Lecture 6: Different models for vaccine mechanism

Ira Longini, Dept. Biostatistics, University of Florida

SURVIVAL ANALYSIS IN A NUTSHELL

T - random variable for time to the event

PDF:
$$f(t) = \lim_{dt \to 0} P[t < T \le t + dt]/dt$$

CDF:
$$F(t) = P[T \le t]$$

Survival function:
$$S(t) = P[T > t] = 1 - F(t)$$

Hazard function: $\lambda(t) = \frac{f(t)}{S(t)}$

Integrated hazard function: $\Lambda(t) = \int_0^t \lambda(\tau) d\tau$

$$S(t) = e^{-\Lambda(t)}$$

$$F(t) = AR(t) = 1 - S(t)$$

FOR AN INFECTIOUS DISEASE

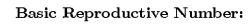
$$\lambda(t) = cp \frac{I(t)}{n}$$

SIR EPIDEMIC

$$\frac{dS(t)}{dt} = -cp\frac{I(t)}{n}S(t) = -\lambda(t)S(t)$$

$$\frac{dI(t)}{dt} = cp\frac{I(t)}{n}S(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t),$$


$$S(t) + I(t) + R(t) = n, \text{ for all } t,$$

$$S(0) = n - a, I(0) = a > 0, R(0) = 0.$$

$\frac{dI(t)}{2}$	cp	$S(t)$ _	1	$\gamma I(t)$
dt –	γ	n^{-}	1	11(0)

$$R_0 = \frac{cp}{\gamma}$$

DYNAMICS OF SIR EPIDEMIC

$$\frac{dI(t)}{dt} = \left[R_0 \frac{S(t)}{n} - 1\right] \gamma I(t)$$
if $R_0 \frac{S(t)}{n} \le 1$, then $\frac{dI(t)}{dt} \le 0$
if $R_0 \frac{S(t)}{n} > 1$, then $\frac{dI(t)}{dt} > 0$
near $t = 0, \frac{S(t)}{n} \approx 1$, and

$$\frac{dI(t)}{dt}|_{t=0^{+}} = [R_0 - 1]\gamma I(t)$$

if $R_0 \leq 1$, then no epidemic occurs if $R_0 > 1$, then an epidemic occurs

SURVIVAL FUCTION
Let
$$a = 0^+$$
 and $S(0) = n^-$

$$\frac{dS(t)}{dt} = -\lambda(t)S(t)$$
 solving yields
$$\frac{S(t)}{n} = e^{-\Lambda(t)}$$
 where

where

$$\begin{split} \Lambda(t) &= \frac{cp}{n} \int\limits_{0}^{t} I(\tau) d\tau \\ \text{Let AR}(t) &= 1 - \frac{S(t)}{n}, \text{ then} \\ \text{AR}(t) &= 1 - e^{-\Lambda(t)} \end{split}$$

THE VACCINE MODEL

Force of infection to an unvaccinated person

$$\lambda_0(t) = Z_0 cmp(t)$$

where $p(t) = \left[\frac{n_0 p_0(t) + n_1 \phi p_1(t)}{n}\right]$

1

and to a vaccinated person,

$$\lambda_1(t) = Z_1 \theta c m p(t).$$

$$S_{v}(t) = E\{\exp[-Z_{v}\Lambda_{v}(t)]\} = L_{z_{v}}[\Lambda_{v}(t)] .$$

where $\Lambda_{0}(t) = c\pi \int_{0}^{t} p(\tau)d\tau$ and $\Lambda_{1}(t) = c\pi \theta \int_{0}^{t} p(\tau)d\tau$.

MIXING MODEL

٠

$$P(Z_v = 0) = \alpha_v,$$

and

$$Z_v | Z_v > 0 - f_v(\cdot)$$
, with probability $1 - \alpha_v$,

where
$$E(X_v) = 1$$
 and $Var(X_v) = \delta_v$

$$E(Z_v) = 1 - \alpha_v \text{ and } Var(Z_v) = (1 - \alpha_v)(\delta_v + \alpha_v)$$

$$L_{z_v}(s) = \alpha_v + (1 - \alpha_v)L_{x_v}(s).$$

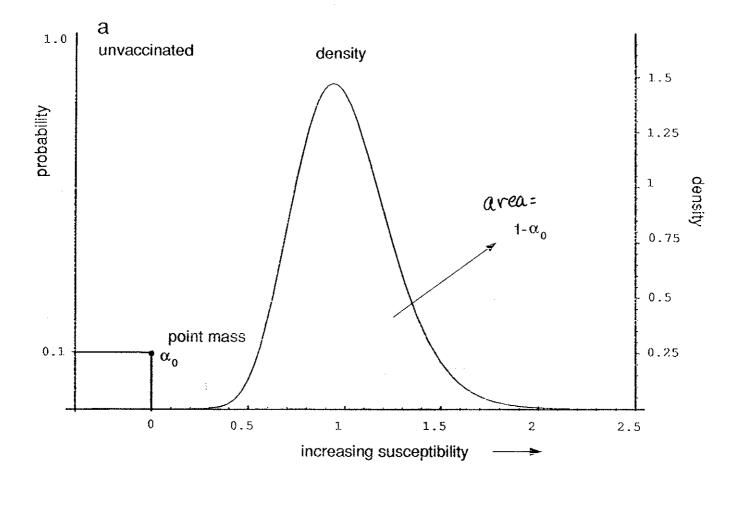
MIXING MODEL (GAMMA DISTRIBUTION)

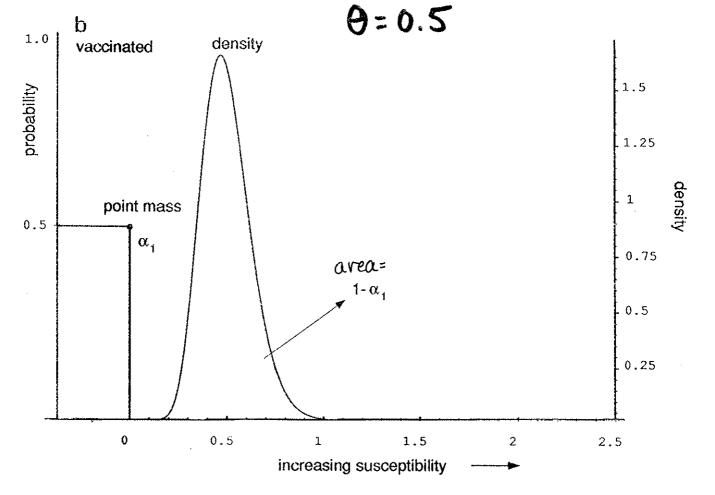
 X_v gamma with scale and shape parameters $1/\delta_v$.

