlink substitution model across codon positions will specify that BEAST should estimate a separate transition-transversion ratio or general time reversible rate matrix for each codon position.

## Unlink rate heterogeneity model across codon positions:

Selecting the Unlink rate heterogeneity model across codon positions will specify that BEAST should estimate set of rate heterogeneity parameters (gamma shape parameter and/or proportion of invariant sites) for each codon position.

## Unlink base frequencies across codon positions

Selecting the Unlink base frequencies across codon positions will specify that BEAST should estimate a separate set of base frequencies for each codon position.
 variation among sites:


## Setting the clock model

Click on the Clocks tab at the top of the main window. We will perform our initial run using the (default) strict molecular clock model:


## Setting the starting tree and tree prior

 (tree_priors).


## Setting up the priors

Review the prior settings under the Priors panel:

 example of an improper prior.
 workshop tutorial). To change the prior on the constant. popSize for example, click on the corresponding prior and a prior selection window will appear. Set the prior to a lognormal distribution with mu $=1$ and sigma $=10$. The graphical representation of this prior distribution indicates that most prior mass is put on relatively small values, but the density remains sufficiently diffuse over larger values. <Notice that the prior turns black after confirming this setting by clicking "OK".>

 sampling dates (they are contemporaneous), or when the sampling time range is trivial for the evolutionary scale of the taxa, the substitution rate can be fixed to a value based on another source, or better, a prior



## Setting up the operators


 transition kernels that propose changes to the tree. There is also an option to fix the tree topology as well as a 'new experimental mix', which is currently under development with the aim to improve mixing for large phylogenetic trees.

The Operators panel in BEAUti has a table that lists the parameters, their operators and the tuning settings for these operators:


 uniform operator simply picks a new value uniformly within a range. Some parameters relate to the tree or to the divergence times of the nodes of the tree and these have special operators.
 rates and heights ) will fix the rate to the initial value. The initial value for a parameter is set in the Priors table.



 standard output. In general, the auto-optimization of the operators works well end and nothing needs to be changed.
 their operators down-weighted so that they are not changed as often.

 trees. These options turn operators on and off so can be overridden using the In use switches.
In most cases, no changes are required to this table but operators can be 'turned-off' which has the effect of fixing the parameter to its initial value.
For this analysis, no changes are required to this table.

## Setting the MCMC options


 later how the resulting log file can be analyzed using Tracer in order to examine whether a particular chain length is adequate.



 probably want to aim to store no more than 10,000 samples so this should be set to something >= chain length / 10,000.
 the sampling frequencies to 100 .

Tip: You can set the screen sampling frequency something different from the main log files. Here, the analysis is going to run very fast so printing to the screen every 100 steps will cause a large amount of information to scroll up the screen. Try setting the Echo state to screen option to 10000 resulting in only 100 updates to the screen as the analysis runs.
 parameters and the trees. These will be set to a default based on the file stem name.
(1) Note: On Windows machines the operating system patronisingly hides the extensions of files from you. It is sometimes easier to add an additional extension . txt to the log and the trees file - Windows will hic the . txt but still show you the . log and . trees extensions so you can distinguish the files.
 data. Also, one can chose to perform marginal likelihood estimation to assess model fit; we will return to this in a later tutorial.

## Saving and Loading BEAUti files

 settings and data in BEAUti can be saved and loaded at a later time. We suggest you save BEAUti files with the extension '.beauti'.
(i) Note: Just as BEAUti files cannot be read and understood by BEAST, BEAST XML files cannot be reloaded back into BEAUti. They can however be 'Imported' just like NEXUS or FASTA files. The sequence dat contained within will be imported as will all the tipdates and certain other information.

## Generating the BEAST XML file

 the file (and will indicate if any are improper). Continue and choose a name for the file - it will offer the name you gave it in the MCMC panel and we usually end the filename with '.xml' (although see the note, above, extensions on Windows machines - you may want to give the file the extension '.xml.txt').

