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Phylogeographic methods facilitate inference of the geo-
graphical history of genetic lineages. Recent examples
explore human migration and the origins of viral pan-
demics. There is longstanding disagreement over the
use and validity of certain phylogeographic inference
methodologies. In this paper, we highlight three distinct
frameworks for phylogeographic inference to give a
taste of this disagreement. Each of the three approaches
presents a different viewpoint on phylogeography, most
fundamentally on how we view the relationship be-
tween the inferred history of a sample and the history
of the population the sample is embedded in. Satisfac-
tory resolution of this relationship between history of
the tree and history of the population remains a chal-
lenge for all but the most trivial models of phylogeo-
graphic processes. Intriguingly, we believe that some
recent methods that entirely avoid inference about the
history of the population will eventually help to reach a
resolution.

Emerging pathways of phylogeographic inference
The influence of phylogeography is spreading throughout
biology. Among other examples, phylogeographic techni-
ques have enabled us to infer the origins of mice [1],
modern humans [2,3], and man’s ‘‘best friend’’, the domes-
ticated dog [4]. Phylogeographic analyses also enable pub-
lic health officials to understand the origin and spread of
emerging infectious diseases [5–8]. In spite of these suc-
cesses, disagreement and confusion persist regarding the
most effective ways to learn about phylogeographic pro-
cesses from geospatially identified molecular sequence
data. Major points of contention include: how to model
the phylogeographic spread of represented taxa under
study; what statistical frameworks provide effective infer-
ence tools; and how to best reconcile population frame-
works with geographic information. Over the past few
years, these questions have been extensively addressed
in other reviews and we do not repeat points already made
[9–12]. Instead, we highlight several newer phylogeo-
graphic approaches: a Bayesian approach to nested clade
phylogeographic analysis (NCPA) [13,14], stochastic-pro-
cess-driven spatial diffusion models that map viral
outbreaks [15], [16], and several recent population genetic
approaches to phylogeography [17–19]. We draw parallels
between these methods in an attempt to shed light on

their similarities and differences. We hope that by expos-
ing a general audience to a cross-section of methods, new
perspectives will be shed on longstanding issues in phylo-
geography.

Opinion

Glossary

Ancestral history: any information about the direct ancestors of a sample of
molecular sequences. This term can refer, for example, to inferred sequence
composition or phenotype, such as geography, and is often associated with a
time scale.
Approximate Bayesian computation (ABC): simulation technique used to draw
statistical inference based on data summaries, often used when computation
of the full data likelihood is impractical.
Bayes factor: ratio of the marginal likelihoods of a given data set comparing
two competing models that naturally incorporates uncertainty about unknown
parameters in both models.
Bayesian stochastic search variable selection: framework that estimates the
posterior probability that a particular explanatory variable should be included
in a model. The method is most commonly used in Bayesian inference of linear
regression.
BEAST: open-source MCMC package for analysis of several Bayesian evolu-
tionary models for molecular sequences and associated traits, such as
geography.
Brownian diffusion: stochastic process on the real number line or, in the work
described in this article, on a geographic surface in which increments are
independent and normally distributed with mean zero and variance that scales
linearly with duration.
Continuous-time Markov chain: stochastic process on a discrete state
space or, in the work described in this article, a set of locations that is
memoryless and whose waiting times between transitions are exponentially
distributed.
Comparative approach: framework for relating observed phenotype informa-
tion to an evolutionary history. Nested clade phylogeographic analysis
assumes that geography is a phenotypic trait and falls into this category.
Model-based approach: method in which a fully specified probabilistic model
describes how observed data are generated. Unknown parameters can
characterize this model, and statistical inference involves estimating and
testing these parameters.
Nested clade phylogeographic analysis (NCPA): resampling-based approach
for inference of geographic information from haplotype trees and networks.
Phylogeography: interdisciplinary field involving study of the evolutionary
history and geographic spread of biological populations or taxa.
Population genetics: as used in this article, a framework that uses a sample of
molecular sequences to make statements about a population under study. The
coalescent is the most widely used population genetics framework. Extensions
of the coalescent to phylogeography typically focus on migration rates
between multiple populations fixed in space.
Spatial diffusion model: application of independent stochastic processes to
describe changes in geographic phenotypes on a two-dimensional surface.
Under the discrete framework described in this article, the surface is divided
into discrete regions and movement between regions is modeled as a
continuous-time Markov chain. Under the continuous diffusion framework,
these regions are subdivided until they become infinitesimal and general-
izations of Brownian diffusion are then considered.
Structured coalescent: extension of the basic coalescent model to multiple
populations. This method focuses on ancestral population sizes and migration
rates between populations.
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imation of the coalescent with recombination, and efficient
calculation can be used for full assessment [9].

In summary,much aswith the previous two approaches,
application of population genetics to phylogeography
remains a vibrant field of research. Highly significant work
is being carried out, but numerous biologically relevant
methods need to be created, implemented and adapted.
This route to phylogeography is far from a dead end.

Three routes to the same destination
With the expansion of phylogeography in new Bayesian
directions involving NCPA and spatial diffusion, the field
might seem to be fragmenting. However, we believe all
three approaches address the same basic question posed
at the beginning of this article: what are the most effec-
tive ways to learn about phylogeographic processes from
geospatially identified molecular sequence data? Essen-
tially, we believe that all three frameworks produce
effective answers, if we know what questions to ask.
Under the comparative approach, if we want to assess

geographical spread and molecular data without model-
ing this spread explicitly, the method of Manolopoulou
will be the most appropriate. If we want to model rates of
spread and take into account geographical features, the
method of Lemey et al. [16] will be most appropriate. If
we want information about population size and migra-
tion, but consider population to be a coarse feature, the
population genetics approach will be most appropriate.
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Figure 1. Three approaches to phylogeography. In all three windows, the data
represent three species (red, purple and blue) sampled across an island (green). For
the comparative approach, the haplotype tree is displayed on the left and concentric
circles on the island represent the geographical distribution of the three species. For
the spatial diffusion approach, the phylogenetic tree superimposed on the
geographical location of the samples is displayed on the left. The phylogenetic
tree is shown in black to reinforce the notion that population information is not
inferred. The gray areas behind the phylogenetic tree and on the island represent a
high-probability region contour for the locations of the ancestors of the taxa
sampled. For the population genetics approach, the five colored polygons represent
the ancestral populations and their sizes. Arrows represent strong migrations
between the populations. Currently, the idealized population polygons abstract all
geographic features to keep the models tractable. This image is based on Hey [17].

Box 3. Open issues approaching solution

Availability of geo-coded sequence data
The inclusion of geographical data in molecular phylogenetics
increases the size and complexity of data sets. As a benefit,
investigators can learn the relationships between several disparate
aspects, gaining a better understanding of biological diversity and
history. A disadvantage of these complex data sets, however, is
their reproducibility and validity. In the past, investigators could
reproduce and validate inferences because models and data sets
were readily available. At present, however, inferences are more
difficult to reproduce because geographic data are rarely provided
with the molecular sequences and many modeling assumptions go
unreported. One way to avoid this difficultly is to require geo-coded
sequence submission and a central online repository in which
investigators can upload their computational scripts. Some journals
have started to require such uploads for publications, but the push
needs to be stronger.

Incorporating geographic features and niche modeling
The structured-coalescent and discretized spatial diffusion ap-
proaches generate models into which researchers can input a
limited amount of information about geographic or niche features.
This input involves the definition of prior distributions for migration
rates between populations or geographic locations. For these forms
of discrete Markov chain models, O’Brien et al. offered advice on
how to make summary statistics about the diffusion process robust
to some of the model misspecification that results from ignoring
additional features [84]. However, it is unclear how effective
informed prior specification will remain when researchers attempt
to learn from observed data which geographic or niche features
significantly affect migration or diffusion. In these situations, direct
modeling of geographic features as hard or soft barriers in a
continuous diffusion framework seems to be a tenable solution.
Ranking of features according to their barrier strength or testing
which strengths do not significantly differ from zero produces a
sound statistical framework. Efficient computation of transition
probabilities along the tree of migration or diffusion in the presence
of multiple, possibly irregular, barriers remains a modeling
challenge.

Next-generation sequencing
With the advent of next-generation sequencing technologies,
biologists can now obtain de novo genomic samples from entire
biological communities. However, metagenomic studies are still in
their infancy. In particular, the analysis and design of metagenomic
studies are unrefined and rudimentary. Advances in computational
efficiency will be vital for application of model-based methods in
this area. Moreover, model-based methods will need to account for
the data collection technology, as well as the phylogeographic
history of a sample under study. Currently, a lack of theoretical tools
is hindering scientific progress in this area.

To tree or not to tree
The relationship between an inferred phylogenetic tree and its
embedded population has been extensively described over the past
30 years [9,62,85]. Nevertheless, this relationship remains poorly
understood, as evidenced by the three distinct approaches high-
lighted in this paper. Put simply, we still poorly understand whether
inferred evolutionary history is a nuisance or a fundamental entity
[86]. Resolution of this issue will probably require extensive work in
the coming decade.
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Nested clade phylogeographic analysis (NCPA)

1. haplotype network
2. geographical 
structure test

1 

Inference Key for the Nested Haplotype Tree Analysis of Geographical Distances 

 

Start with haplotypes nested within a 1-step clade and work up to clades nested within  

the total tree.  If the tree is not rooted through an outgroup or if none of the clades nested 

at the total  tree level have the sum of the outgroup probabilities of their haplotypes 

greater than or equal to 0.95, regard all clades nested at the total tree level as tips.  When 

rooting is deemed reliable, interiors should also refer to the older clades in a nesting 

category, and tips to their evolutionary descendants. 

 

This key is applied only if there are some significant values for Dc, Dn, or I-T within the 

nesting clade.  If there are no statistically significant distances within the clade, the null 

hypothesis of no geographical association of haplotypes cannot be rejected (either 
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imation of the coalescent with recombination, and efficient
calculation can be used for full assessment [9].

In summary,much aswith the previous two approaches,
application of population genetics to phylogeography
remains a vibrant field of research. Highly significant work
is being carried out, but numerous biologically relevant
methods need to be created, implemented and adapted.
This route to phylogeography is far from a dead end.

Three routes to the same destination
With the expansion of phylogeography in new Bayesian
directions involving NCPA and spatial diffusion, the field
might seem to be fragmenting. However, we believe all
three approaches address the same basic question posed
at the beginning of this article: what are the most effec-
tive ways to learn about phylogeographic processes from
geospatially identified molecular sequence data? Essen-
tially, we believe that all three frameworks produce
effective answers, if we know what questions to ask.
Under the comparative approach, if we want to assess

geographical spread and molecular data without model-
ing this spread explicitly, the method of Manolopoulou
will be the most appropriate. If we want to model rates of
spread and take into account geographical features, the
method of Lemey et al. [16] will be most appropriate. If
we want information about population size and migra-
tion, but consider population to be a coarse feature, the
population genetics approach will be most appropriate.
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Figure 1. Three approaches to phylogeography. In all three windows, the data
represent three species (red, purple and blue) sampled across an island (green). For
the comparative approach, the haplotype tree is displayed on the left and concentric
circles on the island represent the geographical distribution of the three species. For
the spatial diffusion approach, the phylogenetic tree superimposed on the
geographical location of the samples is displayed on the left. The phylogenetic
tree is shown in black to reinforce the notion that population information is not
inferred. The gray areas behind the phylogenetic tree and on the island represent a
high-probability region contour for the locations of the ancestors of the taxa
sampled. For the population genetics approach, the five colored polygons represent
the ancestral populations and their sizes. Arrows represent strong migrations
between the populations. Currently, the idealized population polygons abstract all
geographic features to keep the models tractable. This image is based on Hey [17].