$$L_{z_v}(s) = \alpha_v + (1 - \alpha_v) \left[\frac{1}{1 + s\delta_v}\right]^{1/\delta_v}$$

$$S_{v}(t) = \alpha_{v} + (1 - \alpha_{v}) \left[\frac{1}{1 + \Lambda_{v}(t)\delta_{v}}\right]^{1/\delta_{v}}$$

When $\alpha_{v} = 0$,


$$S_{v}(t) = \left[\frac{1}{1 + \Lambda_{v}(t)\delta_{v}}\right]^{1/\delta_{v}}.$$


When $\delta_v = 0$,

$$S_{v}(t) = \alpha_{v} + (1 - \alpha_{v}) \exp[-\Lambda_{v}(t)]$$

$$S_{o}(t) = d_{o} + (1 - d_{o}) \exp[-\Lambda_{o}(t)]$$

$$S_{i}(t) = d_{i} + (1 - d_{i}) \exp[-\Theta(1 - \Theta(t))]$$

MODEL OF AALEN (COMPOUND POISSON) (Annals of Applied Probability, 1992)

$$L_{z_{v}}(s) = \exp\left\{\frac{\alpha_{v}}{(1-\alpha_{v})\delta_{v}}\left[1-(1+(s\delta_{v}/\alpha_{v}))^{1-\alpha_{v}}\right]\right\}, \alpha_{v} \neq 1, \alpha_{v} > 0$$

•

$$P(Z_{v} = 0) = \exp \left\{\frac{\alpha_{v}}{(1 - \alpha_{v})\delta_{v}}\right\}$$

$$S_{v}(t) = \exp \left\{ \frac{\alpha_{v}}{(1-\alpha_{v})\delta_{v}} \left[1 - \{1 + (\Lambda_{v}(t)\delta_{v}/\alpha_{v})\}^{1-\alpha} v \right] \right\}$$

When $\alpha_v = 1$,

$$S_{v}(t) = \left[\frac{1}{1 + \Lambda_{v}(t)\delta_{v}}\right]^{1/\delta_{v}}.$$

VACCINE EFFICACY

$$VE_{S} = 1 - \frac{(1 - \alpha_{1})\theta\pi}{(1 - \alpha_{0})\pi} = 1 - \frac{(1 - \alpha_{1})}{(1 - \alpha_{0})}\theta$$

Special cases:

$$\alpha_0 = 0, \quad VE_S = 1 - (1 - \alpha_1) \theta$$

$$\alpha_0 = \alpha_1, \quad VE_S = 1 - \theta \quad \text{``leaky''}$$

$$\alpha_0 = 0, \ \theta = 1, \quad VE_S = \alpha_1 \quad \text{``all-or-none''}$$

Halloran, et al.(1992)

.

$$VE_{I} = 1 - \phi$$

Model name α_0 θ α_1 VE Section Sections $\theta \neq 1$ General $\alpha_0 > 0$ Relative all-or-none $\alpha_0 > 0$ $\alpha_1 > 0$ $\theta = 1$ $-\alpha_0$ All-or-none $\alpha_1 > 0$ $\alpha_0 = 0$ $\theta = 1$ α_1 All-or-partially $\alpha_0 = 0$ $1 - (1 - \alpha_1)\theta$ $\alpha_1 > 0$ $\theta \neq 1$ susceptible* Partially susceptible⁷ $\alpha_0 = \alpha_1$ $\theta \neq 1$ $1 - \theta$ Risk difference $\alpha_0 > 0 \qquad \alpha_1 > 0$ $\theta = 1$ α_1 $-\alpha_0$ ¥¥ all-or-none

*Model previously described by Halloran, et al.(1992). Note that "leaky" has been changed to "partially susceptible." ** Model not contained in the general model.

* # # 1

RELATIONSHIPS AMONG MODEL PARAMETERS AND VE MODELS

• ----

$$AR_{v}(t) = 1 - S_{v}(t).$$

$$ln[1 - AR_{0}(t)] = -A_{0}(t)$$

$$ln[1 - AR_{1}(t)] = -\theta A_{0}(t)$$

$$\theta = ln[1 - AR_{1}(t)]/ln[1 - AR_{0}(t)]$$

$$VE_{s} = 1 - \theta$$

$$\lambda_{1}(4) = \Theta \lambda_{0}(4)$$

٠

ESTIMATING VE FROM FINAL VALUE DATA PARTIALLY SUSCEPTIBLE CASE ($\delta_0 = \delta_1 = 0, \alpha_0 = \alpha_1 = 0$)

$$\hat{V}E = N - \frac{\hat{A}R_{1}}{AR_{0}} \text{ PARTIALLY SUSCEPTIBLE CASE (CONTINUED)}$$
$$\hat{V}E_{s} = 1 - [\ln(1 - \hat{A}R_{1}(t))/\ln(1 - \hat{A}R_{0}(t))] \ge 1 - \frac{\hat{A}R_{0}}{AR_{0}}$$

Note that

$$\operatorname{Var}[AR_{v}(t)] \cong AR_{v}(t) [1 - AR_{v}(t)]/n_{v}$$

and that $AR_0(t)$ and $AR_1(t)$ are conditionally independent.