Tip: For convenience, leave the BEAUti window open so that you can change the values and re-generate the BEAST file as required later in this tutorial.

## Running BEAST

We are now ready to run the file through BEAST
n BEAST by double clicking on the BEAST icon.

The following dialog box will appear:


All you need to do is to click the Choose File... button, select the XML file you created in BEAUti, above, and press Run. For information about the other options see the page on the BEAST program (beast)


BEAST v1.10.0 Prerelease \#VEME2017, 2002-2017
Bayesian Evolutionary Analysis Sampling Trees Designed and developed by
Alexei J. Drummond, Andrew Rambaut and Marc A. Suchard

## Department of Computer Science <br> University of Auckland

alexei@cs.auckland.ac.nz

Institute of Evolutionary Biology
University of Edinburgh
a.rambaut@ed.ac.uk

David Geffen School of Medicine University of California, Los Angeles
msuchard@ucla.edu

Downloads, Help \& Resources:
http://beast. community
Source code distributed under the GNU Lesser General Public License:
http://github.com/beast-dev/beast-mcmc

```
Random number seed: 1503410333443
Parsing XML file: YFV.xml
Read alignment: alignment
    Sequences = 71
        Sites = 654
    Datatype = nucleotide
Site patterns 'CP1.patterns' created from positions 1-654 of alignment 'alignment'
    only using every 3 site
    unique pattern count = 59
Site patterns 'CP2.patterns' created from positions 2-654 of alignment 'alignment'
    only using every 3 site
    unique pattern count = 33
Site patterns 'CP3.patterns' created from positions 3-654 of alignment 'alignment'
    only using every 3 site
    unique pattern count = 201
Creating the tree model, 'treeModel'
    initial tree topology = (...)
    tree height = 69.38328510064179
Using strict molecular clock model.
Creating state frequencies model 'frequencies': Initial frequencies = {0.25, 0.25, 0.25, 0.25}
Creating HKY substitution model. Initial kappa = 2.0
Creating state frequencies model 'frequencies': Initial frequencies = {0.25, 0.25, 0.25, 0.25}
Creating HKY substitution model. Initial kappa = 2.0
Creating state frequencies model 'frequencies': Initial frequencies = {0.25, 0.25, 0.25, 0.25}
Creating HKY substitution model. Initial kappa = 2.0
Creating site rate model:
    with initial relative rate = 1.0
    4 category discrete gamma with initial shape = 0.5
Creating site rate model:
    with initial relative rate = 1.0
    4 category discrete gamma with initial shape = 0.5
Creating site rate model:
    with initial relative rate = 1.0
    4 category discrete gamma with initial shape = 0.5
.
.
Creating the MCMC chain:
    chainLength=100000
    autoOptimize=true
    autoOptimize delayed for 1000 steps
```

Next it prints out a block of citations for BEAST and for the individual models and components selected. This is intended to help you write up the analysis, specifying and citing the models used:

Citations for this analysis:

## FRAMEWORK

BEAST primary citation:
Drummond AJ, Suchard MA, Xie Dong, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 29, 1969-1s . DOI:10.1093/molbev/mss075

## SUBSTITUTION MODELS

HKY nucleotide substitution model: Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol.. 22, 1t 174
Discrete gamma-distributed rate heterogeneity model:
Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J.
l. Evol.. 39, 306-314

## PRIOR MODELS

CTMC Scale Reference Prior model:
Ferreira MAR, Suchard MA (2008) Bayesian analysis of elapsed times in continuous-time Markov chains. Canadian Journal of Statistics.
6, 355-368

 trees for these states).
 have time to go and get a cup of coffee, or lunch, or a two week vacation in the Caribbean.
\# BEAST v1.10.0 Prerelease \#VEME2017
\# Generated Tue Aug 22 14:59:04 BST 2017 [seed=1503410333443]
\# -beagle

| state | Posterior | Prior | Likelihood | rootAge | clock.rate |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | -17832.0434 | -209.3400 | -17622.7035 | 1939.62 | 1.00000 | - |
| 100 | -16759.9962 | -201.5887 | -16558.4075 | 1939.63 | 0.79663 | - |
| 200 | -15788.1880 | -195.6302 | -15592.5578 | 1939.63 | 0.74501 | - |
| 300 | -15339.8944 | -201.7870 | -15138.1074 | 1939.65 | 0.74501 | - |
| 400 | -14704.4588 | -192.4580 | -14512.0008 | 1939.65 | 0.61861 | - |

.