Box 3. Open issues approaching solution

Availability of geo-coded sequence data
The inclusion of geographical data in molecular phylogenetics
increases the size and complexity of data sets. As a benefit,
investigators can learn the relationships between several disparate
aspects, gaining a better understanding of biological diversity and
history. A disadvantage of these complex data sets, however, is
their reproducibility and validity. In the past, investigators could
reproduce and validate inferences because models and data sets
were readily available. At present, however, inferences are more
difficult to reproduce because geographic data are rarely provided
with the molecular sequences and many modeling assumptions go
unreported. One way to avoid this difficultly is to require geo-coded
sequence submission and a central online repository in which
investigators can upload their computational scripts. Some journals
have started to require such uploads for publications, but the push
needs to be stronger.

Incorporating geographic features and niche modeling
The structured-coalescent and discretized spatial diffusion ap-
proaches generate models into which researchers can input a
limited amount of information about geographic or niche features.
This input involves the definition of prior distributions for migration
rates between populations or geographic locations. For these forms
of discrete Markov chain models, O’Brien et al. offered advice on
how to make summary statistics about the diffusion process robust
to some of the model misspecification that results from ignoring
additional features [84]. However, it is unclear how effective
informed prior specification will remain when researchers attempt
to learn from observed data which geographic or niche features
significantly affect migration or diffusion. In these situations, direct
modeling of geographic features as hard or soft barriers in a
continuous diffusion framework seems to be a tenable solution.
Ranking of features according to their barrier strength or testing
which strengths do not significantly differ from zero produces a
sound statistical framework. Efficient computation of transition
probabilities along the tree of migration or diffusion in the presence
of multiple, possibly irregular, barriers remains a modeling
challenge.

Next-generation sequencing
With the advent of next-generation sequencing technologies,
biologists can now obtain de novo genomic samples from entire
biological communities. However, metagenomic studies are still in
their infancy. In particular, the analysis and design of metagenomic
studies are unrefined and rudimentary. Advances in computational
efficiency will be vital for application of model-based methods in
this area. Moreover, model-based methods will need to account for
the data collection technology, as well as the phylogeographic
history of a sample under study. Currently, a lack of theoretical tools
is hindering scientific progress in this area.

To tree or not to tree
The relationship between an inferred phylogenetic tree and its
embedded population has been extensively described over the past
30 years [9,62,85]. Nevertheless, this relationship remains poorly
understood, as evidenced by the three distinct approaches high-
lighted in this paper. Put simply, we still poorly understand whether
inferred evolutionary history is a nuisance or a fundamental entity
[86]. Resolution of this issue will probably require extensive work in
the coming decade.
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methods need to be created, implemented and adapted.
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might seem to be fragmenting. However, we believe all
three approaches address the same basic question posed
at the beginning of this article: what are the most effec-
tive ways to learn about phylogeographic processes from
geospatially identified molecular sequence data? Essen-
tially, we believe that all three frameworks produce
effective answers, if we know what questions to ask.
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geographical spread and molecular data without model-
ing this spread explicitly, the method of Manolopoulou
will be the most appropriate. If we want to model rates of
spread and take into account geographical features, the
method of Lemey et al. [16] will be most appropriate. If
we want information about population size and migra-
tion, but consider population to be a coarse feature, the
population genetics approach will be most appropriate.

[(Figure_1)TD$FIG]

Figure 1. Three approaches to phylogeography. In all three windows, the data
represent three species (red, purple and blue) sampled across an island (green). For
the comparative approach, the haplotype tree is displayed on the left and concentric
circles on the island represent the geographical distribution of the three species. For
the spatial diffusion approach, the phylogenetic tree superimposed on the
geographical location of the samples is displayed on the left. The phylogenetic
tree is shown in black to reinforce the notion that population information is not
inferred. The gray areas behind the phylogenetic tree and on the island represent a
high-probability region contour for the locations of the ancestors of the taxa
sampled. For the population genetics approach, the five colored polygons represent
the ancestral populations and their sizes. Arrows represent strong migrations
between the populations. Currently, the idealized population polygons abstract all
geographic features to keep the models tractable. This image is based on Hey [17].

Box 3. Open issues approaching solution

Availability of geo-coded sequence data
The inclusion of geographical data in molecular phylogenetics
increases the size and complexity of data sets. As a benefit,
investigators can learn the relationships between several disparate
aspects, gaining a better understanding of biological diversity and
history. A disadvantage of these complex data sets, however, is
their reproducibility and validity. In the past, investigators could
reproduce and validate inferences because models and data sets
were readily available. At present, however, inferences are more
difficult to reproduce because geographic data are rarely provided
with the molecular sequences and many modeling assumptions go
unreported. One way to avoid this difficultly is to require geo-coded
sequence submission and a central online repository in which
investigators can upload their computational scripts. Some journals
have started to require such uploads for publications, but the push
needs to be stronger.

Incorporating geographic features and niche modeling
The structured-coalescent and discretized spatial diffusion ap-
proaches generate models into which researchers can input a
limited amount of information about geographic or niche features.
This input involves the definition of prior distributions for migration
rates between populations or geographic locations. For these forms
of discrete Markov chain models, O’Brien et al. offered advice on
how to make summary statistics about the diffusion process robust
to some of the model misspecification that results from ignoring
additional features [84]. However, it is unclear how effective
informed prior specification will remain when researchers attempt
to learn from observed data which geographic or niche features
significantly affect migration or diffusion. In these situations, direct
modeling of geographic features as hard or soft barriers in a
continuous diffusion framework seems to be a tenable solution.
Ranking of features according to their barrier strength or testing
which strengths do not significantly differ from zero produces a
sound statistical framework. Efficient computation of transition
probabilities along the tree of migration or diffusion in the presence
of multiple, possibly irregular, barriers remains a modeling
challenge.

Next-generation sequencing
With the advent of next-generation sequencing technologies,
biologists can now obtain de novo genomic samples from entire
biological communities. However, metagenomic studies are still in
their infancy. In particular, the analysis and design of metagenomic
studies are unrefined and rudimentary. Advances in computational
efficiency will be vital for application of model-based methods in
this area. Moreover, model-based methods will need to account for
the data collection technology, as well as the phylogeographic
history of a sample under study. Currently, a lack of theoretical tools
is hindering scientific progress in this area.

To tree or not to tree
The relationship between an inferred phylogenetic tree and its
embedded population has been extensively described over the past
30 years [9,62,85]. Nevertheless, this relationship remains poorly
understood, as evidenced by the three distinct approaches high-
lighted in this paper. Put simply, we still poorly understand whether
inferred evolutionary history is a nuisance or a fundamental entity
[86]. Resolution of this issue will probably require extensive work in
the coming decade.
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In summary,much aswith the previous two approaches,
application of population genetics to phylogeography
remains a vibrant field of research. Highly significant work
is being carried out, but numerous biologically relevant
methods need to be created, implemented and adapted.
This route to phylogeography is far from a dead end.

Three routes to the same destination
With the expansion of phylogeography in new Bayesian
directions involving NCPA and spatial diffusion, the field
might seem to be fragmenting. However, we believe all
three approaches address the same basic question posed
at the beginning of this article: what are the most effec-
tive ways to learn about phylogeographic processes from
geospatially identified molecular sequence data? Essen-
tially, we believe that all three frameworks produce
effective answers, if we know what questions to ask.
Under the comparative approach, if we want to assess

geographical spread and molecular data without model-
ing this spread explicitly, the method of Manolopoulou
will be the most appropriate. If we want to model rates of
spread and take into account geographical features, the
method of Lemey et al. [16] will be most appropriate. If
we want information about population size and migra-
tion, but consider population to be a coarse feature, the
population genetics approach will be most appropriate.
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Figure 1. Three approaches to phylogeography. In all three windows, the data
represent three species (red, purple and blue) sampled across an island (green). For
the comparative approach, the haplotype tree is displayed on the left and concentric
circles on the island represent the geographical distribution of the three species. For
the spatial diffusion approach, the phylogenetic tree superimposed on the
geographical location of the samples is displayed on the left. The phylogenetic
tree is shown in black to reinforce the notion that population information is not
inferred. The gray areas behind the phylogenetic tree and on the island represent a
high-probability region contour for the locations of the ancestors of the taxa
sampled. For the population genetics approach, the five colored polygons represent
the ancestral populations and their sizes. Arrows represent strong migrations
between the populations. Currently, the idealized population polygons abstract all
geographic features to keep the models tractable. This image is based on Hey [17].

Box 3. Open issues approaching solution

Availability of geo-coded sequence data
The inclusion of geographical data in molecular phylogenetics
increases the size and complexity of data sets. As a benefit,
investigators can learn the relationships between several disparate
aspects, gaining a better understanding of biological diversity and
history. A disadvantage of these complex data sets, however, is
their reproducibility and validity. In the past, investigators could
reproduce and validate inferences because models and data sets
were readily available. At present, however, inferences are more
difficult to reproduce because geographic data are rarely provided
with the molecular sequences and many modeling assumptions go
unreported. One way to avoid this difficultly is to require geo-coded
sequence submission and a central online repository in which
investigators can upload their computational scripts. Some journals
have started to require such uploads for publications, but the push
needs to be stronger.

Incorporating geographic features and niche modeling
The structured-coalescent and discretized spatial diffusion ap-
proaches generate models into which researchers can input a
limited amount of information about geographic or niche features.
This input involves the definition of prior distributions for migration
rates between populations or geographic locations. For these forms
of discrete Markov chain models, O’Brien et al. offered advice on
how to make summary statistics about the diffusion process robust
to some of the model misspecification that results from ignoring
additional features [84]. However, it is unclear how effective
informed prior specification will remain when researchers attempt
to learn from observed data which geographic or niche features
significantly affect migration or diffusion. In these situations, direct
modeling of geographic features as hard or soft barriers in a
continuous diffusion framework seems to be a tenable solution.
Ranking of features according to their barrier strength or testing
which strengths do not significantly differ from zero produces a
sound statistical framework. Efficient computation of transition
probabilities along the tree of migration or diffusion in the presence
of multiple, possibly irregular, barriers remains a modeling
challenge.

Next-generation sequencing
With the advent of next-generation sequencing technologies,
biologists can now obtain de novo genomic samples from entire
biological communities. However, metagenomic studies are still in
their infancy. In particular, the analysis and design of metagenomic
studies are unrefined and rudimentary. Advances in computational
efficiency will be vital for application of model-based methods in
this area. Moreover, model-based methods will need to account for
the data collection technology, as well as the phylogeographic
history of a sample under study. Currently, a lack of theoretical tools
is hindering scientific progress in this area.

To tree or not to tree
The relationship between an inferred phylogenetic tree and its
embedded population has been extensively described over the past
30 years [9,62,85]. Nevertheless, this relationship remains poorly
understood, as evidenced by the three distinct approaches high-
lighted in this paper. Put simply, we still poorly understand whether
inferred evolutionary history is a nuisance or a fundamental entity
[86]. Resolution of this issue will probably require extensive work in
the coming decade.
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the comparative approach, the haplotype tree is displayed on the left and concentric
circles on the island represent the geographical distribution of the three species. For
the spatial diffusion approach, the phylogenetic tree superimposed on the
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tree is shown in black to reinforce the notion that population information is not
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high-probability region contour for the locations of the ancestors of the taxa
sampled. For the population genetics approach, the five colored polygons represent
the ancestral populations and their sizes. Arrows represent strong migrations
between the populations. Currently, the idealized population polygons abstract all
geographic features to keep the models tractable. This image is based on Hey [17].

Box 3. Open issues approaching solution

Availability of geo-coded sequence data
The inclusion of geographical data in molecular phylogenetics
increases the size and complexity of data sets. As a benefit,
investigators can learn the relationships between several disparate
aspects, gaining a better understanding of biological diversity and
history. A disadvantage of these complex data sets, however, is
their reproducibility and validity. In the past, investigators could
reproduce and validate inferences because models and data sets
were readily available. At present, however, inferences are more
difficult to reproduce because geographic data are rarely provided
with the molecular sequences and many modeling assumptions go
unreported. One way to avoid this difficultly is to require geo-coded
sequence submission and a central online repository in which
investigators can upload their computational scripts. Some journals
have started to require such uploads for publications, but the push
needs to be stronger.