Then use the delta method to yield

$$\operatorname{Var}[\widehat{\operatorname{VE}}] \cong [\operatorname{AR}_{1}(t)/\operatorname{n}_{1} + \theta^{2}\operatorname{AR}_{0}(t)/\operatorname{n}_{0}] [\log_{e}(1 - \operatorname{AR}_{0}(t))]^{-2} (\operatorname{Becker}, 1982)$$

Regression model: $[1 - AR_1(t)] = [1 - AR_0(t)]^{\theta}$ proportional hazards model

$$[1 - AR_{0}(t)] = \exp\{-\Lambda_{0}(t)\}$$

$$[1 - AR_{1}(t)] = \alpha + (1 - \alpha) \exp\{-\Lambda_{0}(t)\} = \alpha + (1 - \alpha)[1 - AR_{0}(t)]$$

$$AR_{1}(t) = (1 - \alpha) AR_{0}(t)$$

$$\alpha = 1 - [AR_{1}(t)/AR_{0}(t)]$$

ALL-OR-NONE (
$$\delta_0 = \delta_1 = 0, \alpha_0 = 0, \alpha_1 = \alpha, \theta = 1$$
)

ALL-OR-NONE (CONTINUED)

Variance of
$$\hat{\alpha} = 1 - [\hat{AR}_1(t)/\hat{AR}_0(t)]$$

Let $a = \log_e(1 - \alpha)$, then

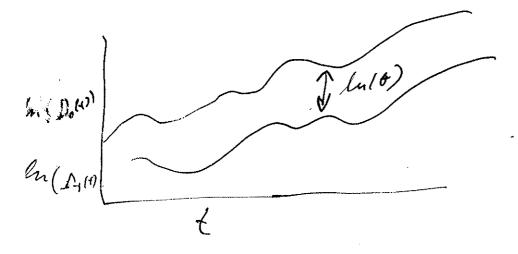
$$\hat{a} = \ln[\hat{AR}_{1}(t)] - \ln[\hat{AR}_{0}(t)].$$

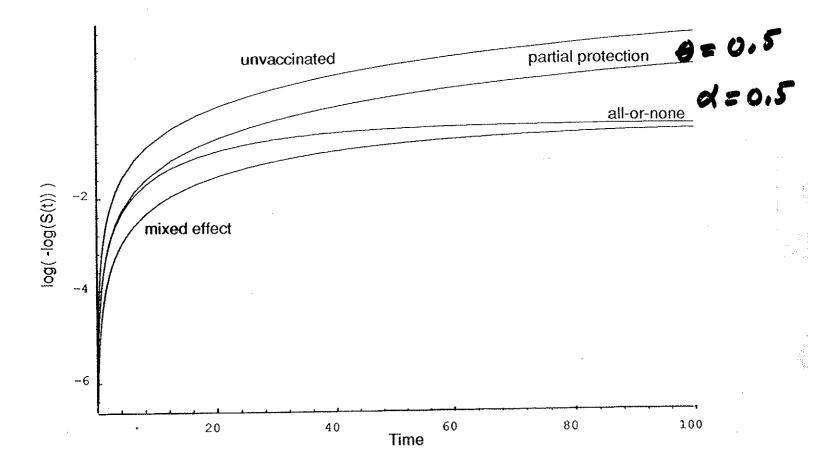
Then by the delta method,

$$Var[a] = [(1 - AR_1(t))/(n_1AR_1(t))] + [(1 - AR_0(t))/(n_0AR_0(t))]$$

(0'Neill, 1988)

$$\hat{\mathbf{W}}_{E} = 1 - \frac{1 + \exp(\hat{\mathbf{b}}_{0})}{1 + \exp(\hat{\mathbf{b}}_{0} + \hat{\mathbf{b}}_{1})} = \begin{bmatrix} 1 + \exp(\hat{\mathbf{b}}_{0}) \end{bmatrix}^{-1}, \quad AR_{1}(t) = \begin{bmatrix} 1 + \exp(\hat{\mathbf{b}}_{0} + \mathbf{b}_{1}) \end{bmatrix}^{-1}.$$