After waiting the expected amount of time, BEAST will finish.

| 99500 | -5947.7998 | -606. 3356 | -5341.4642 | 535.003 | $2.06631 \mathrm{E}-4$ | 43.95 | us/billion | n states |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 99600 | -5944. 2435 | -605.9852 | -5338.2583 | 464.495 | $2.06631 \mathrm{E}-4$ | 43.95 | urs/billion | n states |
| 99700 | -5943.2009 | -606.0432 | -5337.1577 | 471.835 | $1.88318 \mathrm{E}-4$ | 43.94 | us/billion | n states |
| 99800 | -5952.6018 | -610.7744 | -5341.8274 | 549.930 | $2.10672 \mathrm{E}-4$ | 43.95 | urs/billion | n states |
| 99900 | -5944.0227 | -603.4808 | -5340.5419 | 730.490 | $2.08943 \mathrm{E}-4$ | 43.95 | urs/billion | n states |
| 100000 | -5944. 2243 | -600.5219 | -5343.7025 | 598.543 | $2.08943 \mathrm{E}-4$ | 43.95 | us/billion | n states |
| Operator analysis |  |  |  |  |  |  |  |  |
| Operator |  |  |  | Tuning | Count | Time | Time/Op | Pr(accept) |
| scale(CP1.kappa) |  |  |  | 0.357 | 1153 | 187 | 0.16 | 0.2402 |
| scale(CP2.kappa) |  |  |  | 0.219 | 1049 | 149 | 0.14 | 0.2479 |
| scale(CP3. kappa) |  |  |  | 0.55 | 1116 | 410 | 0.37 | 0.2348 |
| frequencies |  |  |  | 0.07 | 1105 | 438 | 0.4 | 0.2471 |
| scale(CP1.alpha) |  |  |  | 0.385 | 1109 | 224 | 0.2 | 0.2435 |
| scale(CP2.alpha) |  |  |  | 0.245 | 1161 | 189 | 0.16 | 0.2343 |
| scale(CP3.alpha) |  |  |  | 0.46 | 1158 | 397 | 0.34 | 0.2383 |
| scale(clock.rate) |  |  |  | 0.747 | 3406 | 1345 | 0.39 | 0.2372 |
| up:clock.rate down: nodeHeights(treeModel) |  |  |  | 0.905 | 3471 | 979 | 0.28 | 0.2264 |
| allMus |  |  |  | 0.129 | 3430 | 957 | 0.28 | 0.2423 |
| subtreeSlide(treeModel) |  |  |  | 55.702 | 16910 | 1668 | 0.1 | 0.2367 |
| Narrow Exchange(treeModel) |  |  |  |  | 17007 | 1449 | 0.09 | 0.1364 |
| Wide Exchange(treeModel) |  |  |  |  | 3373 | 184 | 0.05 | 0.0044 |
| wilsonBalding(treeModel) |  |  |  |  | 3342 | 466 | 0.14 | 0.0093 |
| scale(treeModel. rootHeight) |  |  |  | 0.304 | 3441 | 324 | 0.09 | 0.2479 |
| uniform(nodeHeights(treeModel)) |  |  |  |  | 34356 | 4387 | 0.13 | 0.4551 |
| scale(constant.popSize) |  |  |  | 0.514 | 3413 | 132 | 0.04 | 0.2429 |
| 17.445 seconds |  |  |  |  |  |  |  |  |

 be ignored.