Incorporating geographic features and niche modeling
The structured-coalescent and discretized spatial diffusion ap-
proaches generate models into which researchers can input a
limited amount of information about geographic or niche features.
This input involves the definition of prior distributions for migration
rates between populations or geographic locations. For these forms
of discrete Markov chain models, O’Brien et al. offered advice on
how to make summary statistics about the diffusion process robust
to some of the model misspecification that results from ignoring
additional features [84]. However, it is unclear how effective
informed prior specification will remain when researchers attempt
to learn from observed data which geographic or niche features
significantly affect migration or diffusion. In these situations, direct
modeling of geographic features as hard or soft barriers in a
continuous diffusion framework seems to be a tenable solution.
Ranking of features according to their barrier strength or testing
which strengths do not significantly differ from zero produces a
sound statistical framework. Efficient computation of transition
probabilities along the tree of migration or diffusion in the presence
of multiple, possibly irregular, barriers remains a modeling
challenge.

Next-generation sequencing
With the advent of next-generation sequencing technologies,
biologists can now obtain de novo genomic samples from entire
biological communities. However, metagenomic studies are still in
their infancy. In particular, the analysis and design of metagenomic
studies are unrefined and rudimentary. Advances in computational
efficiency will be vital for application of model-based methods in
this area. Moreover, model-based methods will need to account for
the data collection technology, as well as the phylogeographic
history of a sample under study. Currently, a lack of theoretical tools
is hindering scientific progress in this area.

To tree or not to tree
The relationship between an inferred phylogenetic tree and its
embedded population has been extensively described over the past
30 years [9,62,85]. Nevertheless, this relationship remains poorly
understood, as evidenced by the three distinct approaches high-
lighted in this paper. Put simply, we still poorly understand whether
inferred evolutionary history is a nuisance or a fundamental entity
[86]. Resolution of this issue will probably require extensive work in
the coming decade.
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Diversifying selection
Any form of natural selection 
that generates high levels of 
genetic diversity; for example, 
recurrent positive selection or 
balancing selection.

Parsimony approach
A principle of evolutionary 
inference, based on  
the assumption that the 
best-supported evolutionary 
history for a characteristic is 
the one that requires the 
fewest number of changes  
in that characteristic.

Box 1 | Phylodynamic techniques

Rooted molecular phylogenies can be estimated from viral gene sequences (see the figure, part a). Depending on the 
scale of the analysis undertaken, the sampled sequences (red circles) may represent infected individuals, infected cells, 
virions or higher-level units such as villages. The phylogeny branching order shows the shared ancestry of the sequences, 
which usually — but not always — reflects the history of pathogen transmission between these units (discussed in main 
text). This phylogeny has no timescale, so the branch lengths represent the genetic divergence from the ancestor (black 
circle). If the sequences of interest undergo recombination, then a single phylogenetic tree may not adequately describe 
evolutionary history and alternative methods can be applied (for example, REF. 104).

The same phylogeny can also be reconstructed using a molecular clock model (see the figure, part b), which defines a 
relationship between genetic distance and time. The pathogen sequences have been sampled at known time points and 
the phylogeny branches have lengths in units of years. This approach estimates the ages of branching events, including 
that of the common ancestor. The simplest, ‘strict’ clock model assumes that all lineages evolve at the same rate. More 
complex, ‘relaxed’ models allow evolutionary rates to vary through time or among lineages, resulting in variation around 
an average rate25. In this phylogeny, unusually fast or slow evolving lineages are shown as thick or thin lines, respectively. 
The relationships among genetic distance, evolutionary rate and time can be understood by comparing the branch 
lengths in part a and part b.

Phylodynamic data can also highlight the evolution through time of mutations that may reflect viral adaptations  
(see the figure, part c). Observed amino acid changes (crosses) are shown mapped onto specific phylogeny branches. 
Amino acid sites under positive selection can be identified using dn/ds methods, which compare the rate of replacement 
substitutions (that change the amino acid) with the rate of silent substitutions (that do not change the amino acid)18,105. 
Such methods are most powerful when detecting diversifying selection, making them appropriate for the analysis of 
infectious disease, but the results obtained using these methods require careful interpretation106. Of particular interest 
are the replacement mutations that are found on the persisting phylogenetic ‘backbone’ that represents the ancestor of 
future virus populations (blue branches), as opposed to those occurring on branches that die out (black branches).

The data can also be analysed using temporal phylogeography (see the figure, part d). The nine sequences were sampled 
from France (green, A), the United Kingdom (blue, B) and two locations in Spain (red, C

1
 and C

2
). Statistical methods can be 

used to reconstruct the history of pathogen spread, so that each branch is labelled with its estimated geographic position. 
Current reconstruction methods mostly use simple parsimony approaches107 that reconstruct a minimum set of migration 
events consistent with the observed phylogeny. Lineage movement events are marked on the phylogeny with crosses. 
Combining the spatial and temporal information provides further insights — this hypothetical pathogen spread to 
location C

1
 years before independently arriving at location C

2
. Such analyses are not limited to hypotheses concerning 

physical geography, as the labels A, B, C can stand for any trait of interest, for example, host species, cell tropism during 
infection, host risk factors or clinical outcome.

The principles of coalescent analyses, which incorporate an explicit model of the sampled pathogen population, are 
illustrated in figure, part e. Each circle represents an infection, and circles on the same row occur during the same period 
of time. The increasing width of each row therefore reflects the growth of the epidemic through time. Starting from the 
sampled infections (red), the sampled lineages (black lines) can be traced back through unsampled infections (grey)  
to the common ancestor (black circle). The rate at which the sampled lineages merge or coalesce depends on population 
processes such as population dynamics, population structure, selection and recombination (only change in population size 
is represented here). Coalescent methods are used to infer these processes from randomly sampled pathogen sequences.

REVIEWS

NATURE REVIEWS | GENETICS  VOLUME 10 | AUGUST 2009 | 541

��)''0�DXZd`ccXe�GlYc`j_\ij�C`d`k\[%�8cc�i`^_kj�i\j\im\[

Nature Reviews | Genetics

Year
C2

2000

1980

1990

B

F�W

Year

2000

1980

1990

d

BC2

C1AC1

A B A

2000

1990

1980

2000

1990

1980

b ca

C1
C2

A

A�V L�I
G�C

e

Genetic distance
from ancestor YearYear
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Any form of natural selection 
that generates high levels of 
genetic diversity; for example, 
recurrent positive selection or 
balancing selection.

Parsimony approach
A principle of evolutionary 
inference, based on  
the assumption that the 
best-supported evolutionary 
history for a characteristic is 
the one that requires the 
fewest number of changes  
in that characteristic.

Box 1 | Phylodynamic techniques

Rooted molecular phylogenies can be estimated from viral gene sequences (see the figure, part a). Depending on the 
scale of the analysis undertaken, the sampled sequences (red circles) may represent infected individuals, infected cells, 
virions or higher-level units such as villages. The phylogeny branching order shows the shared ancestry of the sequences, 
which usually — but not always — reflects the history of pathogen transmission between these units (discussed in main 
text). This phylogeny has no timescale, so the branch lengths represent the genetic divergence from the ancestor (black 
circle). If the sequences of interest undergo recombination, then a single phylogenetic tree may not adequately describe 
evolutionary history and alternative methods can be applied (for example, REF. 104).

The same phylogeny can also be reconstructed using a molecular clock model (see the figure, part b), which defines a 
relationship between genetic distance and time. The pathogen sequences have been sampled at known time points and 
the phylogeny branches have lengths in units of years. This approach estimates the ages of branching events, including 
that of the common ancestor. The simplest, ‘strict’ clock model assumes that all lineages evolve at the same rate. More 
complex, ‘relaxed’ models allow evolutionary rates to vary through time or among lineages, resulting in variation around 
an average rate25. In this phylogeny, unusually fast or slow evolving lineages are shown as thick or thin lines, respectively. 
The relationships among genetic distance, evolutionary rate and time can be understood by comparing the branch 
lengths in part a and part b.

Phylodynamic data can also highlight the evolution through time of mutations that may reflect viral adaptations  
(see the figure, part c). Observed amino acid changes (crosses) are shown mapped onto specific phylogeny branches. 
Amino acid sites under positive selection can be identified using dn/ds methods, which compare the rate of replacement 
substitutions (that change the amino acid) with the rate of silent substitutions (that do not change the amino acid)18,105. 
Such methods are most powerful when detecting diversifying selection, making them appropriate for the analysis of 
infectious disease, but the results obtained using these methods require careful interpretation106. Of particular interest 
are the replacement mutations that are found on the persisting phylogenetic ‘backbone’ that represents the ancestor of 
future virus populations (blue branches), as opposed to those occurring on branches that die out (black branches).

The data can also be analysed using temporal phylogeography (see the figure, part d). The nine sequences were sampled 
from France (green, A), the United Kingdom (blue, B) and two locations in Spain (red, C

1
 and C

2
). Statistical methods can be 

used to reconstruct the history of pathogen spread, so that each branch is labelled with its estimated geographic position. 
Current reconstruction methods mostly use simple parsimony approaches107 that reconstruct a minimum set of migration 
events consistent with the observed phylogeny. Lineage movement events are marked on the phylogeny with crosses. 
Combining the spatial and temporal information provides further insights — this hypothetical pathogen spread to 
location C

1
 years before independently arriving at location C

2
. Such analyses are not limited to hypotheses concerning 

physical geography, as the labels A, B, C can stand for any trait of interest, for example, host species, cell tropism during 
infection, host risk factors or clinical outcome.

The principles of coalescent analyses, which incorporate an explicit model of the sampled pathogen population, are 
illustrated in figure, part e. Each circle represents an infection, and circles on the same row occur during the same period 
of time. The increasing width of each row therefore reflects the growth of the epidemic through time. Starting from the 
sampled infections (red), the sampled lineages (black lines) can be traced back through unsampled infections (grey)  
to the common ancestor (black circle). The rate at which the sampled lineages merge or coalesce depends on population 
processes such as population dynamics, population structure, selection and recombination (only change in population size 
is represented here). Coalescent methods are used to infer these processes from randomly sampled pathogen sequences.
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Diversifying selection
Any form of natural selection 
that generates high levels of 
genetic diversity; for example, 
recurrent positive selection or 
balancing selection.

Parsimony approach
A principle of evolutionary 
inference, based on  
the assumption that the 
best-supported evolutionary 
history for a characteristic is 
the one that requires the 
fewest number of changes  
in that characteristic.

Box 1 | Phylodynamic techniques

Rooted molecular phylogenies can be estimated from viral gene sequences (see the figure, part a). Depending on the 
scale of the analysis undertaken, the sampled sequences (red circles) may represent infected individuals, infected cells, 
virions or higher-level units such as villages. The phylogeny branching order shows the shared ancestry of the sequences, 
which usually — but not always — reflects the history of pathogen transmission between these units (discussed in main 
text). This phylogeny has no timescale, so the branch lengths represent the genetic divergence from the ancestor (black 
circle). If the sequences of interest undergo recombination, then a single phylogenetic tree may not adequately describe 
evolutionary history and alternative methods can be applied (for example, REF. 104).

The same phylogeny can also be reconstructed using a molecular clock model (see the figure, part b), which defines a 
relationship between genetic distance and time. The pathogen sequences have been sampled at known time points and 
the phylogeny branches have lengths in units of years. This approach estimates the ages of branching events, including 
that of the common ancestor. The simplest, ‘strict’ clock model assumes that all lineages evolve at the same rate. More 
complex, ‘relaxed’ models allow evolutionary rates to vary through time or among lineages, resulting in variation around 
an average rate25. In this phylogeny, unusually fast or slow evolving lineages are shown as thick or thin lines, respectively. 
The relationships among genetic distance, evolutionary rate and time can be understood by comparing the branch 
lengths in part a and part b.