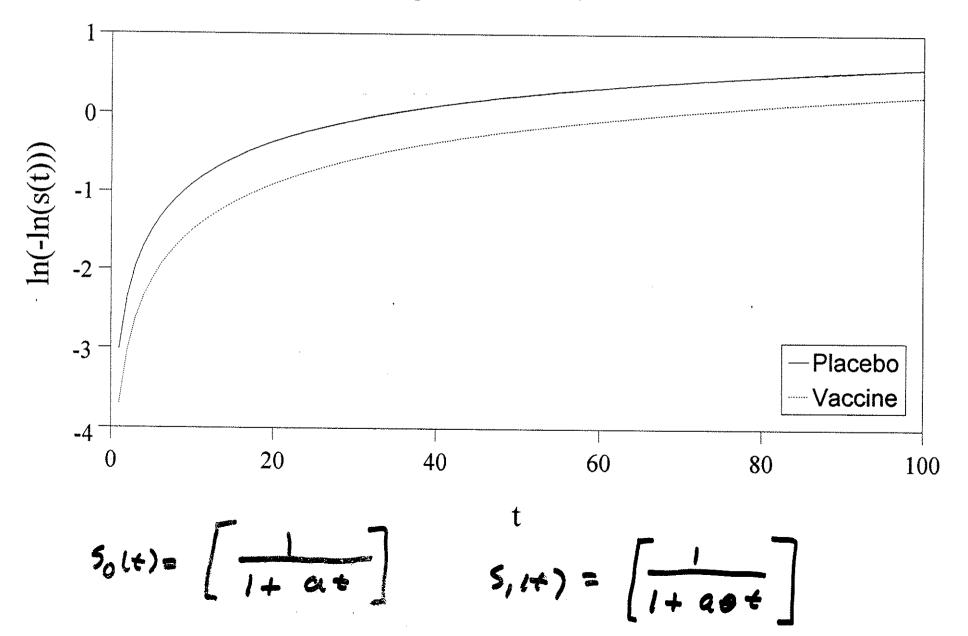

$$\hat{\mathcal{K}}_{R} = e^{b_{1}}$$


$$\hat{\mathcal{K}}_{E} \neq / - e^{b_{1}}$$

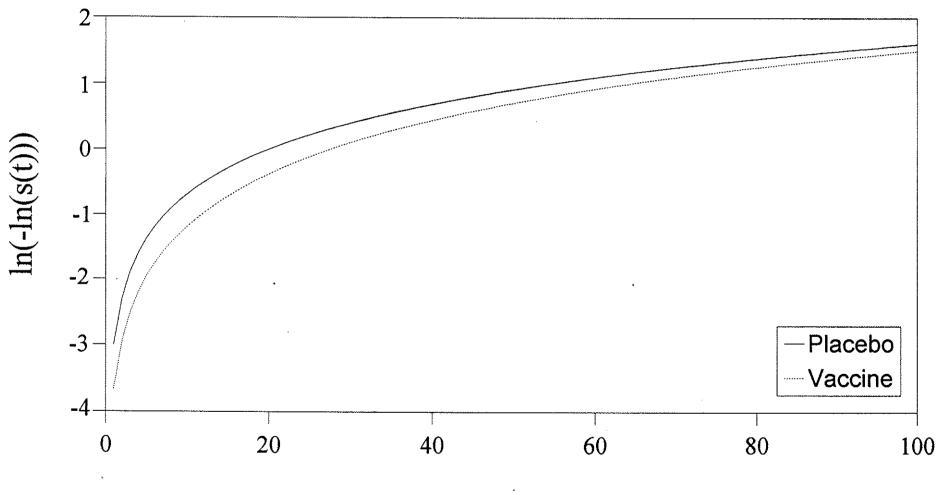
Plot $\ln\{-\ln[S_v(t)]\}$ vs. t

e.g., pure leaky model
$$(\delta_0 = \delta_1 = 0, \alpha_0 = \alpha_1 = 0)$$

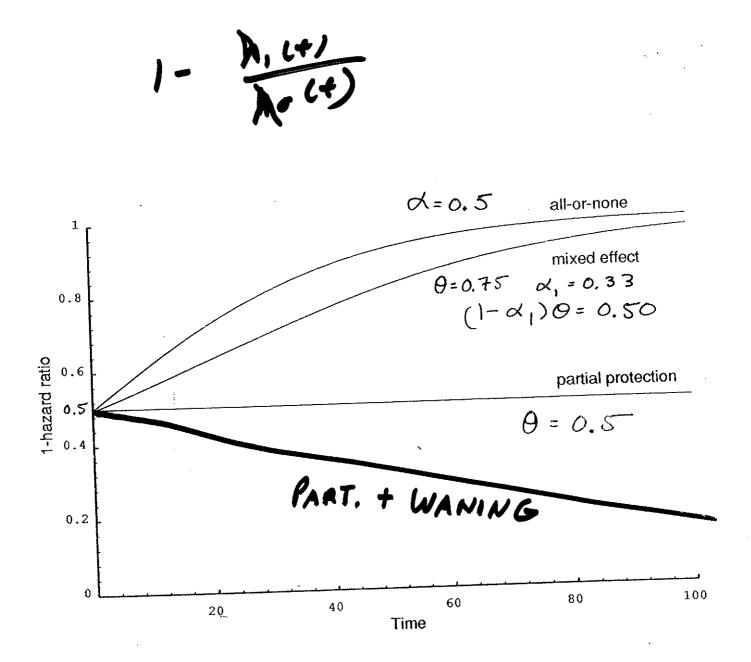
 $S_0(t) = \exp[-\Lambda_0(t)]$
 $S_1(t) = \exp[-\theta\Lambda_0(t)]$
 $-\ln[S_0(t)] = \Lambda_0(t)$
 $-\ln[S_1(t)] = \theta\Lambda_0(t)$
 $\ln\{-\ln[S_0(t)]\} = \ln[\Lambda_0(t)]$
 $\ln\{-\ln[S_1(t)]\} = \ln[\Lambda_0(t)] + \ln(\theta)$


e.g., pure all-or-none model ($\delta_0 = \delta_1 = 0$, $\alpha_0 = 0$, $\alpha_1 = \alpha$, $\theta = 1$) $S_0(t) = \exp[-\Lambda_0(t)]$ $S_1(t) = \alpha + (1 - \alpha)\exp[-\Lambda_0(t)]$




Log-log Plot Of Leaky Model With Heterogeneity

a=0.05, alpha=0, theta=0.5, deltas=1



Log-log Plot of Leaky Model With Waning

t

STATISTICAL, INFERENCE ON GROUPED DATA, $\phi = 1$

Parameters: α_0 , $\alpha_1 \delta_0$, $\delta_1 \theta$, and $a = c\pi$

Data: Observations are made at times $t_0(=0), t_1, \dots, t_k$. Define the time intervals, $[t_{i-1}, t_i)$, $i = 1, \dots, k$. $p(t) = p_i$ in interval i,

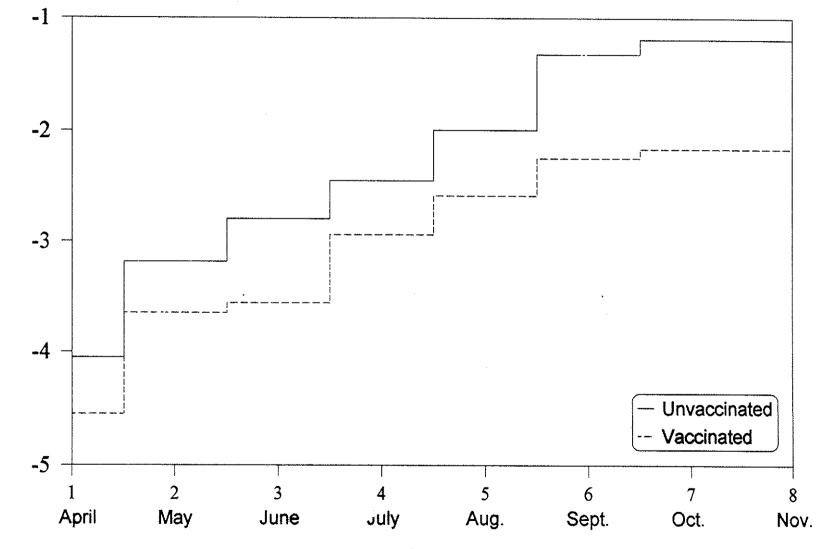
$$\Lambda_{0}(t) = c\pi \int_{0}^{t} p(\tau) d\tau = c\pi \kappa [\sum_{j=1}^{i} (t_{j} - t_{j-1})p_{j} + (t - t_{i})p_{i}], t \in [t_{i}, t_{i+1}).$$

r number at risk at beginning of i
m number infected during i

Likelihood function:

$$L = \prod_{i=1}^{k} \prod_{v=0}^{l} \{S_{v}(t_{i})/S_{v}(t_{i-1})\}^{(r_{iv}-m_{iv})} [1 - \{S_{v}(t_{i})/S_{v}(t_{i-1})\}]^{m_{iv}},$$