## Analysing the BEAST output

analyze the results of running BEAST we are going to use the program Tracer (tracer). Run Tracer by double clicking on the Tracer icon.

 including various statistics and continuous parameters. Selecting a trace on the left brings up analyses for this trace on the right hand side depending on the tab that is selected at the top. When first opened, the
 In the top right of the window is a table of calculated statistics for the selected trace. The statistics and their meaning are described in the table below.

## mean

The mean value of the samples

## stderr of mean

The standard error of the mean. This takes into account the effective sample size so a small ESS will give a large standard error

## stdev

The standard deviation of the samples.

## variance

The variance of the samples.

## median

The median value of the samples.

## value range

The full range of values sampled.

## geometric mean

The central tendency or typical value of the set of samples.

## 95\% HPD Interval

The lower bound and upper bound of the highest posterior density (HPD) interval. The HPD is the shortest interval that contains 95\% of the sampled values.

## auto-correlation time (ACT)

The average number of states in the MCMC chain that two samples have to be separated by for them to be uncorrelated (i.e. independent samples from the posterior). The ACT is estimated from the samples in 1 trace (excluding the burn-in).

## effective sample size (ESS)

The effective sample size (ESS) is the number of independent samples that the trace is equivalent to. This is calculated as the chain length (excluding the burn-in) divided by the ACT.

## number of samples

The number of samples (values) used to compute the above statistics. This will be the total number of samples minus the burn-in.
 contained a lot of correlated samples and thus may not represent the posterior distribution well. In the bottom right of the window is a frequency plot of the samples which is expected given the low ESSs is extremely rough.

If we select the tab on the right-hand-side labelled Trace we can view the raw trace, that is, the sampled values against the step in the MCMC chain:

 values. The ESS for the age of the root ( treeModel. rootAge ) is only about 6 so we are only getting 1 independent sample to every 167 actual samples).
 and render estimates of ESS unreliable. Set the burn-in to 20,000 (doule-click on the number in the trace file table to edit it). You should see something like this:

 autocorrelated values.
 chain length (e.g. 10,000,000).
$\downarrow_{m}$ To continue the tutorial without having to wait for a long run to complete, you can make use of the BEAST output files provided with this tutorial (a chain length of $20,000,000$ and logged every 10,000 sample). The files, YFV. log and YFV. trees, YFVLongRuns. zip, can be downloaded from here (/tutorials/workshop_rates_and_dates/files/YFVLongRuns.zip).


 suggest poor mixing.

 You should see a plot similar to this:



 Legend. This will show the posterior probability densities for the relative substitution rate at all three codon positions overlaid:


Note that the three rates are markedly different, what does this tell us about the selective pressure on this gene?
 Because we have dated the tips of the tree, these statistics are given as the calendar year with the present day being on the right hand side (the most recently sampled sequence is from 2009).

(1) Note: Negative numbers denote years as Before the Common Era (BCE) but technically the calendar goes from 1 BCE to 1 CE - there was no year zero. So if you want to report BCE years, you should take tt absolute value and add 1

 (2007) suggest that the introduction of YFV into the Americas is likely the result of the Atlantic slave trade which occurred from the 16th to 19th Centuries.

## Summarizing the trees



 the support values reported for the resolved nodes in the consensus tree will be the posterior probability of those clades.
In this tutorial, however, we are going to use a tool that is provided as part of the BEAST package to summarize the information contained within our sampled trees.

 posterior support and the average rate of evolution on each branch (for models where this can vary). The program calculates these values for each node or clade observed in the specified 'target' tree.

## Burnin

This is either the number of states or the number of trees in the input file that should be excluded from the summarization. This value is given as the number of trees rather than the number of steps in the MCMC For the example, with a chain of $20,000,000$ steps, a burn-in of $10 \%$ as the number of states can be specified as $2,000,000$ states. Alternatively, if sampling every 10000 steps, there are 2000 trees in the file. To a $10 \%$ burnin, set the burnin as the number of trees value to 200 .

