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The Ross-MacDonald Model for
Vector Bourne Infectious Diseases

Sir Ronald Ross (1857-1932)
Liverpool School of Tropical Medicine

George MacDonald

The 2" Nobel Prize in Medicine 1902 (190_3'1967)
Director
"for his work on malaria, by which he has shown how ; ; ; ;
it enters the organism and thereby has laid the Ross Institute and Hospltc_al for Troplcfal Dlseag.e_s
foundation for successful research on this disease The London School of Hyglene & Troplcal Medicine

and methods of combating it"



Model Structure

Simple deterministic model



Consider a 5-1-S model for humans, and S-I model for mosquitoes

n1 is the population size of humans.

N9 1s the population size of mosquitoes.

m = %3 number of mosquitoes per person, a measure of mosquito density
I(t) is the infection prevalence in humans, at time .

I5(t) is the infection prevalence in mosquitoes, at time ¢.

a 1s mosquito biting rate.

b mosquito to human transmission probability, per bite

¢ human to mosquito transmission probability, per bite

Yy = Dil 1s the recovery rate in humans.

Yo = Dig 1s the death rate in mosquitoes.



Differential Equations

The initial value problem is

dféit) = abmlI>(t)(1 — I1(t)) — v 11 (),
dfcgif?) = acli(t)(1 — L (1)) — 7,12 (t),

I,(0) > O0and/or I5(0) > 0,
Si(1)+ I(t) = 1.i—1,2,V¢>0.

This system has two equilibria as t — o0, one being (1 (>0), I2(o¢)) = (0,0),
and the other being in the interior of the S/-plane.

The largest eigenvalue of the linearized system at (0,0).is the basic repro-
ductive number,

2
ma“be
Ry = — — ma“beD1Ds = (abDs)(macD,) = REIRE 2
/172

# hum inf # mosqitoes inf
Threshold Theorem: byamos  byahum
If Ry < 1,then (0,0) is globally asymptotically stable (GAS), and

. ST Ro—1  Ro—1 \ - _
if Ry > l.then the interior point (RU—I-%’ RO"'ﬂ:-_(ib) is GAS.

e.g,m=5a=2b=c=0.1,D; =5,Dy =5, then Ry = 5.0,
and the equilibrium infection prevalence is (0.67,0.40).




Differential Equations

The initial value problem is
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abmIy(8)(1 — I,(£)) = 7, ().

acly(t)(1 — Ia(t)) — 7 12(2),
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This system has two equilibria as ¢ — oo, one being (I (00), I2(0c0)) = (0,0),
and the other being in the interior of the S/-plane.
The largest eigenvalue of the linearized system at (0, 0), is the basic repro-

ductive number,
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Threshold Theorem: Epidemiological Folk Theorem for Host- Vector Systems

If Ry < 1.,then (0,0) is globally asymptotically stable (GAS), and

. ST Ro—1  Ro—1 - - _
if Ry > 1.then the interior point (Ro+%’ RDJFT.-_TB) is GAS.

e.g., m=95,a=2b=c=0.1,D1 =5,D9 =5, then Ry = 5.0,
and the equilibrium infection prevalence is (0.67,0.40).



Typical 1,1, - plane phase portraits
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Basic Reproductive Number

Ry = ma’beD1Ds = (abD>)(macD) = R%—}l Ré—}g

* Transmission decreases as a quadratic with
decreasing biting rate, a

* Transmission decreases linearly with
decreasing mosquito density, m

* Transmission decreases as a quadratic with
vaccination if vaccine has both VEg, through
b,and VE,, through c.



Stochastic models



Model: human movement
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Model: mosquito movement
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Simplified Model

Small community of 16 x 16 households

40 “transmission settings” scattered among
households.

NO age structure
1 initial case
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Modeled relationship between
mosquito biting rate and R, and R
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Current dengue intervention use
and Impact modeling

* Vaccine effectiveness depends on

* Force of infection of each serotype
* Mix of serotypes circulating
* Level of Immunity in the population

* Age structure of the population

Change immunity patterns
Level of exposure

 Vector control

* Need to establish the relationship between vector
control methods and dengue iliness and infection



Dengue in Yucatan, 1979-2015
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Agent based model

People

Home

Day location

Age

Infection state
Immune state

May stay home if sick

Mosquitoes
Location

Age

Infection state

May move once per
day
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Model: Natural history of dengue

Remaining lifespan of 1+ days
Extrinsic incubation period of 11 days ~

| |
Susceptible Exposed —>» Infectious —>» Dead

, mosquito .\ -
.a

Susceptible —> Exposed —> Infectious —> Recovered

human ™ } — Symptomatic L
H"HE&HE Illl.-'l T
Hx“‘—————} Dead
Incubation period mean of 6 days ’ ’ /

Symptoms begin 0-2 days later

« Human SEIR is linked to mosquito SEI model

« Humans and mosquitoes infect each other
when they are in the same setting



Dengue model ==
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*1.82 million people Y%y
38% employed
28% in school 4 R
34% stay at home ==

—376k Households (5% sample, municipality)
-96k Workplaces (size, postal code)
—3.4k Schools (postal code)

Hladish et al. PLOS NTDs (2016)



Pixel size = 430m x 460m
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to nighttime light output (VIIRS/NASA)

Hladish et al. PLOS NTDs (201/6)



Mosquito movement
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Annual reported cases per 100,000 people

Reconstruct the past,
forecast the future

Priming DDT Fitting Forecast
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Observed cases

Observed seasonality (1995-2011)
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Temperature (°C)
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Seasonal factors Incidence