		Unvaccinated		Vaccinated			Exposure	
i	Month	At Risk [*]	I11	Percent	At Risk	I11	Percent	$p_i \ge 100$ Percent
1	April	579	10	1.7	857	9	1.1	1.3
2	May	551	13	2.4	848	13	1.5	1.9
3	June	517	10	1.9	835	2	0.2	0.9
4	July	483	12	2.5	833	20	2.4	2.4
5	Aug.	451	22	4.9	813	18	2.2	3.2
6	Sept.	408	50	12.3	795	24	3.0	6.4†
7	Oct.	337	12	3.6	771	7	0.9	1.7
8	Nov.	317	0	0.0	764	0	0.0	0.0
	Total		129			93		


Table 1.Numbers at risk, ill, and monthly exposure for the measles epidemicMuyinga, Burundi, April - November, 1988

* 140 initially at-risk unvaccinated children were vaccinated during the epidemic, and their vaccination times were treated as right censoring times for measles illness

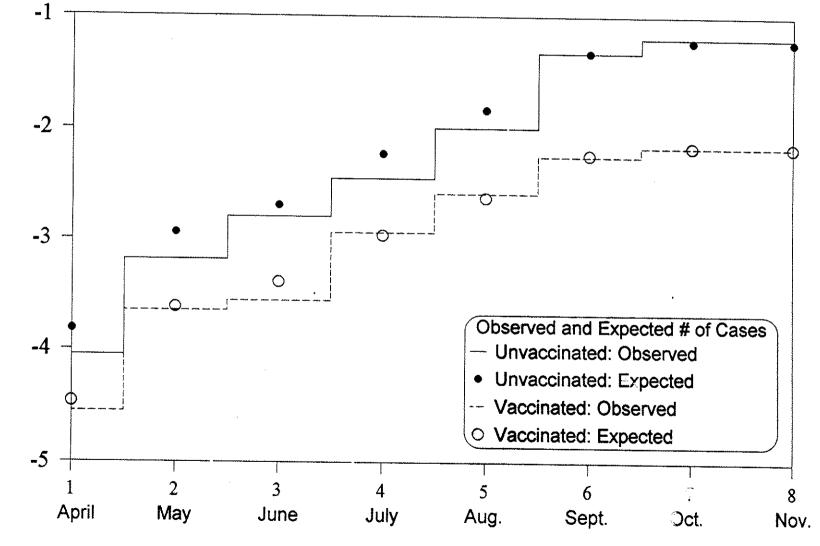
 Includes three individuals who were vaccinated and who contracted measles in September. These individuals were treated as being unvaccinated with right-censored times for the purpose of estimation.

Ln-ln Plot of Observed Data

ln(-ln(s(t)))

t

MEASLES OUTBREAK IN MUYINGA, BURUNDI, MARCH - DECEMBER, 1988 (CONTINUED)


.

m = 7,
$$\alpha_0 = \delta_0 = \delta_1 = 0$$

Estimates: $\hat{a} = c\pi\kappa = 1.658 \pm 0.137$, $\hat{\alpha}_1 = 0.805 \pm 0.060$,
 $\hat{\theta} = 2.764 \pm 1.235$
 $\hat{V}E \text{ all-or-none} = 0.805 \ [0.687, 0.924]$
 $\hat{V}E \text{ part.} = -1.765 \ [-4.185, -0.657]$.
 $\hat{V}E \text{ gen.} = 0.462 \ [0.318, 0.671]$

Ln-ln Plot of Observed and Expected Data

3

Burundi Measles Data

ln(-ln(s(t)))

t

Table 2.

Observed and expected frequencies for the model fitted to the data from the measles outbreak in Muyinga, Burundi, April - October, 1988

		Unvaco	zinated .	Vaccinated		
•	Month	Observed	Expected	Observed	Expected	
1	the second s	10	12.6	9	9.8	
1	April		16.7	13	12.8	
2	May	13		2	5.8	
3	June	10	7.6		14.7	
4	July	12	19.1	20	_	
5	-	22	23.0	18	16.7	
•	Aug.	50	41.0	24	27.2	
6	Sept.		9.4	7	6.0	
7	Oct.	12	2.4	·		
	Total	129	129.3	93	93.0	

 χ_{11}^2 - 12.8 (p-0.3)

Observed and Expected Number Ill Using Degenerate Model with Estimates: a=1.98761, alpha1=0.59442, theta=0.78174

	נ ט ======	nvaccin	lated		Vaccinated*			
Month	At Risk	Obs. 111	Exp. Ill	At Risk	Obs. 111	Exp. 111	p(t)	
1 2 3 4 5	1865.0 1835.0 1703.0 1536.0 1428.0	30. 132. 167. 108. 90.	31.6901 155.3851 169.4726 92.5926 77.4975	490.0 487.0 473.0 460.0 454.0	3. 14. 13. 6. 9.	2.6448 13.0952 14.3584 8.0008 6.8868	.00862 .04452 .05274 .03128 .02807	

Chi-Square=9.6139 * Vaccinated with card f = 6 p = 0.14

MEASLES OUTBREAK IN CHAD, FEBRUARY - JUNE, 1993 (CONTINUED)

m = 5,
$$\alpha_0 = \delta_0 = \delta_1 = 0$$

Estimates: $\mathbf{a} = c\pi\kappa = 1.988 \pm 0.084, \alpha_1 = 0.594 \pm 0.111,$
 $(-\sqrt{E_s} = \theta = 0.782 \pm 0.238$

VE all-or-none = 0.594 [0.378,0.811]

VE part. = 0.218 [-0.248, 0.684]

VE gen. = 0.683 [0.504, 0.925]

Table 2. Estimated vaccine efficacy using the summary model (VE_{SUM}), partial protection model (VE_{PP}) and all-or-none model (VE_{ALL}) for data simulated with 10,000 people in both the vaccinated and unvaccinated groups, 60 time periods, 5% right censoring in the unvaccinated group, baseline hazard $\lambda_{\rm b}$ (t)= 0.05 and $\delta_{\rm b} = \delta_{\rm a} = 0$.