## Posterior probability limit

This is the minimum posterior probability for a node in order for TreeAnnotator to store the annotated information. I.e., a value of 0.5 will mean that only nodes in the MCC tree that are present in at least $50 \%$ of $t$ posterior distribution of trees will have posterior probabilities, height HPDs etc.

## Target tree type

This has two options "Maximum clade credibility" or "User target tree". For the latter option, a NEXUS tree file can be specified as the Target Tree File, below. For the former option, TreeAnnotator will examine eve in the Input Tree File and select the tree that has the highest product of the posterior probabilities of all its nodes.

## Node heights

This option specifies what node heights (times) should be used for the output tree. If the 'Keep target heights' is selected, then the node heights will be the same as the target tree. Node heights can also be summarised as a Mean or a Median over the sample of trees. Sometimes a mean or median height for a node may actually be higher than the mean or median height of its parental node (because particular ance descendent relationships in the MCC tree may still be different compared to a large number of other tree sampled). This will result in artifactual negative branch lengths, but can be avoided by the 'Common Ance: heights' option.

## Target Tree File

If the "User target tree" option is selected then you can use "Choose File..." to select a NEXUS file containing the target tree.

## Input Tree File

Use the "Choose File..." button to select an input trees file. This will be the trees file produced by BEAST. Output File - Select a name for the output tree file
 YFV.trees as the Input Tree File.
 be loaded into any tree drawing package that supports this. However, it also contains additional information that can only be displayed using the FigTree program.

## Viewing the annotated tree

Tree (figtree) is a user-friendly, graphical program for viewing trees and the associated information provided by BEAST. Double-click on the FigTree icon to run it.

 node. In order to do this you need to change some of the settings.

First, re-order the node order by Increasing Node Order under the Tree menu. Click on Branch Labels in the control panel on the left and open its section by clicking on the arrow on the left. Now select posterior under the Display: option.
 Reverse Axis option in the Scale Axis panel and open the Time Scale section of the control panel setting the Offset to 2009.0
 options actually alter the tree's topology or branch lengths in anyway so feel free to explore the options and settings ( Highlight or Collapse the Americas clade, for example ).


You can also save the tree and this will save most of your settings so that when you load it into FigTree again it will be displayed almost exactly as you selected.
Finally, the tree can also be exported to a graphics file (pdf, svg, etc.) using the options in the File menu.

How do the viruses from the Americas cluster relative to the African viruses and what conclusions can we draw from the inferred time scale?

## Relaxed molecular clock analysis

A relaxed clock analysis using a lognormal distribution can also be set up for this data set, by selecting the relevant clock model in the Clocks tab:


[^0]$\boldsymbol{\lambda}_{\mathbf{m}}$ You can make use of the BEAST output files provided with this tutorial (a chain length of 50,000,000 and logged every 50,000 sample). The files, YFV. log and YFV. trees, YFVLongRuns. zip, can be downloaded from here (/tutorials/workshop_rates_and_dates/files/YFVLongRuns.zip).

Is the default 10\% burn-in sufficient for this sample?

Does the standard deviation estimate for the lognormal distribution in the relaxed clock suggest significant rate variation among lineages? How can we formally test this?

Does the hypothesis of YFV introduction in the Americas during the slave trade also hold under this model?

## References

Bryant JE, Holmes EC and Barrett ADT (2007) Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas. PLoS Pathogens, 3: e75. doi: 10.1371/journal.ppat.0030075 ©
Help and documentation
The BEAST website: http://beast.community $\boldsymbol{\top}$
Tutorials: http://beast.community/tutorials $\boldsymbol{\square}$
Frequently asked questions: http://beast.community/faq $\boldsymbol{\lambda}$

Tags: tutorial (tag_tutorial.html) workshop (tag_workshop.html)


[^0]:    Also for this analysis, we made available the output files for a longer run