Dengue seasonality in Yucatan, 1995-2015
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Yucatan Simulation with Vaccination


http://tjhladish.github.io/d3_dengue_map/mex.html

Vector Control

Hladish TJ, Pearson CAB, Rojas DP, Gomez-Dantes H, Halloran ME, VVazquez-Prokopec GM,
Longini IM: Forecasting the effectiveness of indoor residual spraying for reducing dengue
burden. PLoS Neglected Tropical Diseases Published: June 25, 2018
https://doi.org/10.1371/journal.pntd.0006570 PMCID: PMC6042783



https://doi.org/10.1371/journal.pntd.0006570

Indoor residual spraying’

* Coverage: Treat 25/50/75% of houses per year

e Efficacy: 80% reduction in equilibrium pop size in
treated houses
 Corresponds to 13% daily mortality due to IRS

* Treatment lasts 90 days
Campaigns last 1/90/365 days
52 different start dates (1 and 90 day campaigns)

“Efficacy & durability based on Vazquez-Prokopec et al, Science
Advances (2017)



Cases per 100,000 people

Simulated impact of IRS (90-day campaign, 90-day durability, late May start)
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Overall Effectiveness

e (Qverall effectiveness based on incidence

. 2
e [Effectiveness=1-=—=
Ao

* Ao = dengue incidence with no intervention
A4 = dengue incidence with intervention

e (Qverall effectiveness can also be based on
cumulative incidence



Cases per 100,000 people

Cumulative cases averted per 100 people
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Effectiveness decreases for 15 years, then levels out. Why?

Effectiveness

1.0

0.8

-0.2

(90-day campaign, 90-day durability, optimal timing: late May start)
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practical
Importance

— 75% coverage
— 50% coverage
- 25% coverage

Important for
understanding dynamics

I I
10 20

Year

I I
30 40



Population immunity drives long-term IRS effectiveness
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What happens if IRS is abruptly stopped,
or mosquitoes suddenly evolve resistance?



Effectiveness
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Vaccines

*What should we expect if:

e avaccineis introduced that works as an
asymptomatic natural infection?

 adurable, efficacious vaccine is introduced?
* these are done alongside new vector control?



Dengue vaccines pipeline

Vaccine Manufacturer
Candidate
CYD

Sanofi
Dengvaxia Pasteur
DENVax Takeda
NIAID and
TV003/TV005 Butantan

Institute
GSK and
TDENV PIV WRAIR

V180 Merck

D1ME100 NMRC

Vaccine Type Mechanism of attenuation or inactivation

Yellow Fever vaccine backbone, premembrane
Live Attenuated and envelope proteins from wildtype dengue
virus

Wildtype DENZ2 strain attenuated in primary dog
Live Attenuated kidney cells and further attenuated by mutation

in NS3 gene
Live Attenuated Wildtype strains with genetic mutations
Purified Inactivated Formalin inactivated

Wildtype premembrane and truncated envelope

Recombinant protein via expression in the Drosophila S2 cell

Subunit :
expression system
Premembrane and envelope proteins of DENV1
DNA are expressed under control of the human

cytomegalovirus promoter/enhancer of the
plasmid vector VR1012

Clinical
Phase

[l finished

lll pending

[l pending



Dengvaxia assumptions:

* Vaccine replaces a non-specific natural
Infection

* Provides cross-immunity that wanes
linearly over 2 years

« 3 doses, 6 months apart

* 9-year-old routine; catchup to 50

/0% efficacious vaccine assumptions:

 Leaky protection, homogenous across
serotypes and serostatus

* Durable

* 1 dose

 2-year-old routine; catchup for 2+ years



Explanatory hypothesis about vaccine action for

Dengvaxia (CYD-TDV) by Sanofi Pasteur

primary econdary
Unvaccinated ﬁ d 1

disease risk

- e
Vaccmat?d, I_E:/P:m'"ke
no prev. inf. _ _
infection

iy

econdary
like

Vaccinated, primary

prev. inf. ﬁ H—

Assumes that vaccination primes the immune system similarly to infection:
« Temporary high degree of cross-immunity in at least seronegative recipients

« Seronegatives primed to secondary-like (more severe) infection once cross-
Immunity wanes

« Seropositives boosted so that future infections are tertiary-like (less severe)



Overall effectiveness
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CMDVI — Comparative modeling of dengue vaccine impact (Dengvaxia)
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Catchup vaccination and vector control both provide early effectiveness that decreases

as susceptible population increases

Effectiveness of routine vaccination by itself builds over ~20 years, but plateaus before

reaching high effectiveness



Vaccination + Vector control

Hladish TJ, Pearson CAB, Toh BK, Rojas DP, Manrique-Saide P, Gomez-Dantes H, VVazquez-
Prokopec GM, Halloran ME, Longini IM: Designing effective control of dengue with combined
interventions. Under review



Overall effectiveness
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Routine vaccination + new vector control

Vector control reduces epidemics initially,
vaccine replaces natural immunity over time

Vaccine cross-immunity wanes rapidly &
\ \ build-up of susceptibles reduces VC effectiveness
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Overall effectiveness
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Routine vaccination w/ catchup + new vector control

Almost-perfect initial effectiveness decreases

as susceptible population increases
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Conclusions Vaccines + Vector
Control

 The only way to achieve high effectiveness, i.e.,
80%, is to combine an efficacious vaccine with at
least 50% IRS

e With a less efficacious vaccine about 40%
effectiveness is possible

* Combing routine vaccination with modest vector
control = routine vaccination with catchup
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