α ₁ .	Model	Point estimate and empirical 95% confidence interval for vaccine efficacy ¹						
		1-0 [‡] = 0.2	1-0=0.4	1-0 = 0.6	$1 - \theta = 0.8$			
0.2	Preset	0.36	0.52	0.68	0.94			
	VE _{SUM}	0.36 (0.34-0.38)	0.52 (0.50-0.54)	0.68 (0.67-0.69)	0.84			
	VEPP	0.52 (0.50-0.53)	0.61 (0.60-0.62)	0.72 (0.71-0.73)	0.84 (0.83-0.85)			
	VEAL	0.23 (0.22-0.24)	0.29 (0.28-0.30)	0.40 (0.39-0.41)	0.85 (0.84-0.86) 0.61 (0.60-0.62)			
0.4	Preset	0.52	0.64	0.76	0.88			
	VESIM	0.52 (0.50-0.54)	0.64 (0.62-0.66)	0.76 (0,75-0.77)				
	VE	0.71 (0.70-0.72)	0.75 (0.74-0.76)	0.81 (0.81-0.82)	0.88 (0.87-0.89) 0.89 (0.89-0.90)			
	VE _{ALL}	0.42 (0.41-0.43)	0.47 (0.46-0.48)	0.55 (0.54-0.56)	0.71 (0.70-0.72)			
0.6	Preset	0.68	0.76	0.84				
	VESUM	0.68 (0.66-0.70)	0.76 (0.74-0.77)	0.84 (0.83-0.85)	0.92			
	VEPP	0.84 (0.83-0.84)	0.86 (0.85-0.86)	0.89 (0.88-0.89)	0.92 (0.91-0.93)			
	VEALL	0.62 (0.61-0.63)	0.65 (0.64-0.66)	0.70 (0.69-0.71)	0.93 (0.93-0.94) 0.81 (0.80-0.82)			
0.8	Preset	0.84	0.88	0.92	· · ·			
	VE _{SUM}	0.84 (0.83-0.85)	0.88 (0.87-0.89)	0.92 (0.91-0.93)	0.96			
	VE	0.93 (0.93-0.93)	0.94 (0.93-0.94)	0.95 (0.95-0.95)	0.96 (0.96-0.96)			
	VEALL	0.81 (0.80-0.82)	0.82 (0.82-0.83)	0.85 (0.85-0.86)	0.97 (0.97-0.97) 0.91 (0.90-0.91)			

 α_1 = proportion completely protected in vaccinated group.

[†] Average point estimate based on 1,000 simulations per α_1 , 1-0 combination.

 θ = relative residual susceptibility of vaccinated susceptibles compared to the unvaccinated group.

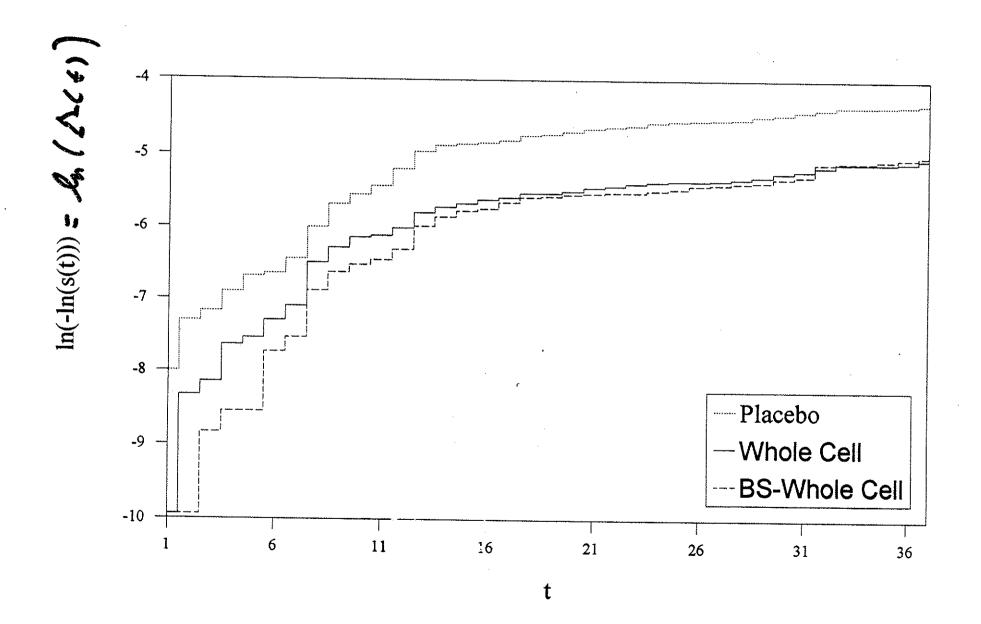
⁵ Preset value of VE_{SUM} in the simulation model = $1-(1-\alpha_1)\theta$.

Empirical 95% confidence intervals based on 1,000 simulations per α_1 , 1- θ combination.

Cholera Vaccines

Durham, L.K., Longini, I.M., Halloran, M.E., Clemens, J.D., Nizam, A. and Rao, M.: Estimation of vaccine efficacy in the presence of waning: Application to cholera vaccines. *American Journal of Epidemiology* **147**, 948-959 (1998).

Durham, L.K., Halloran, M.E., Longini, I.M. and Manatunga, A.K.: Comparing two smoothing methods for exploring waning vaccine effects. *Applied Statistics* **48**, 395-407 (1999).

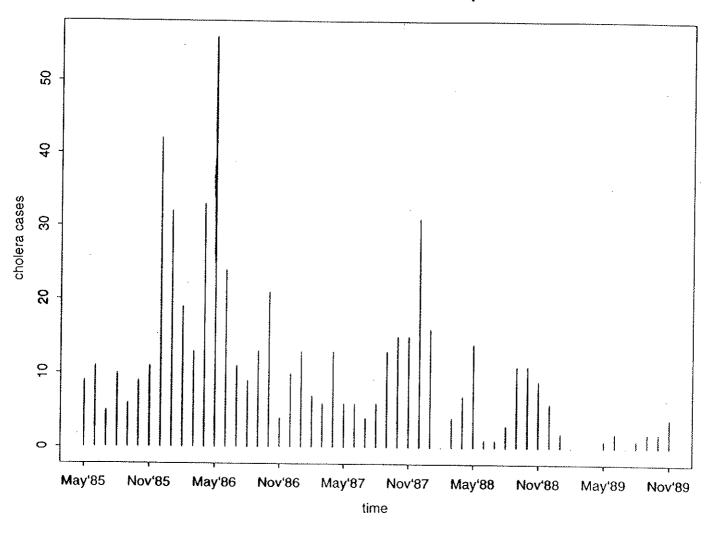

Longini, I.M., Nizam, A., Ali, M., Yunus, M., Shenvi, N. and Clemens, J.D.: Controlling endemic cholera with oral vaccines. *Public Library of Science (PloS), Medicine* **4** (11) 2007: e336 <u>doi:10.1371/journal.pmed.0040336</u>.