Phylodynamic data can also highlight the evolution through time of mutations that may reflect viral adaptations  
(see the figure, part c). Observed amino acid changes (crosses) are shown mapped onto specific phylogeny branches. 
Amino acid sites under positive selection can be identified using dn/ds methods, which compare the rate of replacement 
substitutions (that change the amino acid) with the rate of silent substitutions (that do not change the amino acid)18,105. 
Such methods are most powerful when detecting diversifying selection, making them appropriate for the analysis of 
infectious disease, but the results obtained using these methods require careful interpretation106. Of particular interest 
are the replacement mutations that are found on the persisting phylogenetic ‘backbone’ that represents the ancestor of 
future virus populations (blue branches), as opposed to those occurring on branches that die out (black branches).

The data can also be analysed using temporal phylogeography (see the figure, part d). The nine sequences were sampled 
from France (green, A), the United Kingdom (blue, B) and two locations in Spain (red, C

1
 and C

2
). Statistical methods can be 

used to reconstruct the history of pathogen spread, so that each branch is labelled with its estimated geographic position. 
Current reconstruction methods mostly use simple parsimony approaches107 that reconstruct a minimum set of migration 
events consistent with the observed phylogeny. Lineage movement events are marked on the phylogeny with crosses. 
Combining the spatial and temporal information provides further insights — this hypothetical pathogen spread to 
location C

1
 years before independently arriving at location C

2
. Such analyses are not limited to hypotheses concerning 

physical geography, as the labels A, B, C can stand for any trait of interest, for example, host species, cell tropism during 
infection, host risk factors or clinical outcome.

The principles of coalescent analyses, which incorporate an explicit model of the sampled pathogen population, are 
illustrated in figure, part e. Each circle represents an infection, and circles on the same row occur during the same period 
of time. The increasing width of each row therefore reflects the growth of the epidemic through time. Starting from the 
sampled infections (red), the sampled lineages (black lines) can be traced back through unsampled infections (grey)  
to the common ancestor (black circle). The rate at which the sampled lineages merge or coalesce depends on population 
processes such as population dynamics, population structure, selection and recombination (only change in population size 
is represented here). Coalescent methods are used to infer these processes from randomly sampled pathogen sequences.
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Diversifying selection
Any form of natural selection 
that generates high levels of 
genetic diversity; for example, 
recurrent positive selection or 
balancing selection.

Parsimony approach
A principle of evolutionary 
inference, based on  
the assumption that the 
best-supported evolutionary 
history for a characteristic is 
the one that requires the 
fewest number of changes  
in that characteristic.

Box 1 | Phylodynamic techniques

Rooted molecular phylogenies can be estimated from viral gene sequences (see the figure, part a). Depending on the 
scale of the analysis undertaken, the sampled sequences (red circles) may represent infected individuals, infected cells, 
virions or higher-level units such as villages. The phylogeny branching order shows the shared ancestry of the sequences, 
which usually — but not always — reflects the history of pathogen transmission between these units (discussed in main 
text). This phylogeny has no timescale, so the branch lengths represent the genetic divergence from the ancestor (black 
circle). If the sequences of interest undergo recombination, then a single phylogenetic tree may not adequately describe 
evolutionary history and alternative methods can be applied (for example, REF. 104).

The same phylogeny can also be reconstructed using a molecular clock model (see the figure, part b), which defines a 
relationship between genetic distance and time. The pathogen sequences have been sampled at known time points and 
the phylogeny branches have lengths in units of years. This approach estimates the ages of branching events, including 
that of the common ancestor. The simplest, ‘strict’ clock model assumes that all lineages evolve at the same rate. More 
complex, ‘relaxed’ models allow evolutionary rates to vary through time or among lineages, resulting in variation around 
an average rate25. In this phylogeny, unusually fast or slow evolving lineages are shown as thick or thin lines, respectively. 
The relationships among genetic distance, evolutionary rate and time can be understood by comparing the branch 
lengths in part a and part b.

Phylodynamic data can also highlight the evolution through time of mutations that may reflect viral adaptations  
(see the figure, part c). Observed amino acid changes (crosses) are shown mapped onto specific phylogeny branches. 
Amino acid sites under positive selection can be identified using dn/ds methods, which compare the rate of replacement 
substitutions (that change the amino acid) with the rate of silent substitutions (that do not change the amino acid)18,105. 
Such methods are most powerful when detecting diversifying selection, making them appropriate for the analysis of 
infectious disease, but the results obtained using these methods require careful interpretation106. Of particular interest 
are the replacement mutations that are found on the persisting phylogenetic ‘backbone’ that represents the ancestor of 
future virus populations (blue branches), as opposed to those occurring on branches that die out (black branches).

The data can also be analysed using temporal phylogeography (see the figure, part d). The nine sequences were sampled 
from France (green, A), the United Kingdom (blue, B) and two locations in Spain (red, C

1
 and C

2
). Statistical methods can be 

used to reconstruct the history of pathogen spread, so that each branch is labelled with its estimated geographic position. 
Current reconstruction methods mostly use simple parsimony approaches107 that reconstruct a minimum set of migration 
events consistent with the observed phylogeny. Lineage movement events are marked on the phylogeny with crosses. 
Combining the spatial and temporal information provides further insights — this hypothetical pathogen spread to 
location C

1
 years before independently arriving at location C

2
. Such analyses are not limited to hypotheses concerning 

physical geography, as the labels A, B, C can stand for any trait of interest, for example, host species, cell tropism during 
infection, host risk factors or clinical outcome.

The principles of coalescent analyses, which incorporate an explicit model of the sampled pathogen population, are 
illustrated in figure, part e. Each circle represents an infection, and circles on the same row occur during the same period 
of time. The increasing width of each row therefore reflects the growth of the epidemic through time. Starting from the 
sampled infections (red), the sampled lineages (black lines) can be traced back through unsampled infections (grey)  
to the common ancestor (black circle). The rate at which the sampled lineages merge or coalesce depends on population 
processes such as population dynamics, population structure, selection and recombination (only change in population size 
is represented here). Coalescent methods are used to infer these processes from randomly sampled pathogen sequences.
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Any form of natural selection 
that generates high levels of 
genetic diversity; for example, 
recurrent positive selection or 
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Parsimony approach
A principle of evolutionary 
inference, based on  
the assumption that the 
best-supported evolutionary 
history for a characteristic is 
the one that requires the 
fewest number of changes  
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Box 1 | Phylodynamic techniques

Rooted molecular phylogenies can be estimated from viral gene sequences (see the figure, part a). Depending on the 
scale of the analysis undertaken, the sampled sequences (red circles) may represent infected individuals, infected cells, 
virions or higher-level units such as villages. The phylogeny branching order shows the shared ancestry of the sequences, 
which usually — but not always — reflects the history of pathogen transmission between these units (discussed in main 
text). This phylogeny has no timescale, so the branch lengths represent the genetic divergence from the ancestor (black 
circle). If the sequences of interest undergo recombination, then a single phylogenetic tree may not adequately describe 
evolutionary history and alternative methods can be applied (for example, REF. 104).

The same phylogeny can also be reconstructed using a molecular clock model (see the figure, part b), which defines a 
relationship between genetic distance and time. The pathogen sequences have been sampled at known time points and 
the phylogeny branches have lengths in units of years. This approach estimates the ages of branching events, including 
that of the common ancestor. The simplest, ‘strict’ clock model assumes that all lineages evolve at the same rate. More 
complex, ‘relaxed’ models allow evolutionary rates to vary through time or among lineages, resulting in variation around 
an average rate25. In this phylogeny, unusually fast or slow evolving lineages are shown as thick or thin lines, respectively. 
The relationships among genetic distance, evolutionary rate and time can be understood by comparing the branch 
lengths in part a and part b.

Phylodynamic data can also highlight the evolution through time of mutations that may reflect viral adaptations  
(see the figure, part c). Observed amino acid changes (crosses) are shown mapped onto specific phylogeny branches. 
Amino acid sites under positive selection can be identified using dn/ds methods, which compare the rate of replacement 
substitutions (that change the amino acid) with the rate of silent substitutions (that do not change the amino acid)18,105. 
Such methods are most powerful when detecting diversifying selection, making them appropriate for the analysis of 
infectious disease, but the results obtained using these methods require careful interpretation106. Of particular interest 
are the replacement mutations that are found on the persisting phylogenetic ‘backbone’ that represents the ancestor of 
future virus populations (blue branches), as opposed to those occurring on branches that die out (black branches).

The data can also be analysed using temporal phylogeography (see the figure, part d). The nine sequences were sampled 
from France (green, A), the United Kingdom (blue, B) and two locations in Spain (red, C
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 and C
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). Statistical methods can be 

used to reconstruct the history of pathogen spread, so that each branch is labelled with its estimated geographic position. 
Current reconstruction methods mostly use simple parsimony approaches107 that reconstruct a minimum set of migration 
events consistent with the observed phylogeny. Lineage movement events are marked on the phylogeny with crosses. 
Combining the spatial and temporal information provides further insights — this hypothetical pathogen spread to 
location C

1
 years before independently arriving at location C

2
. Such analyses are not limited to hypotheses concerning 

physical geography, as the labels A, B, C can stand for any trait of interest, for example, host species, cell tropism during 
infection, host risk factors or clinical outcome.

The principles of coalescent analyses, which incorporate an explicit model of the sampled pathogen population, are 
illustrated in figure, part e. Each circle represents an infection, and circles on the same row occur during the same period 
of time. The increasing width of each row therefore reflects the growth of the epidemic through time. Starting from the 
sampled infections (red), the sampled lineages (black lines) can be traced back through unsampled infections (grey)  
to the common ancestor (black circle). The rate at which the sampled lineages merge or coalesce depends on population 
processes such as population dynamics, population structure, selection and recombination (only change in population size 
is represented here). Coalescent methods are used to infer these processes from randomly sampled pathogen sequences.
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The global circulation of human influenza A H3N2
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to the 15-geographic region partition, we subsequently obtain the average a�nity for each
airport to the communities in this partition. We assign each airport to the community for
which it shows the highest average a�nity, but we take into account its uncertainty by also
considering assignments that yield a�nities that are > 2/3 of the highest a�nity score. This
cut-o↵ resulted in 771 ambiguous airport assignments. Finally, we partitioned the sequence
data according to the air community assignment and accommodate 368 (24%) ambiguous
sequence locations, i.e. those sequences related to airports with ambiguous community as-
signments, using ambiguity coding in our phylogeographic approach.

1.3 Bayesian statistical analysis of sequence and trait evolution

We integrate genetic, spatial and air transportation data within a single full probabilistic
evolutionary model and simultaneously estimate the parameters of phylogeographic di↵u-
sion using Markov chain Monte Carlo (MCMC) analysis implemented in BEAST [3]. We
introduce a novel phylogenetic di↵usion model and associated inference procedures in the
subsections below. To model sequence evolution, we partition the hemagglutinin codon posi-
tions into first+second and third positions [4] and apply a separate HKY85 [5] CTMC model
of nucleotide substitution with discrete gamma-distributed rate variation [6] to both. We
assume a flexible Bayesian skyride prior over the unknown phylogeny [7]. Exploratory runs
using the data for the 26 locations indicated that a relaxed molecular clock represented an
over-parametrization [8]. A strict clock was therefore used in subsequent analyses. Because
the exact date of sampling was not known for some additional publicly available sequences,
we integrated out their dates over the known sampling time interval [9]. We capitalize on
BEAGLE [10] in conjunction with BEAST to improve computational performance on our
large data sets. MCMC analyses were run su�ciently long to ensure stationarity as diag-
nosed using Tracer. We used the TreeAnnotator tool in BEAST to summarize trees in the
form of maximum clade credibility (MCC) trees. As part of the supplementary files (Dataset
S1), we make available an XML document specifying the data and analysis settings for main
analysis of the air communities, and the associated empirical trees required to run the anal-
ysis (section 1.3.3). This includes accession numbers for all the sequences as well as their
sampling dates, the locations we assigned them to (section 1.1), the di↵erent sub-samplings,
the (GLM) model settings and the predictors (section 1.3.1 and 1.3.2).

