

L3, Inference on stochastic epidemic models

Tom Britton

July, 2019

Tom Britton L3, Inference on stochastic epidemic models

Statistical inference/estimation in general

Stochastic modelling can tell us (within a model and given some parameter values): what are the likely outcomes?

Example: Given R_0 , about how many will get infected?

Statistical inference goes in the "opposite direction" (within a certain model): given an observed outcome, which parameter "fits" to the observation best?

Example: Suppose 20% were infected during an outbreak. What is R_0 ?

Estimation from outbreak sizes

Suppose an epidemic outbreak is observed and we want to estimate parameters, e.g. transmission probability p, or R_0

What is observed?

Final size: how many were infected and how many were not during outbreak

Important with additional knowledge of how many/what fraction were susceptible prior to outbreak!

If data comes from many small controlled experiments inference is quite easy:

Estimation from many small outbreaks

Example: suppose we have many (n) units of size 2 in which one was initially infected

If m out of the n households resulted in the second individual getting infected then we estimate the transmission probability p by the observed fraction of units in which infection took place:

$$\hat{o} = \frac{m}{n}$$

Note: Parameter estimates are equipped with "hat" (so \hat{p} is an estimate of p)

Estimation from many small outbreaks

If units are isolated (independent) we have a binomial experiment and can easily give confidence bounds:

$$\hat{p} \pm \lambda_{lpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$

where $\lambda_{lpha/2}$ is normal distribution quantile:

95% confidence interval ($\alpha=$ 0.05) gives $\lambda_{\alpha/2}=\lambda_{0.025}=1.96$

Exercise 13: Suppose 27 out of 100 units had the second individual infected. Give a 95% confidence interval for transmission probability p

More about small group outbreaks later

Estimation from one large outbreak

From before: in case of a large outbreak and assuming everyone was initially susceptible, the final fraction infected will be close to the positive solution of

$$1-\tau = e^{-R_0\tau}$$

Inference other way around: we observe that a fraction $\tilde{\tau}$ got infected. What is $R_0?$

Rewrite the equation: $R_0 = -\ln(1- au)/ au$

Our estimate of R_0 is given by the corresponding observed value:

$$\hat{R}_0 = -\ln(1- ilde{ au})/ ilde{ au}$$

Exercise 14: Estimate R_0 if 20% were infected during an outbreak

Estimation from one large outbreak

This estimate assumed everyone was initially susceptible!

If in fact a fraction r was initially immune we know from before that τ , the fraction *among the initially susceptible* who got infected approximately equals positive solution of

$$1-\tau = e^{-R_0(1-r)\tau}$$

This leads to the estimate:

$$\hat{R}_0 = -\ln(1- ilde{ au})/(1-r) ilde{ au}$$

Note: The over all fraction infected equals $\tilde{\tau}(1-r)$

Exercise 15: Suppose as before that 20% were infected during an outbreak, but that only 50% were initially susceptible and the rest were immune. Compute first $\tilde{\tau}$ and then estimate R_0

Estimation of v_c from one large outbreak

It was shown earlier that: $v_c = 1 - 1/R_0$

By observing an outbreak we can hence also estimate v_c (for the same or similar community but not for any community!):

$$\hat{v}_c = 1 - rac{1}{\hat{R}_0} = 1 - rac{ ilde{ au}}{-\ln(1- ilde{ au})}$$

If a fraction r was immune in the observed outbreak and $\tilde{\tau}$ of the initially susceptibles were infected this changes to

$$\hat{
u}_c = 1 - rac{1}{\hat{R}_0} = 1 - rac{(1-r) ilde{ au}}{-\ln(1- ilde{ au})}$$

Estimation of v_c from one large outbreak

If vaccine not perfect but efficacy E known v_c estimated by

$$\hat{v}_c = \frac{1}{E} \left(1 - \frac{1}{\hat{R}_0} \right) = \frac{1}{E} \left(1 - \frac{(1-r)\tilde{\tau}}{-\ln(1-\tilde{\tau})} \right)$$

Exercise 16. Suppose as previous exercise that 20% of the community got infected but the initial fraction susceptible was 50% (so 40% of these susceptibles were infected). Estimate the critical vaccination coverage for a vaccine having 90% efficacy.

Initial growth rate ρ

For new (so-called *emerging diseases*) and/or lethal diseases it is of course not desirable to wait until the outbreak is over in order to estimate R_0 and other parameters

From before we know $I(t) pprox e^{
ho t}$

So if we observe $I(t_1), \ldots, I(t_k)$ it follows that

$$rac{I(t_k)}{I(t_1)}pprox e^{
ho(t_k-t_1)}$$

Initial growth rate ρ

This can be used to estimate ρ from data:

$$\ln(I(t_k)/I(t_1)) \approx \rho(t_k - t_1)$$

$$\implies \hat{\rho} = \frac{\ln(I(t_k)/I(t_1))}{t_k - t_1}$$

(A more proper estimate would be based on logistic regression. Still, this estimator will be biased for various reasons, e.g. time discretization)

Exercise 17: Suppose the incidence ($\approx I(t)$) was observed the first three weeks and the numbers were: 7, 29 and 121 respectively. Estimate ρ .

Estimation of R_0 from initial phase

Suppose we could estimate the growth rate ρ from an emerging outbreak

How about estimating R_0 ?

Unfortunately the connection between ρ and R_0 is week (see next slide)

Information about latency period L and infectious period I also needed to estimate R_0

Estimation of *L* and *I* hard for two reasons:

1) These periods are rarely observed

2) Even if they were: during the early stages of outbreak short periods are over-represented

Illustration that R_0 and ρ not very related

Illustration. Consider a disease with contact intensity $\beta = 2$ contacts per week and mean infectious $\nu = 1$ week. Then $R_0 = \beta \nu = 2$ and some exponential growth rate ρ .