	Duita ji	////	Dungia		ne Gro		(Clemens, e			
					ν					
	Placebo v=0			WC v=1			BS-WC v=2			
Month	At Risk	111	· · .	At Risk	• <u>111</u>		At Risk	III		
i	r _{i0}	d	Lost	r _{il}	d _{i1}	Lost	r _{i2}	d _{i2}	Lost	p_i
0 Initial	20837			20743			20705			
1 May '8	5 20822.0	7	30	20723.5	1	39	20689.5	1	31	0.00014
2 Jun	20777 .ð	7	46	20681.5	4	43	20649.0	0	48	0.00032
3 Jul	20722.0	2	50	20633.5	1	45	20600.0	2	50	0.00040
4 Aug	20677.0	5	3 6	20589.0	4	42	20547.0	1	52	0.00056
5 Sep	20612.5	5	83	20530.0	1	58	20485.0	0	7 0	0.00066
6 Oct	20536.5	1	59	20466.0	3	58	20423.0	5	54	0.00081
7 Nov	20484.5	6	43	20414.5	3	39	20374.0	2	34	0.00099
8 Dec	20442.5	18	29	20375.5	14	33	2 0337.5	10	3 5	0.00167
9 Jan '86	20360.5	19	9 9	20307.0	7	7 6	20265.5	6	8 9	0.00220
10 Feb	20252.5	10	79	20219.0	6	86	20192.0	3	4 6	0.00251
11 Mar	20165.5	10	75	20141.0	1	58	20135.5	2	61	0.00273
l2 Apr	20090.0	23	56	20080.5	5	61	20075.0	5	56	v.00328
13 May	20020.5	30	37	20023.5	12	43	· 20021.0	14	42	0,0042
l 4 J un	19937.0	12	70	19960.5	5	59	19953.0	7	6 6	0.0046
15 Jul	19860.0	3	60	19896.5	3	59	19883.5	5	59	0.00479
16 Aug	19791.5	3	71	19836.5	4	55	19815.5	2	67	0.00494
17 Sep	19732.0	5	42	19785.5	2	39	19752.5	6	55	0.0051
18 Oct	19689.5	11	33	19744.0	5	40	19702.0	5	34	0.0055
19 Nov	19650.5	3	23	19702.5	0	33	19663.5	1	ي. ماليا	0.0055
$20 \mathrm{Dec}$	19614.0	6	44	19671.0	2	30	19626.5	2	39	C.0057
20 Dec 21 Jan '87		8	82	19620.5	4	67	19566.0	1	78	0.06.29
	19345.0	4	63	19552.0	2	62	19498.0	t	56	0.0061
22 Feb			52	19486.0	3	66	19436.5	Ô	65	0.0062
23 Mar	19403.0	3 9	49	19433.5	2	33	19385.0	2	38	0.0064
24 Apr	19349.5	3	49 52	19393.0	1	44	19346.5	2	35),0065
25 May	19290.0			19393.0	0	43	19299.0	4	56	0,1066
26 Jun	19233.5	2	55		1	63	19235.5	1	63	0.0067
27 Jul	19175.5	2	57	19295.5	2	14	19255.5	2	114	0.0068
28 Aug	19099.5	2	91 48	19206.0		58	19140.0	1	66	0.0070
29 Sep	19028.0	9	48	19118.0	3	- 45	18997.0	5	46	0.0073
30 Oct	18969.5	5	51	19063.5	5			3	38	0.0075
31 Nov	18912.5	9	53	19013.0	3	46	18950.0		38	0.0073
32 Dec	18863.0	7	28	18972.5	6	29 28	18909.0	18	35	0.0081
33 Jan '8		9	36	18933.0	5	38	18854.5	2		
34 Feb	18786.5	0	21	18900.0	0	18	18822.0	0	26	0.0083
35 Mar	18766.0	1	20	18882.0	0	18	18793.5	3	31	0.0084
36 Apr	18749.5	2	11	18866.5	2	13	18771.5	3	7	0,0085
37 May	18739.0	5	6	18852.0	5	12	18761.5	4	7	0.0088

 Table 1

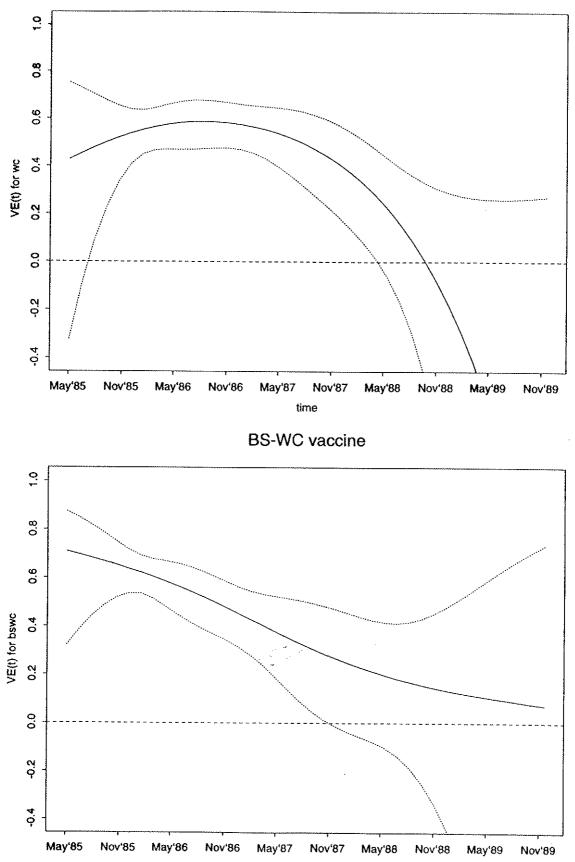
 gta from the Bangladesh cholera vaccine trial (Clemens, et al., 1990)

