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Key to population genetics

Population size
Structure
Migration
Selection
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Tree-based population genetics

The coalescent . . .

Models the ancestral relationships of a random sample of
individuals taken from a large background population.

Describes a probability distribution on ancestral trees given a
population history

Covers ancestral trees, not sequences, and its simplest from
assumes neutral evolution.
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Population history inference

A population history → often called a demographic

Inference: learn about changes in population size through time

Applications include:
I Reconstructing infection disease epidemics
I Investigating viral dynamics within hosts
I Using viral sequences as genetic markers for their hosts and host

demographics
I Identifying population bottlenecks caused by:

F Changes in climate/environment? aridifcation, ice ages
F Competition with other species? humans
F Transmission between hosts in viruses
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Information pipe-line
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Coalescent inference

Coalescent
theory
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Simple model of reproduction

For a randomly chosen pair of individuals, they share a common
ancestor (coalesce) in the previous generation with probability 1/N .
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Wright-Fisher reproduction model

A constant population size of N
individuals (usually 2N)
Each new (non-overlapping)
generation “chooses" its parents from
the previous generation at random
with replacement
No geographic/social structure, no
recombination, no selection
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Sample tree from a Wright-Fisher population

A sample tree of 3 sequences
from a population of N = 10
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Kingman discrete-time coalescent

2 individuals coalesce in
1 generation w.p. 1

N
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Kingman continuous-time coalescent

Kingman (1982) J Appl Prob 19, 27-42

Kingman (1982) Stoch Proc Appl 13, 235-48

Let t ∼ j define a rescaled time
in the past, and
Assume a sample of n
individuals with n� N

Then, the waiting time for k
individuals to have k − 1
ancestors

P(uk ≤ t) = 1− e−(k2) tN

Exponential (memoryless) →
defines a continuous-time
Markov chain

E(uk) =
2N

k(k − 1)
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Kingman coalescent: CTMC

The number of ancestral lineages
decreases by one at each coalescence
The process continues until the most
recent common ancestor (MRCA) is
reached
What is the expected time to MRCA?

E
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n∑
k=2

uk

)
=

n∑
k=2

E(uk)

=

n∑
k=2

2N

k(k − 1)

= 2N

(
1− 1

n

)
Note: tMRCA/2 < E(u2)
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Kingman coalescent: probability distribution

Given a known tree T from a sample of
individuals from a population
The coalescent allows us to calculation the
probability P(T |N)

Or, the inverse problem : learn about N from T
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N governs the rate of coalescence

Large and small population sizes
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Quiz

Which population is large?
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Coalescent assumptions

The major weakness of the coalescent lies in its simplifying
assumptions

Neutral evolution?
Reproductive variance?
Panmitic population?

But, does this matter?
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Solution: Effective population size

Consider an abstract parameter, the effective population size Ne

The Ne of a real biological population is the size of an idealized
Wright-Fisher population that loses or gains genetic diversity at
the same rate

Ne is generally smaller than the census population

The coalescent Ne provides the time-to-ancestry distribution for a
sample tree from a real population
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Variable population size coalescent

Changes in Ne reflect changes in the census population size

Growing population
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Variable population size coalescent
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Parametric models of N(t) through time

The standard coalescent can be extended to accommodate various
scenarios of demographic change through time

However, few parametric forms (constant, exponential, logistic) are
available. Can use piece-wise combinations
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Review: continuous-time coalescent

Time

t4

t3

t2

t1

u4

u3

u2
Time measured in generation units

N = const → uk ∼ Exp
[(
k
2

)
N
]

N = N(t) →
Pr(uk > t|tk+1) = e

−(k2)
∫ t+tk+1
tk+1

N
N(u)

du

uk are not independent any more

Constant
population size

Exponential
growth

N(t) = N

N(t) = Ne−100t
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Piecewise constant demographic model

u3 u4

t2t1 t3 t4 t5= 0

u2

42Number of Lineages: 53

5u

Isochronous Data
Ne(t) = θk for tk < t ≤ tk−1.

u2, . . . , un are independent

Pr (uk | θk) = k(k−1)
2θk

e
− k(k−1)uk

2θk

Pr (F |θ) ∝∏n
k=2 Pr (uk | θk)

Equivalent to estimating exponential mean from one observation.

Need further restrictions to estimate all effective pop sizes θ!
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Piecewise constant demographic model

Number of Lineages:

41 w51w50 w52

u3 u4 u5

w30 w40

u2

w20

343432 1

w

Heterochronous Data
w20, . . . , wnjn are independent

Pr(wk0 | θk)=
nk0(nk0−1)

2θk
e
−nk0(nk0−1)wk0

2θk

Pr(wkj | θk)=e
−
nkj(nkj−1)wkj

2θk , j>0

Pr (F |θ) ∝
∏n
k=2

∏jk
j=0 Pr

(
wkj | θk

)

Equivalent to estimating exponential mean from one observation.