1.3.1 GLM di↵usion implementation and predictor support

Bayesian phylogeographic inference models discrete di↵usion as a continuous-time Markov
chain process parameterized in terms of a K ⇥ K infinitesimal rate matrix ⇤ of discrete
location change withK representing the number of location states. The GLM di↵usion model
extends this by adopting a generalized linear model (GLM) approach that takes an arbitrary
number P of predictors X = (x1, . . . ,xP ), where a single predictor xp is a flattened vector of
quantities corresponding to entries in the i to j rate matrix xp = (x1,2,p, . . . xK�1,K,p)

0
. The

GLM considers every instantaneous movement rate ⇤ij for i 6= j in ⇤ as a log linear function
of the set of predictors X, such that:

log⇤ij = �1�1xi,j,1 + �2�2xi,j,2 + . . .+ �P �Pxi,j,P , (1)
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50% of virus migrations are by fewer than 100km
5% are by greater than 340km
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time-varying epoch GLM models432

log⇤ijt = X
0

ijt�(t)

�(t) = [I� �(t)]�B + [�(t)]�A,
(3)

where �B = (�B1, . . . , �BP )
0

are the unknown coefficients before the change-points, �A =433

(�A1, . . . , �AP )
0

are the unknown coefficients after the change-points, diagonal matrix �(t)434

has entries (1t>t1(t), . . . , 1t>tP (t)), 1(·)(t) is the indicator function and T = (t1, . . . , tP )435

are the unknown change-point times. In this general form, the contribution of predictor436

p before its change-point time tp is �Bp and its contribution after is �Ap for p = 1, . . . , P .437

Fixing tp to be less than the time of the first epoch or greater than the time of the last epoch438

results in a time-invariant coefficient for that predictor.439

Similar to the constant-through-time GLM, we specify that a priori all �Bp and �Ap are440

independent and normally distributed with mean 0 and a relatively large variance of 4.441

Under the prior, each tp is equally likely to lie before any epoch.442

We employ random-walk Metropolis transition kernels on �B, �A and T .443

In a first epoch GLM analysis, we keep the five predictors that are convincingly supported444

by the time-homogeneous analysis included in the model and estimate an independent445

change-point tp for their associated effect sizes: distance (tdis), within country effect (twco),446

shared international border (tsib) and origin and destination population size (tpopo and tpopd)447

change-points. To quantify the evidence in favour of each change-point, we calculate448

Bayes factor support based on the prior and posterior odds that tp is less than the time of449

the first epoch or greater than the time of the last epoch. Because we find only very strong450

support for a change-point in the within country effect, we subsequently estimate the effect451

sizes before and after twco, keeping the remaining four predictors homogeneous through452

time.453

Within-location generalized linear models. Ebola virus disease (EVD) case numbers are454

reported by the WHO for every country division (region) at the appropriate administrative455

level, split by epidemiological week. For every region and for each epidemiological week456

four numbers are reported: new cases in the patient and situation report databases as457

well as whether the new cases are confirmed or probable. At the height of the epidemic458

many cases went unconfirmed, even though they were likely to have been genuine EVD.459

As such, we treat probable EVD cases in WHO reports as confirmed and combine them460

with lab-confirmed EVD case numbers. Following this we take the higher combined461

case number of situation report and patient databases. The latest situation report in our462

data goes up to the epidemiological week spanning 8 to 14 February 2016, with all463

case numbers being downloaded on 22 February 2016. There are apparent discrepancies464

between cumulative case numbers reported for each country over the entire epidemic and465

case numbers reported per administrative division over time, such that our estimate for466

the final size of the epidemic, based on case numbers over time reported by the WHO, is467
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CTMC: parameters ~ (locations)2 

GLM-CTMC: parameters ~ predictors

BEAGLE

overfitting:

winning entry

entries (�1, . . . , �P ). These latter unknown indicators �p 2 {0, 1} determine predictor p’s361

inclusion in or exclusion from the model. We generalize this formulation here to include362

two-way random effects that allow for location origin- and destination-specific variability.363

Our two-way random effects GLM becomes364

log⇤ij = X
0

ij�� + ✏i + ✏j,

✏k ⇠ Normal(0, �2) for k = 1, . . . , K, and
�2 ⇠ Inverse-Gamma(0.001, 0.001),

(1)

where ✏ = (✏1, . . . , ✏K) are the location-specific effects. These random effects account365

for unexplained variability in the diffusion process that may otherwise lead to spurious366

inclusion of predictors.367

We follow16 in specifying that a priori all �p are independent and normally distributed368

with mean 0 and a relatively large variance of 4 and in assigning independent Bernoulli369

prior probability distributions on �p.370

Let q be the inclusion probability and w be the probability of no predictors being included.371

Then, using the distribution function of a binomial random variable it is straightforward372

to see that q = 1� w1/P , where P is the number of predictors, as before. We use a small373

success probability on each predictor’s inclusion that reflects a 50% prior probability (w)374

on no predictors being included.375

In our main analysis, we consider 25 individual predictors that can be classified as geo-376

graphic, administrative, demographic, cultural and climatic covariates of spatial spread377

(Extended Data Table 2). Where measures are region-specific (rather than pairwise region378

measures), we specify both an origin and destination predictor. We also tested for sampling379

bias by including an additional origin and destination predictor based on the residuals for380

the regression of sample size against case count (cfr. Fig. 1), but these predictors did not381

receive any support (data not shown).382

To draw posterior inference, we follow16 integrating � and �, and further employ a random-383

walk Metropolis transition kernel on ✏ and sample �2 directly from its full conditional384

distribution using Gibbs sampling.385

To obtain a joint posterior estimate from this joint genetic and phylogeographic model, two386

independent MCMC chains were run in BEAST 1.8.455 for 100 million states, sampling387

every 10 000 states. The first 1000 samples in each chain were removed as burnin, and the388

remaining 18 000 samples combined between the two runs. These 18 000 samples were389

used to estimate a maximum clade credibility tree and to estimate posterior densities for390

individual parameters.391

To consider the feasibility of ‘real-time’ inference from virus genome data from the height392

of the EVD epidemic we took only those sequences derived from samples taken up until393
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Abstract 
Summary: SERAPHIM is a suite of computational methods developed to study phylogenetic recon-
structions of spatial movement in an environmental context. SERAPHIM extracts the spatio-temporal 
information contained in estimated phylogenetic trees, and uses this information to calculate sum-
mary statistics of spatial spread and to visualise dispersal history. Most importantly, SERAPHIM ena-
bles users to study the impact of customised environmental variables on the spread of the study 
organism. Specifically, given an environmental raster, SERAPHIM computes environmental "weights" 
for each phylogeny branch, which represent the degree to which the environmental variable impedes 
(or facilitates) lineage movement. Correlations between movement duration and these environmental 
weights are then assessed, and the statistical significances of these correlations are evaluated using 
null distributions generated by a randomisation procedure. SERAPHIM can be applied to any phylogeny 
whose nodes are annotated with spatial and temporal information. At present, such phylogenies are 
most often found in the field of emerging infectious diseases, but will become increasingly common in 
other biological disciplines as population genomic data grows. 
Availability: SERAPHIM 1.0 is freely available from http://evolve.zoo.ox.ac.uk/. R package, source 
code, example files, tutorials and a manual are also available from this website.  
Contact: simon.dellicour@rega.kuleuven.be, oliver.pybus@zoo.ox.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Phylogenetic techniques are now a standard tool in the study of the 
spatial and demographic history of organisms (e.g. Lemmon & Lemmon, 
2008; Sanmartín et al. 2008; Lemey et al., 2009; 2010). In the context of 
infectious diseases for example, phylogenetic inference can be used to 
reconstruct epidemic history (e.g. Carroll et al., 2015). Of most rele-
vance here, phylogeographic methods, such as that implemented in the 
software program BEAST (Drummond et al., 2012), enable the recon-
struction of the dispersal history of a phylogeny of a given set of ge-
nomes sampled through time in continuous space (Lemey et al., 2010). 

The current version of this approach uses a relaxed random walk model 
(Pybus et al., 2012) to reconstruct historical dispersal. Phylogeographic 
methods model the geographic locations of nodes in a phylogeny, and 
can therefore be considered a type of phylogenetic character mapping 
approach. Trees inferred using this method, or related methods such as 
the structured coalescent model (De Maio et al., 2015) can be visualised 
in a geographical context, such that each branch is interpreted as a vector 
that characterises a distinct path through time and space. Thus, the tree 
represents a collection of phylogenetically-informed movement events 
and contains useful information about the past dynamics of spatial 
spread. 

 

© The Author (2016). Published by Oxford University Press. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com 

Associate Editor: Dr. Oliver Stegle

 Bioinformatics Advance Access published June 22, 2016

 at K
U

 Leuven U
niversity Library on July 1, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

Continuous phylogenetic diffusion: landscape phylogeography
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Continuous phylogenetic diffusion: comparative methods
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Similarly, the level of viraemia at set point 
is a determinant of the natural history of SIV 
infection54 and of the long-term prognosis of 
HIV-1 infection in humans55. The viral load 
set point is a particularly attractive target as 
a study phenotype. First, it is known that 
individuals vary by several orders of magni-
tude in the amount of virus per ml of blood 
at set point8, as illustrated in FIG. 3. For 
instance, there are rare individuals whose set 
point is at a level of virus that is essentially 
not detectable56. Second, the viral load set 
point is a characteristic of the individual. So 
far, there have been no large-scale genomic 
studies to determine the source of this varia-
tion. The identification of gene variants that 
are associated with the variation in viral load 
set point could implicate particular aspects 
of immune control. Peak and set-point 
viraemia are also of direct interest because 
they predict the degree of infectiousness of 
the individual57.

The fact that the viral load set point 
is established so early in the course of 
HIV-1 infection and that it seems to be 
particularly resistant to external variants 
over prolonged periods suggests that the 
environment might be only a small con-
tributor. Therefore, the viral load set point 
seems to be determined mainly by two 
variables: influences from the host genome 
and the viral strain genome. Of course it 
cannot be ruled out that early environ-
mental factors in an individual’s life affect 
his or her immune system in such a way 

as to influence the set point that will be 
established on infection.

Another phenotype of significant 
interest for genetic studies is the status 
of exposed non-infected individuals. 
Indeed, the first identified gene variant 
that influenced susceptibility to HIV-1, 
CCR5 ∆32 was discovered using this 
framework. Several studies have examined 
heterosexual couples that are discordant 
for HIV-1 serostatus, female sex workers 
and men having sex with men who are 
highly exposed to HIV-1. The mechanisms 
identified or invoked to modulate suscep-
tibility to infection in the various studies 
emphasize the relevance of differences 

in acquired immunity through the role 
of protective cytotoxic T-cell responses 
and NK activity in the context of specific 
HLA class I alleles, as well as differences in 
humoral responses at mucosal surfaces58,59. 
A large study is needed to compare 
uninfected individuals with known and 
quantifiable exposure to HIV-1 with a 
large cohort of infected individuals that 
are carefully matched demographically.

The importance of reliable study phe-
notypes is intimately linked to the creation 
of appropriate cohorts for genetic analysis. 
Several recommendations for optimal design 
of genetic-association studies in clinical tri-
als and cohorts are presented elsewhere3,60–62. 
Examples of initiatives that have integrated 
genetic data for future clinical research 
are: the Adult AIDS Clinical Trials Group 
(AACTG) Protocol A5128 (REF. 63) and the 
National Institute of Allergy and Infectious 
Diseases (NIAID)-sponsored GENOMICS 
protocol. Both protocols establish the condi-
tions for storing DNA for studies that were 
not planned when informed consent was 
provided, and for future analyses.