Ln-Ln Plot: Observed Bangladesh Cholera Data



BA671

DURHAM, HALLORAN, LONGINI 1. SCHOENFELD RESIDUALS 2. GEN. AOD. MODELS (GAM) $V = (+) = 1 - RR(+) = 1 - e^{\vec{B}(+)}$ SCHOENFELD RESIDUALS Nilt) - COUNTING PROCESS Note) - BASELINE INTENSITY INTENITY FOR TIME INVARIANT MOD. Y:(+) e^{f'}呈: 入。(+)


FIT AND GET ESTIMATE OF B COMPUTE RESIDUAL AT FAILURE TIMES AND CONSTRUCT $\hat{\beta}(t) = \hat{\beta} + \hat{\Theta}(t)$ WHICH IS DEFINED AT EACH FAILURE TIME THEN SMOOTH B(+)

number of new cholera cases per month

580 CASES

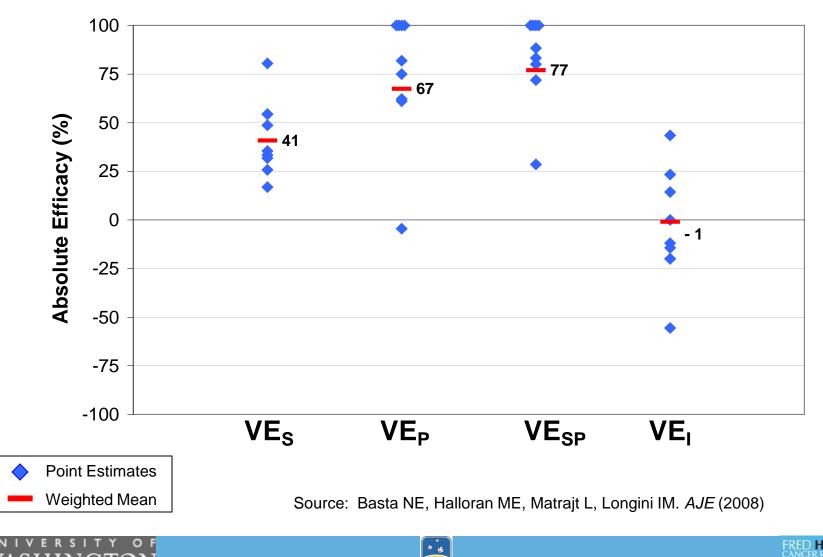
time

Table 3: Estimates cf VE(t), with 95% confidence intervals, for the WC and BS-WC vaccines, Matlab, Bangladesh, May 1, 1985-November 31, 1989

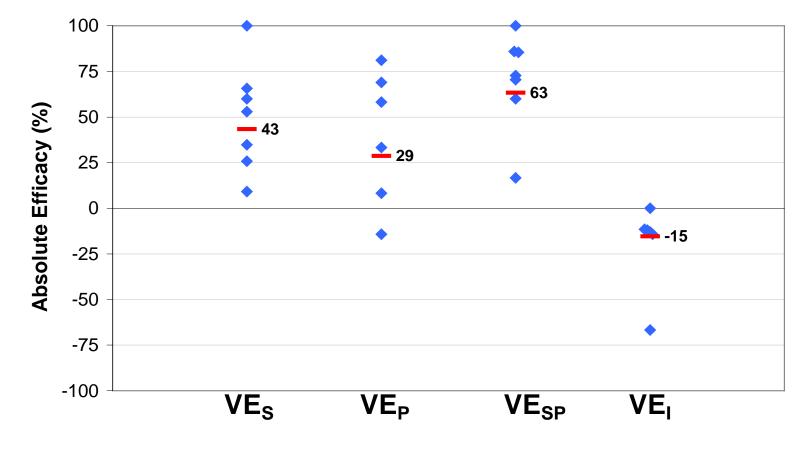
		V	vhole cell	B-subunit whole cell		
date	day	VE(day)	approx. 95% c.i.	VE(day)	approx. 95% c.i.	
May 85	0	0.430	(-0.342, 0.758)	0.713	(0.320, 0.879)	
Nov 85	183	0.525	(0.356, 0.650)	0.650	(0.523, 0.743)	
May 86	365	0.579	(0.467, 0.667)	0.572	(0.457, 0.662)	
Nov 86	548	0.583	(0.478, 0.667)	0.476	(0.344, 0.582)	
May 87	730	0.538	(0.394, 0.648)	0.374	(0.176, 0.524)	
Nov 87	913	0.433	(0.220, 0.588)	0.280	(0.006, 0.478)	
May 88	1095	0.245	(-0.028, 0.445)	0.202	(-0.089, 0.416)	
Nov 88	1278	-0.073	(-0.664, 0.308)	0.141	(-0.338, 0.448)	
May 89	1460	-0.590	(-2.40, 0.257)	0.092	(-0.955, 0.578)	

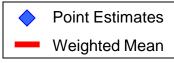
•

Influenza Challenge Studies


- Clements ML et al. Advantage of live attenuated cold-adapted influenza A virus over inactivated vaccine for A/Washington/80 (H3N2) wild-type virus infection. Lancet 1984;1:705-8.
- Clements ML et al. Resistance of adults to challenge with influenza A wildtype virus after receiving live or inactivated virus vaccine. J Clin.Microbiol. 1986;23:73-6.
- Sears SD et al. Comparison of live, attenuated H1N1 and H3N2 coldadapted and avian-human influenza A reassortant viruses and inactivated virus vaccine in adults. J Infect.Dis. 1988;158:1209-19.
- Clements ML et al. Evaluation of the infectivity, immunogenicity, and efficacy of live cold-adapted influenza B/Ann Arbor/1/86 reassortant virus vaccine in adult volunteers. J Infect.Dis. 1990;161:869-77.
- Treanor JJ et al. Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 1999;18:899-906.

Absolute Efficacy of Live Influenza Vaccine




MIDAS

Absolute Efficacy of Inactivated Influenza Vaccine

Source: Basta NE, Halloran ME, Matrajt L, Longini IM. AJE (2008)