Need further restrictions to estimate all effective pop sizes θ!
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Previous priors to restrict θ

Strimmer and Pybus (2001)
Make Ne(t) constant across some inter-coalescent times
Group inter-coalescent intervals with AIC

Drummond et al. (2005)
Multiple change-point model with fixed number of change-points
Change-points allowed only at coalescent events
Joint estimation of phylogenies and population dynamics

Opgen-Rhein et al. (2005)
Multiple change-point model with random number of change-points
Change-points allowed anywhere in interval (0, t1]
Posterior is approximated with rjMCMC
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Smoothing priors - Gaussian Markov random fields
Go to the log scale xk = log θk

Pr(x |ω) ∝ ω(n−2)/2 exp

[
−ω
2

n−2∑
k=1

1

dk
(xk+1 − xk)2

]

31x x4 xn⌧2 xn⌧1

d1 d2 d3 dn−2
x2 x

Weighting Schemes

1. Skyride : weights dk determined by tree (in relative time)

2. Skygrid : dk on a regular grid in absolute time + multi-locus

Pr(x, ω) = Pr(x |ω)Pr(ω)

Pr(ω) ∝ ωα−1e−βω, diffuse prior with α = 0.01, β = 0.01

SISMID University of Washington Coalescent theory



MCMC algorithm

Pr (G,Q,x |D) ∝ Pr (D |G,Q)Pr (Q)Pr (G |x)Pr (x)
Updating Population Size Trajectory

Use fast GMRF sampling (Rue et al., 2001, 2004)
Draw ω∗ from an arbitrary univariate proposal distribution
Use Gaussian approximation of Pr(x |ω∗,G) to propose x∗

Jointly accept/reject (ω∗,x∗) in Metropolis-Hastings step

Object-Oriented Reality?

BEAST = Bayesian Evolutionary Analysis Sampling Trees

Pr(G |x,D,Q) - sampled by BEAST
Pr(Q |G,D) - sampled by BEAST
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Simulation: constant population size
Classical Skyline Plot
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Simulation: exponential growth
Classical Skyline Plot
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Simulation: exponential growth with bottleneck
Classical Skyline Plot
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Accuracy in simulations

Percent error =
∫ TMRCA

0

|N̂e(t)−Ne(t)|
Ne(t)

dt× 100,

Table: Percent error in simulations. We compare percent errors, defined in
equation (1), for the Opgen-Rhein multiple change-point (ORMCP), uniform
and fixed-tree time-aware Gaussian Markov random field (GMRF) smoothing,
BEAST multiple change-point (MCP) model, and BEAST GMRF smoothing.

Model Constant Exponential Bottleneck
ORMCP 14.0 1.7 7.4
Uniform GMRF 32.8 1.5 5.9
Time-Aware GMRF 2.8 1.2 4.8
BEAST MCP 38.2 1.6 5.2
BEAST GMRF 1.7 1.0 5.4
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Multi-locus performance

Adding loci improves dynamics recovery under the Skygrid
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Figure 3: Simulation for a population that experiences exponential growth followed

by a decline. See Figure 1 for the legend explanation. As in Figure 2, the trajectories

are constant (and not informative) during time range (�10,�7) which precedes the

greatest root height of the trees used to generate the data sets. The plots illustrate

the improvement in correctly recovering past population trends by incorporating data

from additional loci.

41

Relative
loci % error
1 1.23
2 1.66
5 1.90
10 2.41

Table: Relative error of
extended Bayesian skyline
plot (EBSP) to skygrid
under exponential growth
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GMRF Precision Prior Sensitivity

ω - GMRF precision, controls smoothness
Usually Pr(ω |D) is sensitive to perturbations of Pr(ω)
Not in our coalescent model!

GMRF Precision Prior and Posterior
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HCV Epidemics in Egypt
Estimated Genealogy BEAST GMRF
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PAT Starts

Random population
sample
No sign of population
sub-structure

Parenteral
antischistosomal
therapy (PAT) was
practiced from 1920s
to 1980s

Bayes Factor 12,880
in favor of constant
population size prior
to 1920
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Influenza Intra-Season Population Dynamics
2001−2002 Season
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New York state hemagglutinin sequences serially sampled
(Ghedin et al., 2005)
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Summary

Genealogies inform us about population size trajectories
Prior restrictions are necessary for non(semi)-parametric
estimation of Ne(t)

Smoothing can be imposed by GMRF priors

Software: skyride and skygrid

Implemented as coalescent priors in BEAST
Exploit approximate Gibbs sampling
Faster convergence? Better mixing?

References:
Minin et al. (2008) Molecular Biology & Evolution, 25, 1459–1471.
Gill et al. (2013) Molecular Biology & Evolution, 30, 713–724.
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Active ideas: GMRFs are highly generalizable

Hierarchical Modeling

Flu genes display similar (not equal) dynamics

Incorporate multiple loci
simultaneously
Pool information for statistical
power
No need for strict equality

Introducing Covariates

Augment field at fixed observation times
Formal statistical testing for:

I External factors (environment, drug tx)
I Population dynamics (bottle-necks, growth)

Gill et al. (in press) Systematic Biology.
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