The two-genome paradigm
The genome of HIV-1 co-evolves with that 
of the host. This is more pronounced for 
HIV-1 than for many other human patho-
gens because of the recognized capacity of 
retroviruses to mutate and thereby escape 
from the immune response and to adapt 
to the host environment. The need for 
continuous evolution for both the host and 
the pathogen is illustrated by the Red Queen 
principle.

At a population level, this host–viral inter-
action can be detected in several ways. For 
example, major histocompatibility complex 
(MHC)-restricted immune responses might 

Figure 3 | The viral load set point. a | Soon after infection, HIV replicates to high levels (peak virae-
mia). Host factors then exert their effects to limit viral replication to a post-acute set-point level of 
plasma viraemia. b | The dynamics of establishment of the viral load set point in an individual present-
ing with HIV primary infection are shown. c | Viraemia data from three individuals are shown, charac-
terized by post-acute viral load set points at 5, 3 and <2 log10 HIV-1 RNA copies per millilitre — fully 
stable over 3 years. Without these reliable patterns of inter-individual variation, genetics would have 
little to contribute to the analysis of viral load set point.

Box 2 | The CHAVI genome initiative

The Center for HIV-AIDS Vaccine Immunology (CHAVI; see Further information) is a 
significant component of the Global HIV Vaccine Enterprise77. Based at Duke University 
in Durham, USA, it includes investigators from institutions across the globe. CHAVI has 
included genomics as a core project in the quest for a vaccine against HIV-1. The genome 
initiative includes the establishment of a series of cohorts with appropriate phenotypes. 
The first target phenotype is the viral load at set point in individuals with a known date of 
seroconversion. There is the potential to study between 1,000 and 2,000 qualifying patients 
across different cohorts. CHAVI will progressively focus on the study of at least 2,000 
exposed individuals that will include infected and non-infected individuals from several 
clinical sites in Africa. This study aims to identify genetic determinants of protection from 
infection. Genotyping will be done using chips designed explicitly for whole-genome 
association studies. These chips allow genotyping of polymorphisms that represent common 
variation in the populations studied in the HapMap project: 550,000 single nucleotide 
polymorphisms (SNPs) for the study of subjects of European ancestry, and approximately 
650,000 SNPs in subjects of African ancestry to reflect the lower level of linkage 
disequilibrium in Africa. 
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Similarly, the level of viraemia at set point 
is a determinant of the natural history of SIV 
infection54 and of the long-term prognosis of 
HIV-1 infection in humans55. The viral load 
set point is a particularly attractive target as 
a study phenotype. First, it is known that 
individuals vary by several orders of magni-
tude in the amount of virus per ml of blood 
at set point8, as illustrated in FIG. 3. For 
instance, there are rare individuals whose set 
point is at a level of virus that is essentially 
not detectable56. Second, the viral load set 
point is a characteristic of the individual. So 
far, there have been no large-scale genomic 
studies to determine the source of this varia-
tion. The identification of gene variants that 
are associated with the variation in viral load 
set point could implicate particular aspects 
of immune control. Peak and set-point 
viraemia are also of direct interest because 
they predict the degree of infectiousness of 
the individual57.

The fact that the viral load set point 
is established so early in the course of 
HIV-1 infection and that it seems to be 
particularly resistant to external variants 
over prolonged periods suggests that the 
environment might be only a small con-
tributor. Therefore, the viral load set point 
seems to be determined mainly by two 
variables: influences from the host genome 
and the viral strain genome. Of course it 
cannot be ruled out that early environ-
mental factors in an individual’s life affect 
his or her immune system in such a way 

as to influence the set point that will be 
established on infection.

Another phenotype of significant 
interest for genetic studies is the status 
of exposed non-infected individuals. 
Indeed, the first identified gene variant 
that influenced susceptibility to HIV-1, 
CCR5 ∆32 was discovered using this 
framework. Several studies have examined 
heterosexual couples that are discordant 
for HIV-1 serostatus, female sex workers 
and men having sex with men who are 
highly exposed to HIV-1. The mechanisms 
identified or invoked to modulate suscep-
tibility to infection in the various studies 
emphasize the relevance of differences 

in acquired immunity through the role 
of protective cytotoxic T-cell responses 
and NK activity in the context of specific 
HLA class I alleles, as well as differences in 
humoral responses at mucosal surfaces58,59. 
A large study is needed to compare 
uninfected individuals with known and 
quantifiable exposure to HIV-1 with a 
large cohort of infected individuals that 
are carefully matched demographically.

The importance of reliable study phe-
notypes is intimately linked to the creation 
of appropriate cohorts for genetic analysis. 
Several recommendations for optimal design 
of genetic-association studies in clinical tri-
als and cohorts are presented elsewhere3,60–62. 
Examples of initiatives that have integrated 
genetic data for future clinical research 
are: the Adult AIDS Clinical Trials Group 
(AACTG) Protocol A5128 (REF. 63) and the 
National Institute of Allergy and Infectious 
Diseases (NIAID)-sponsored GENOMICS 
protocol. Both protocols establish the condi-
tions for storing DNA for studies that were 
not planned when informed consent was 
provided, and for future analyses.

The two-genome paradigm
The genome of HIV-1 co-evolves with that 
of the host. This is more pronounced for 
HIV-1 than for many other human patho-
gens because of the recognized capacity of 
retroviruses to mutate and thereby escape 
from the immune response and to adapt 
to the host environment. The need for 
continuous evolution for both the host and 
the pathogen is illustrated by the Red Queen 
principle.

At a population level, this host–viral inter-
action can be detected in several ways. For 
example, major histocompatibility complex 
(MHC)-restricted immune responses might 

Figure 3 | The viral load set point. a | Soon after infection, HIV replicates to high levels (peak virae-
mia). Host factors then exert their effects to limit viral replication to a post-acute set-point level of 
plasma viraemia. b | The dynamics of establishment of the viral load set point in an individual present-
ing with HIV primary infection are shown. c | Viraemia data from three individuals are shown, charac-
terized by post-acute viral load set points at 5, 3 and <2 log10 HIV-1 RNA copies per millilitre — fully 
stable over 3 years. Without these reliable patterns of inter-individual variation, genetics would have 
little to contribute to the analysis of viral load set point.

Box 2 | The CHAVI genome initiative

The Center for HIV-AIDS Vaccine Immunology (CHAVI; see Further information) is a 
significant component of the Global HIV Vaccine Enterprise77. Based at Duke University 
in Durham, USA, it includes investigators from institutions across the globe. CHAVI has 
included genomics as a core project in the quest for a vaccine against HIV-1. The genome 
initiative includes the establishment of a series of cohorts with appropriate phenotypes. 
The first target phenotype is the viral load at set point in individuals with a known date of 
seroconversion. There is the potential to study between 1,000 and 2,000 qualifying patients 
across different cohorts. CHAVI will progressively focus on the study of at least 2,000 
exposed individuals that will include infected and non-infected individuals from several 
clinical sites in Africa. This study aims to identify genetic determinants of protection from 
infection. Genotyping will be done using chips designed explicitly for whole-genome 
association studies. These chips allow genotyping of polymorphisms that represent common 
variation in the populations studied in the HapMap project: 550,000 single nucleotide 
polymorphisms (SNPs) for the study of subjects of European ancestry, and approximately 
650,000 SNPs in subjects of African ancestry to reflect the lower level of linkage 
disequilibrium in Africa. 
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Similarly, the level of viraemia at set point 
is a determinant of the natural history of SIV 
infection54 and of the long-term prognosis of 
HIV-1 infection in humans55. The viral load 
set point is a particularly attractive target as 
a study phenotype. First, it is known that 
individuals vary by several orders of magni-
tude in the amount of virus per ml of blood 
at set point8, as illustrated in FIG. 3. For 
instance, there are rare individuals whose set 
point is at a level of virus that is essentially 
not detectable56. Second, the viral load set 
point is a characteristic of the individual. So 
far, there have been no large-scale genomic 
studies to determine the source of this varia-
tion. The identification of gene variants that 
are associated with the variation in viral load 
set point could implicate particular aspects 
of immune control. Peak and set-point 
viraemia are also of direct interest because 
they predict the degree of infectiousness of 
the individual57.

The fact that the viral load set point 
is established so early in the course of 
HIV-1 infection and that it seems to be 
particularly resistant to external variants 
over prolonged periods suggests that the 
environment might be only a small con-
tributor. Therefore, the viral load set point 
seems to be determined mainly by two 
variables: influences from the host genome 
and the viral strain genome. Of course it 
cannot be ruled out that early environ-
mental factors in an individual’s life affect 
his or her immune system in such a way 

as to influence the set point that will be 
established on infection.

Another phenotype of significant 
interest for genetic studies is the status 
of exposed non-infected individuals. 
Indeed, the first identified gene variant 
that influenced susceptibility to HIV-1, 
CCR5 ∆32 was discovered using this 
framework. Several studies have examined 
heterosexual couples that are discordant 
for HIV-1 serostatus, female sex workers 
and men having sex with men who are 
highly exposed to HIV-1. The mechanisms 
identified or invoked to modulate suscep-
tibility to infection in the various studies 
emphasize the relevance of differences 

in acquired immunity through the role 
of protective cytotoxic T-cell responses 
and NK activity in the context of specific 
HLA class I alleles, as well as differences in 
humoral responses at mucosal surfaces58,59. 
A large study is needed to compare 
uninfected individuals with known and 
quantifiable exposure to HIV-1 with a 
large cohort of infected individuals that 
are carefully matched demographically.

The importance of reliable study phe-
notypes is intimately linked to the creation 
of appropriate cohorts for genetic analysis. 
Several recommendations for optimal design 
of genetic-association studies in clinical tri-
als and cohorts are presented elsewhere3,60–62. 
Examples of initiatives that have integrated 
genetic data for future clinical research 
are: the Adult AIDS Clinical Trials Group 
(AACTG) Protocol A5128 (REF. 63) and the 
National Institute of Allergy and Infectious 
Diseases (NIAID)-sponsored GENOMICS 
protocol. Both protocols establish the condi-
tions for storing DNA for studies that were 
not planned when informed consent was 
provided, and for future analyses.

The two-genome paradigm
The genome of HIV-1 co-evolves with that 
of the host. This is more pronounced for 
HIV-1 than for many other human patho-
gens because of the recognized capacity of 
retroviruses to mutate and thereby escape 
from the immune response and to adapt 
to the host environment. The need for 
continuous evolution for both the host and 
the pathogen is illustrated by the Red Queen 
principle.

At a population level, this host–viral inter-
action can be detected in several ways. For 
example, major histocompatibility complex 
(MHC)-restricted immune responses might 

Figure 3 | The viral load set point. a | Soon after infection, HIV replicates to high levels (peak virae-
mia). Host factors then exert their effects to limit viral replication to a post-acute set-point level of 
plasma viraemia. b | The dynamics of establishment of the viral load set point in an individual present-
ing with HIV primary infection are shown. c | Viraemia data from three individuals are shown, charac-
terized by post-acute viral load set points at 5, 3 and <2 log10 HIV-1 RNA copies per millilitre — fully 
stable over 3 years. Without these reliable patterns of inter-individual variation, genetics would have 
little to contribute to the analysis of viral load set point.

