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Review: Continuous-Time Coalescent

Time measured in N generation units
N = const → uk ∼ Exp
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N(t) = Ne−100t
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Sequence Data → Population Model Parameters

accggaaacgcgcgaaatttacacggggg
accggaaacgcgcgaaatttacacggggg

accggaaacgcgcgaaatttacacggggg
accggaaacgcgcgaaatttacacggggg
accggaaacgcgcgaaatttacacggggg N(t)

Time

GenealogySequence Data Pop. Dynamics

More Formally (Bayesian Approach):
Pr (G, Q,θ |D) ∝ Pr (D |G, Q) Pr (Q) Pr (G |θ) Pr (θ)

G - genealogy with branch lengths
Q - substitution matrix
θ - population genetics parameters
D - sequence data
Pr (G |θ) - Coalescent prior
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Piecewise Constant Demographic Model

u3 u4

t2t1 t3 t4 t5= 0

u2

42Number of Lineages: 53

5u

Isochronous Data
Ne(t) = θk for tk < t ≤ tk−1.

u2, . . . ,un are independent

Pr (uk | θk ) = k(k−1)
2θk

e−
k(k−1)uk

2θk

Pr (F |θ) ∝
∏n

k=2 Pr (uk | θk )

Equivalent to estimating exponential mean from one observation.

Need further restrictions to estimate θ!
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Current Approaches

Strimmer and Pybus (2001)
Make Ne(t) constant across some inter-Coalescent times
Group inter-Coalescent intervals with AIC

Drummond et al. (2005)
Multiple change-point model with fixed number of change-points
Change-points allowed only at Coalescent events
Joint estimation of phylogenies and population dynamics

Opgen-Rhein et al. (2005)
Multiple change-point model with random number of
change-points
Change-points allowed anywhere in interval (0, t1]
Posterior is approximated with rjMCMC
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Smoothing Prior (GMRF approach)
Go to the log scale xk = log θk

Pr(x |ω) ∝ ω(n−2)/2 exp
[

−
ω

2

n−2∑

k=1

1
dk

(xk+1 − xk )2
]

31x x4 x
n−2

x
n−1

d1 d2 d3 dn−2

x2 x

Weighting Schemes
1 Uniform: dk = 1
2 Time-Aware: dk = uk+1+uk

2

Pr(x,ω) = Pr(x |ω)Pr(ω)

Pr(ω) ∝ ωα−1e−βω, diffuse prior with α = 0.01, β = 0.01
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MCMC Algorithm

Pr (G, Q, x |D) ∝ Pr (D |G, Q) Pr (Q) Pr (G |x) Pr (x)

Updating Population Size Trajectory
Use fast GMRF sampling (Rue et al., 2001, 2004)
Draw ω∗ from an arbitrary univariate proposal distribution
Use Gaussian approximation of Pr(x |ω∗, G) to propose x∗

Jointly accept/reject (ω∗, x∗) in Metropolis-Hastings step

Object-Oriented Reality?

BEAST = Bayesian Evolutionary Analysis Sampling Trees

Pr(G |x, D, Q) - sampled by BEAST
Pr(Q |G, D) - sampled by BEAST
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Simulation: Constant Population Size
Classical Skyline Plot
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Simulation: Exponential Growth
Classical Skyline Plot
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Simulation: Exponential Growth with Bottleneck
Classical Skyline Plot
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Accuracy in Simulations

Percent Error =

∫ TMRCA

0

|N̂e(t) − Ne(t)|
Ne(t)

dt × 100, (1)

Table: Percent error in simulations. We compare percent errors, defined in
equation (1), for the Opgen-Rhein multiple change-point (ORMCP), uniform
and fixed-tree time-aware Gaussian Markov random field (GMRF) smoothing,
BEAST multiple change-point (MCP) model, and BEAST GMRF smoothing.

Model Constant Exponential Bottleneck
ORMCP 14.0 1.7 7.4
Uniform GMRF 32.8 1.5 5.9
Time-Aware GMRF 2.8 1.2 4.8
BEAST MCP 38.2 1.6 5.2
BEAST GMRF 1.7 1.0 5.4
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GMRF Precision Prior Sensitivity
ω - GMRF precision, controls smoothness
Usually Pr(ω |D) is sensitive to perturbations of Pr(ω)

Not in our Coalescent model!

GMRF Precision Prior and Posterior

log τ
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HCV Epidemics in Egypt
Estimated Genealogy BEAST GMRF
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PAT Starts

Random population
sample
No sign of population
sub-structure

Parenteral
antischistosomal
therapy (PAT) was
practiced from 1920s
to 1980s

Bayes Factor 12,880
in favor of constant
population size prior
to 1920
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Influenza Intra-Season Population Dynamics
1999−2000 Season
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Influenza Intra-Season Population Dynamics
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Summary

Genealogies inform us about population size trajectories
Prior restrictions are necessary for non(semi)-parametric
estimation of Ne(t)
Smoothing can be imposed by GMRF priors

Software: The Skyride

Implemented as a Coalescent prior in
BEAST
Exploits approximate Gibbs sampling
Faster convergence? Better mixing?

Reference: Minin, Bloomquist and Suchard (2008) Molecular Biology &
Evolution, 25, 1459–1471.
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Active Ideas: GMRFs are Highly Generalizable

Hierarchical Modeling

Flu genes display similar (not equal) dynamics

Incorporate multiple loci
simultaneously
Pool information for statistical power
No need for strict equality

Introducing Covariates

Augment field at fixed observation times
Formal statistical testing for:

External factors (environment, drug tx)
Population dynamics (bottle-necks, growth)
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