Consider now another disease having $\beta = 1$ and $\nu = 2$ (less infectious but longer infectious period). Clearly this new disease also has the same $R_0 = \beta \nu = 2$. How about ρ ? The latter is twice as slow \implies new ρ is half of the former: $\rho_{\rm new} = \rho_{\rm old}/2$

I(t) = incidence day t = # infected day t

How many that get infected day t depends on:

 $-R_0 =$ basic reproduction number = mean number of infections by one infector

 $- \{g(s)\} =$ Generation time = typical length between getting infected and infecting new people

- how many that got infected that long back in time = I(t - s)

Model definition (common model)

$$I(t) \sim \mathsf{Pois}\left(R_0\sum_{s=1}^t g(s)I(t-s)\right), t = 1, 2...,$$
 (*)

 $G \sim g(s) =$ generation time distribution: probability that an infector infects a random infectee s days after own infection

$$I(t) \sim \operatorname{Pois}\left(R_0 \sum_{s=1}^{t} g(s)I(t-s)\right), t = 1, 2...,$$
 (*)

If $\{g(s)\}$ known (or estimated), Eq. (*) can be used for:

1: Estimating R_0 (from observed incidence $I(1), \ldots, I(t)$), or 2: Predicting outbreak incidence $I(1), \ldots, I(t)$ (if R_0 known before-hand)

Both 1 and 2 require knowledge about $\{g(s)\}$

Main question: How to estimate generation time distribution $\{g(s)\}$ and what happens to estimates of R_0 (or predictions I(1), I(2), ...) if $\{g(s)\}$ is estimated incorrectly?

Recall,
$$I(t) \sim \text{Pois}\left(R_0 \sum_{s=1}^t g(s)I(t-s)\right)$$

where $I(0), \ldots, I(t)$ grows, typically exponentially

How are estimates of R_0 (or predictions $I(1), \ldots, I(t)$) affected by the generation time distribution $\{g(s)\}$?

Recall,
$$I(t) \sim \text{Pois}\left(R_0 \sum_{s=1}^t g(s)I(t-s)\right)$$

where $I(0), \ldots, I(t)$ grows, typically exponentially

How are estimates of R_0 (or predictions $I(1), \ldots, I(t)$) affected by the generation time distribution $\{g(s)\}$?

It is easy to show that the mean parameter

 $R_0 \sum_{s=0}^{t} g(s) I(t-s)$ increases if:

-g(s) is replaced by $\hat{g}(s)$ which has smaller mean

-g(s) is replaced by $\hat{g}(s)$ which has same mean and larger variance

Recall,
$$I(t) \sim \text{Pois}\left(R_0 \sum_{s=1}^t g(s)I(t-s)\right)$$

where $I(0), \ldots, I(t)$ grows, typically exponentially

How are estimates of R_0 (or predictions $I(1), \ldots, I(t)$) affected by the generation time distribution $\{g(s)\}$?

It is easy to show that the mean parameter

 $R_0 \sum_{s=0}^{t} g(s)I(t-s)$ increases if:

– g(s) is replaced by $\hat{g}(s)$ which has smaller mean

-g(s) is replaced by $\hat{g}(s)$ which has same mean and larger variance

So, if our estimate of $\{g(s)\}$ has mean biased from below we will **under-estimate** R_0 (or **over-predict** the future outbreak)

And if we estimate $\{g(s)\}$ by something with the correct mean but larger variance we will **under-estimate** R_0 (or **over-predict** the future outbreak)

How to estimate generation time distribution $\{g(s)\}$?

How to estimate generation time distribution $\{g(s)\}$? **Contact tracing**: look up infectors of infected people and compare onset of symptoms

How to estimate generation time distribution $\{g(s)\}$? **Contact tracing**: look up infectors of infected people and compare onset of symptoms

- Three problems with this:
- 1) Looking backwards rather than forward in time
- 2) What if multiple infector candidates
- 3) Serial intervals instead of generation times

How to estimate generation time distribution $\{g(s)\}$? **Contact tracing**: look up infectors of infected people and compare onset of symptoms

- Three problems with this:
- 1) Looking backwards rather than forward in time
- 2) What if multiple infector candidates
- 3) Serial intervals instead of generation times

Conclusion: Unless taken account for, all three problems make R_0 *under-estimated* (or over-predict future outbreak). See Britton & Scalia-Tomba (2018) for details

Endemic diseases

Consider an endemic disease and that \tilde{s} observed

 \tilde{s} = average fraction of susceptibles = average relative time spent in susceptible state = average age at infection/average life-length

From before we know $\tilde{s} \approx 1/R_0$

$$\Longrightarrow \hat{R}_0 = \frac{1}{\tilde{s}}$$

By only knowing the typical infection-age and life-length gives estimate of R_0 !

Endemic diseases: estimation of v_c

Same data: \tilde{s} = average age of infection divided by average life-length (= average fraction susceptible in community)

We know that $v_c = 1 - 1/R_0$ (or $v_c = E^{-1}(1 - 1/R_0)$ if vaccine has known efficacy E)

$$\Longrightarrow \hat{v}_c = rac{1}{E} \left(1 - \tilde{s}\right)$$

Exercise 18 Suppose (as with measles) average age of infection is 5 years and average life-length is 75 years. Estimate R_0 and v_c assuming a vaccine having efficacy E = 0.95. (How about if E = 0.90?)