Box 2 | The CHAVI genome initiative

The Center for HIV-AIDS Vaccine Immunology (CHAVI; see Further information) is a 
significant component of the Global HIV Vaccine Enterprise77. Based at Duke University 
in Durham, USA, it includes investigators from institutions across the globe. CHAVI has 
included genomics as a core project in the quest for a vaccine against HIV-1. The genome 
initiative includes the establishment of a series of cohorts with appropriate phenotypes. 
The first target phenotype is the viral load at set point in individuals with a known date of 
seroconversion. There is the potential to study between 1,000 and 2,000 qualifying patients 
across different cohorts. CHAVI will progressively focus on the study of at least 2,000 
exposed individuals that will include infected and non-infected individuals from several 
clinical sites in Africa. This study aims to identify genetic determinants of protection from 
infection. Genotyping will be done using chips designed explicitly for whole-genome 
association studies. These chips allow genotyping of polymorphisms that represent common 
variation in the populations studied in the HapMap project: 550,000 single nucleotide 
polymorphisms (SNPs) for the study of subjects of European ancestry, and approximately 
650,000 SNPs in subjects of African ancestry to reflect the lower level of linkage 
disequilibrium in Africa. 
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Similarly, the level of viraemia at set point 
is a determinant of the natural history of SIV 
infection54 and of the long-term prognosis of 
HIV-1 infection in humans55. The viral load 
set point is a particularly attractive target as 
a study phenotype. First, it is known that 
individuals vary by several orders of magni-
tude in the amount of virus per ml of blood 
at set point8, as illustrated in FIG. 3. For 
instance, there are rare individuals whose set 
point is at a level of virus that is essentially 
not detectable56. Second, the viral load set 
point is a characteristic of the individual. So 
far, there have been no large-scale genomic 
studies to determine the source of this varia-
tion. The identification of gene variants that 
are associated with the variation in viral load 
set point could implicate particular aspects 
of immune control. Peak and set-point 
viraemia are also of direct interest because 
they predict the degree of infectiousness of 
the individual57.

The fact that the viral load set point 
is established so early in the course of 
HIV-1 infection and that it seems to be 
particularly resistant to external variants 
over prolonged periods suggests that the 
environment might be only a small con-
tributor. Therefore, the viral load set point 
seems to be determined mainly by two 
variables: influences from the host genome 
and the viral strain genome. Of course it 
cannot be ruled out that early environ-
mental factors in an individual’s life affect 
his or her immune system in such a way 

as to influence the set point that will be 
established on infection.

Another phenotype of significant 
interest for genetic studies is the status 
of exposed non-infected individuals. 
Indeed, the first identified gene variant 
that influenced susceptibility to HIV-1, 
CCR5 ∆32 was discovered using this 
framework. Several studies have examined 
heterosexual couples that are discordant 
for HIV-1 serostatus, female sex workers 
and men having sex with men who are 
highly exposed to HIV-1. The mechanisms 
identified or invoked to modulate suscep-
tibility to infection in the various studies 
emphasize the relevance of differences 

in acquired immunity through the role 
of protective cytotoxic T-cell responses 
and NK activity in the context of specific 
HLA class I alleles, as well as differences in 
humoral responses at mucosal surfaces58,59. 
A large study is needed to compare 
uninfected individuals with known and 
quantifiable exposure to HIV-1 with a 
large cohort of infected individuals that 
are carefully matched demographically.

The importance of reliable study phe-
notypes is intimately linked to the creation 
of appropriate cohorts for genetic analysis. 
Several recommendations for optimal design 
of genetic-association studies in clinical tri-
als and cohorts are presented elsewhere3,60–62. 
Examples of initiatives that have integrated 
genetic data for future clinical research 
are: the Adult AIDS Clinical Trials Group 
(AACTG) Protocol A5128 (REF. 63) and the 
National Institute of Allergy and Infectious 
Diseases (NIAID)-sponsored GENOMICS 
protocol. Both protocols establish the condi-
tions for storing DNA for studies that were 
not planned when informed consent was 
provided, and for future analyses.

The two-genome paradigm
The genome of HIV-1 co-evolves with that 
of the host. This is more pronounced for 
HIV-1 than for many other human patho-
gens because of the recognized capacity of 
retroviruses to mutate and thereby escape 
from the immune response and to adapt 
to the host environment. The need for 
continuous evolution for both the host and 
the pathogen is illustrated by the Red Queen 
principle.

At a population level, this host–viral inter-
action can be detected in several ways. For 
example, major histocompatibility complex 
(MHC)-restricted immune responses might 

Figure 3 | The viral load set point. a | Soon after infection, HIV replicates to high levels (peak virae-
mia). Host factors then exert their effects to limit viral replication to a post-acute set-point level of 
plasma viraemia. b | The dynamics of establishment of the viral load set point in an individual present-
ing with HIV primary infection are shown. c | Viraemia data from three individuals are shown, charac-
terized by post-acute viral load set points at 5, 3 and <2 log10 HIV-1 RNA copies per millilitre — fully 
stable over 3 years. Without these reliable patterns of inter-individual variation, genetics would have 
little to contribute to the analysis of viral load set point.

Box 2 | The CHAVI genome initiative

The Center for HIV-AIDS Vaccine Immunology (CHAVI; see Further information) is a 
significant component of the Global HIV Vaccine Enterprise77. Based at Duke University 
in Durham, USA, it includes investigators from institutions across the globe. CHAVI has 
included genomics as a core project in the quest for a vaccine against HIV-1. The genome 
initiative includes the establishment of a series of cohorts with appropriate phenotypes. 
The first target phenotype is the viral load at set point in individuals with a known date of 
seroconversion. There is the potential to study between 1,000 and 2,000 qualifying patients 
across different cohorts. CHAVI will progressively focus on the study of at least 2,000 
exposed individuals that will include infected and non-infected individuals from several 
clinical sites in Africa. This study aims to identify genetic determinants of protection from 
infection. Genotyping will be done using chips designed explicitly for whole-genome 
association studies. These chips allow genotyping of polymorphisms that represent common 
variation in the populations studied in the HapMap project: 550,000 single nucleotide 
polymorphisms (SNPs) for the study of subjects of European ancestry, and approximately 
650,000 SNPs in subjects of African ancestry to reflect the lower level of linkage 
disequilibrium in Africa. 
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dated to ensure sufficient efficacy against
newly emerging variants (7, 8). The World
Health Organization coordinates a global
influenza surveillance network, currently
consisting of 112 national influenza centers
and four collaborating centers for reference
and research. This network routinely char-
acterizes the antigenic properties of influ-
enza viruses using a hemagglutination in-
hibition (HI) assay (1). The HI assay is a
binding assay based on the ability of influ-
enza viruses to agglutinate red blood cells
and the ability of animal antisera raised
against the same or related strains to block
this agglutination (9). Additional surveil-
lance information is provided by sequenc-
ing the immunogenic HA1 domain of the
HA gene for a subset of these strains. The
combined antigenic, epidemiological, and
genetic data are used to select strains for
use in the vaccine.

Retrospective quantitative analyses of the
genetic data have revealed important insights
into the evolution of influenza viruses (10–
13). However, the antigenic data are largely
unexplored quantitatively because of difficul-
ties in interpretation, even though antigenic-
ity is a primary criterion for vaccine strain
selection and is thought to be the main driv-
ing force of influenza virus evolution. When
antigenic data have been analyzed quantita-
tively, it has usually been with the methods
of, or methods equivalent to, numerical tax-
onomy (14–16). These methods have pro-
vided insights (15–19); however, they
sometimes give inconsistent results, do not
properly interpret data that are below the
sensitivity threshold of the assay, and approx-
imate antigenic distances between strains in
an indirect way [discussed by (4, 16, 18)].
Lapedes and Farber (4 ) solved these prob-
lems with a geometric interpretation of bind-
ing assay data, in which each antigen and
antiserum is assigned a point in an “antigenic
map” [based on the theoretical concept of
“shape space” (20–23)], such that the dis-
tance between an antigen and antiserum in
the map directly corresponds to the HI mea-
surement. Lapedes and Farber used ordinal
multidimensional scaling (MDS) (24 ) to po-
sition the antigens and antisera in the map.

The method used in this manuscript is
based on the fundamental ideas described
by Lapedes and Farber (4 ) and, in particu-
lar, takes advantage of their observation
that antigenic distance is linearly related to
the logarithm of the HI measurement. Ex-
ploiting this observation allowed us to cre-
ate a new method that is parametric yet still
handles HI measurements that are beyond
the sensitivity of the HI assay (9). We use
a modification of metric MDS (25 ) to po-
sition the antigens and antisera in the map
(9). This new approach offers computation-
al advantages over the ordinal approach,

including reduced running time and fewer
local minima, making it tractable to run on
datasets the size of the one used in this
manuscript, and on larger datasets.
Antigenic map of human influenza A

(H3N2) virus. We applied this method to
mapping the antigenic evolution of human
influenza A (H3N2) viruses, which became
widespread in humans during the 1968 Hong
Kong influenza pandemic and have been a
major cause of influenza epidemics ever
since. Antigenic data from 35 years of influ-
enza surveillance between 1968 and 2003
were combined into a single dataset. We se-
quenced the HA1 domain of a subset of these
virus isolates (26, 27 ) and restricted the an-
tigenic analysis to these sequenced isolates to
facilitate a direct comparison of antigenic and
genetic evolution. The resulting antigenic
dataset consisted of a table of 79 postinfec-
tion ferret antisera by 273 viral isolates, with
4215 individual HI measurements as entries
in the table. Ninety-four of the isolates were
from epidemics in the Netherlands, and 179
were from elsewhere in the world.

We constructed an antigenic map from
this dataset to determine the antigenic evolu-
tion of influenza A (H3N2) virus from 1968
to 2003 (Fig. 1). Because antigen-antiserum
distances in the map correspond to HI values,
it was possible to predict HI values that were
missing in the original dataset and subse-
quently to measure those values using the HI
assay, so as to determine the resolution of the
map. We predicted and then measured 481
such HI values with an average absolute pre-
diction error of 0.83 (SD 0.67) units (each
unit of antigenic distance corresponds to a
twofold dilution of antiserum in the HI assay)
and a correlation between predicted and mea-
sured values of 0.80 (p !! 0.01). The accu-
racy of these predictions indicates that the
map has resolution higher than that previous-
ly considered available from HI data and
higher than the resolution of the assay. The
resolution of the map can be greater than the
resolution of the assay because the location of
a point in the map is fixed by measurements
to multiple other points, thereby averaging
out errors (9).

The map reveals high-level features of the
antigenic evolution of influenza A (H3N2)
virus. The strains tend to group in clusters
rather than to form a continuous antigenic
lineage, and the order of clusters in the map is
mostly chronological; from the original Hong
Kong 1968 (HK68) cluster, to the most recent
Fujian 2002 (FU02) cluster. The antigenic
distance from the HK68 cluster, through con-
secutive cluster centers, to the FU02 cluster is
44.6 units, and the average antigenic distance
between the centers of consecutive clusters is
4.5 (SD 1.3) units. The influenza vaccine is
updated between influenza seasons when
there is an antigenic difference of at least 2

units between the vaccine strain and the
strains expected to circulate in the next sea-
son; thus, not unexpectedly, we find at least
one vaccine strain in each cluster.

The ability to define antigenic clusters
allows us to identify the amino acid substitu-
tions that characterize the difference between
clusters (Table 1, fig. S1). Some of these
“cluster-difference” substitutions (9) will
contribute to the antigenic difference between
clusters, some may be compensatory muta-

Fig. 1. Antigenic map of influenza A (H3N2)
virus from 1968 to 2003. The relative positions
of strains (colored shapes) and antisera (uncol-
ored open shapes) were adjusted such that the
distances between strains and antisera in the
map represent the corresponding HI measure-
ments with the least error (9 ). The periphery of
each shape denotes a 0.5-unit increase in the
total error; thus, size and shape represent a
confidence area in the placement of the strain
or antiserum. Strain color represents the anti-
genic cluster to which the strain belongs. Clus-
ters were identified by a k-means clustering
algorithm (9 ) and named after the first vaccine-
strain in the cluster—two letters refer to the
location of isolation (Hong Kong, England, Vic-
toria, Texas, Bangkok, Sichuan, Beijing, Wuhan,
Sydney, and Fujian) and two digits refer to year
of isolation. The vertical and horizontal axes
both represent antigenic distance, and, because
only the relative positions of antigens and an-
tisera can be determined, the orientation of the
map within these axes is free. The spacing
between grid lines is 1 unit of antigenic dis-
tance—corresponding to a twofold dilution of
antiserum in the HI assay. Two units corre-
spond to fourfold dilution, three units to eight-
fold dilution, and so on.
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Evolutionary cartography

Andrew Rambaut, Trevor Bedford, Hua Zhou,

Philippe Lemey and Marc A. Suchard

Abstract

[Insert abstract]

1 Probabilistic cartographic model

Let Xi ⇥ ⇤P represent the cartographic location of virus i for i = 1, . . . , N and let Xj ⇥ ⇤P

identify the cartographic location of antisera j for j = 1, . . . , J . Typically, P = 2, but higher

or lower dimensions may better reflex the data. We define the immunological distance

between virus i and antisera j

dij = max (Hij) + log2

�
Hij

max (Hj)

⇥
(1)

and let the set I = {(i, j) : Hij is measured}.

The goal of multidimensional scaling (MDS) optimizes over Z = (X1, . . . ,XN ,X1, . . . ,XJ)

such that

⇤

(i,j)2I

(�ij � dij)
2 (2)

1

dij ⇠ Normal(�ij ,�)

Oh and Raftery. 2001. Bayesian 
multidimensional scaling and choice 
of dimension. J Am Stat Assoc.

+-mds

Bedford et al., 
elife, 2014

discrete phylogenetic diffusion: other traits

50 years

predictor support

host divergence 45.23

range overlap 0.35

roost structure 
overlap 1.45

∆ wing aspect 
ratio 0.14

∆ wing loading 0.23

∆ body size 0.42

to the 15-geographic region partition, we subsequently obtain the average a�nity for each
airport to the communities in this partition. We assign each airport to the community for
which it shows the highest average a�nity, but we take into account its uncertainty by also
considering assignments that yield a�nities that are > 2/3 of the highest a�nity score. This
cut-o↵ resulted in 771 ambiguous airport assignments. Finally, we partitioned the sequence
data according to the air community assignment and accommodate 368 (24%) ambiguous
sequence locations, i.e. those sequences related to airports with ambiguous community as-
signments, using ambiguity coding in our phylogeographic approach.

1.3 Bayesian statistical analysis of sequence and trait evolution

We integrate genetic, spatial and air transportation data within a single full probabilistic
evolutionary model and simultaneously estimate the parameters of phylogeographic di↵u-
sion using Markov chain Monte Carlo (MCMC) analysis implemented in BEAST [3]. We
introduce a novel phylogenetic di↵usion model and associated inference procedures in the
subsections below. To model sequence evolution, we partition the hemagglutinin codon posi-
tions into first+second and third positions [4] and apply a separate HKY85 [5] CTMC model
of nucleotide substitution with discrete gamma-distributed rate variation [6] to both. We
assume a flexible Bayesian skyride prior over the unknown phylogeny [7]. Exploratory runs
using the data for the 26 locations indicated that a relaxed molecular clock represented an
over-parametrization [8]. A strict clock was therefore used in subsequent analyses. Because
the exact date of sampling was not known for some additional publicly available sequences,
we integrated out their dates over the known sampling time interval [9]. We capitalize on
BEAGLE [10] in conjunction with BEAST to improve computational performance on our
large data sets. MCMC analyses were run su�ciently long to ensure stationarity as diag-
nosed using Tracer. We used the TreeAnnotator tool in BEAST to summarize trees in the
form of maximum clade credibility (MCC) trees. As part of the supplementary files (Dataset
S1), we make available an XML document specifying the data and analysis settings for main
analysis of the air communities, and the associated empirical trees required to run the anal-
ysis (section 1.3.3). This includes accession numbers for all the sequences as well as their
sampling dates, the locations we assigned them to (section 1.1), the di↵erent sub-samplings,
the (GLM) model settings and the predictors (section 1.3.1 and 1.3.2).

1.3.1 GLM di↵usion implementation and predictor support

Bayesian phylogeographic inference models discrete di↵usion as a continuous-time Markov
chain process parameterized in terms of a K ⇥ K infinitesimal rate matrix ⇤ of discrete
location change withK representing the number of location states. The GLM di↵usion model
extends this by adopting a generalized linear model (GLM) approach that takes an arbitrary
number P of predictors X = (x1, . . . ,xP ), where a single predictor xp is a flattened vector of
quantities corresponding to entries in the i to j rate matrix xp = (x1,2,p, . . . xK�1,K,p)

0
. The

GLM considers every instantaneous movement rate ⇤ij for i 6= j in ⇤ as a log linear function
of the set of predictors X, such that:

log⇤ij = �1�1xi,j,1 + �2�2xi,j,2 + . . .+ �P �Pxi,j,P , (1)

5
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Hypothetical scenario for discretely and continuously distributed samples on the same geographical scale (top) and modeling assumptions underlying
the discrete and continuous phylogeographic approaches (bottom). The choice of the phylogeographic approach depends on whether the sampling
scheme is amenable to discretization or not. For example, if sequences are drawn from a single city in each country or if only the country of sampling is
known (panel a; k represents the number of sequences available for each state or location), a discrete diffusion model may be preferred, although such
sampling does not necessarily preclude the application of a continuous diffusion model. Intermediate scenarios may be treated either way (panel b). In
this case, the choice may more depend on the objectives of the analysis (see Box 1). Phylogeographic inference for sequences drawn from unique
locations that are continuously distributed over this geographic area and for which administrative borders do not offer a realistic discretization (panel c)
will have to resort to continuous diffusion models. To illustrate the assumptions underlying for the discrete model, we consider a graphical
representation of a four-state CTMC path (panel d). All possible transitions from state i to state j are color-labeled according to the end state j (diffusion
to a location) within a time interval, although other arbitrary labels can be considered to build different counting processes [52,53]. Conditioning on the
observed locations at the tips of a rooted phylogeny, CTMCs model the instantaneous locations along each branch of a tree [9!,56!,57] to infer the
ancestral states at the internal nodes (panel e). Continuous diffusion approaches are based in Brownian diffusion models and can account for
variability on the branch dispersal rates [10!]. We consider a simulation of a Brownian diffusion process, in which the lines represent branches of the
tree projected on a two-dimensional arbitrary map (panel f). In this case, only diffusion pathways for the tips are shown.
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Hypothetical scenario for discretely and continuously distributed samples on the same geographical scale (top) and modeling assumptions underlying
the discrete and continuous phylogeographic approaches (bottom). The choice of the phylogeographic approach depends on whether the sampling
scheme is amenable to discretization or not. For example, if sequences are drawn from a single city in each country or if only the country of sampling is
known (panel a; k represents the number of sequences available for each state or location), a discrete diffusion model may be preferred, although such
sampling does not necessarily preclude the application of a continuous diffusion model. Intermediate scenarios may be treated either way (panel b). In
this case, the choice may more depend on the objectives of the analysis (see Box 1). Phylogeographic inference for sequences drawn from unique
locations that are continuously distributed over this geographic area and for which administrative borders do not offer a realistic discretization (panel c)
will have to resort to continuous diffusion models. To illustrate the assumptions underlying for the discrete model, we consider a graphical
representation of a four-state CTMC path (panel d). All possible transitions from state i to state j are color-labeled according to the end state j (diffusion
to a location) within a time interval, although other arbitrary labels can be considered to build different counting processes [52,53]. Conditioning on the
observed locations at the tips of a rooted phylogeny, CTMCs model the instantaneous locations along each branch of a tree [9!,56!,57] to infer the
ancestral states at the internal nodes (panel e). Continuous diffusion approaches are based in Brownian diffusion models and can account for
variability on the branch dispersal rates [10!]. We consider a simulation of a Brownian diffusion process, in which the lines represent branches of the
tree projected on a two-dimensional arbitrary map (panel f). In this case, only diffusion pathways for the tips are shown.
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Diversifying selection
Any form of natural selection 
that generates high levels of 
genetic diversity; for example, 
recurrent positive selection or 
balancing selection.

Parsimony approach
A principle of evolutionary 
inference, based on  
the assumption that the 
best-supported evolutionary 
history for a characteristic is 
the one that requires the 
fewest number of changes  
in that characteristic.

Box 1 | Phylodynamic techniques

Rooted molecular phylogenies can be estimated from viral gene sequences (see the figure, part a). Depending on the 
scale of the analysis undertaken, the sampled sequences (red circles) may represent infected individuals, infected cells, 
virions or higher-level units such as villages. The phylogeny branching order shows the shared ancestry of the sequences, 
which usually — but not always — reflects the history of pathogen transmission between these units (discussed in main 
text). This phylogeny has no timescale, so the branch lengths represent the genetic divergence from the ancestor (black 
circle). If the sequences of interest undergo recombination, then a single phylogenetic tree may not adequately describe 
evolutionary history and alternative methods can be applied (for example, REF. 104).

The same phylogeny can also be reconstructed using a molecular clock model (see the figure, part b), which defines a 
relationship between genetic distance and time. The pathogen sequences have been sampled at known time points and 
the phylogeny branches have lengths in units of years. This approach estimates the ages of branching events, including 
that of the common ancestor. The simplest, ‘strict’ clock model assumes that all lineages evolve at the same rate. More 
complex, ‘relaxed’ models allow evolutionary rates to vary through time or among lineages, resulting in variation around 
an average rate25. In this phylogeny, unusually fast or slow evolving lineages are shown as thick or thin lines, respectively. 
The relationships among genetic distance, evolutionary rate and time can be understood by comparing the branch 
lengths in part a and part b.

Phylodynamic data can also highlight the evolution through time of mutations that may reflect viral adaptations  
(see the figure, part c). Observed amino acid changes (crosses) are shown mapped onto specific phylogeny branches. 
Amino acid sites under positive selection can be identified using dn/ds methods, which compare the rate of replacement 
substitutions (that change the amino acid) with the rate of silent substitutions (that do not change the amino acid)18,105. 
Such methods are most powerful when detecting diversifying selection, making them appropriate for the analysis of 
infectious disease, but the results obtained using these methods require careful interpretation106. Of particular interest 
are the replacement mutations that are found on the persisting phylogenetic ‘backbone’ that represents the ancestor of 
future virus populations (blue branches), as opposed to those occurring on branches that die out (black branches).

The data can also be analysed using temporal phylogeography (see the figure, part d). The nine sequences were sampled 
from France (green, A), the United Kingdom (blue, B) and two locations in Spain (red, C

1
 and C

2
). Statistical methods can be 

used to reconstruct the history of pathogen spread, so that each branch is labelled with its estimated geographic position. 
Current reconstruction methods mostly use simple parsimony approaches107 that reconstruct a minimum set of migration 
events consistent with the observed phylogeny. Lineage movement events are marked on the phylogeny with crosses. 
Combining the spatial and temporal information provides further insights — this hypothetical pathogen spread to 
location C

1
 years before independently arriving at location C

2
. Such analyses are not limited to hypotheses concerning 

physical geography, as the labels A, B, C can stand for any trait of interest, for example, host species, cell tropism during 
infection, host risk factors or clinical outcome.

The principles of coalescent analyses, which incorporate an explicit model of the sampled pathogen population, are 
illustrated in figure, part e. Each circle represents an infection, and circles on the same row occur during the same period 
of time. The increasing width of each row therefore reflects the growth of the epidemic through time. Starting from the 
sampled infections (red), the sampled lineages (black lines) can be traced back through unsampled infections (grey)  
to the common ancestor (black circle). The rate at which the sampled lineages merge or coalesce depends on population 
processes such as population dynamics, population structure, selection and recombination (only change in population size 
is represented here). Coalescent methods are used to infer these processes from randomly sampled pathogen sequences.
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