MCMC 2: Lecture 2 SIR models (1)

Phil O'Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

Contents

- 1. The modelling process
- 2. Gamma distribution example
- 3. General (Markov) SIR epidemic model

Contents

- 1. <u>The modelling process</u>
- 2. Gamma distribution example
- 3. General (Markov) SIR epidemic model

The general procedure we use is as follows.

- We have some observed data y
- We formulate a model with parameters θ
- In a Bayesian framework, we are interested in the posterior density π(θ | y)

- By Bayes' Theorem, we have
 π (θ | y) ∝ π (y | θ) π(θ)
 posterior ∝ likelihood × prior
- π(θ | y) is usually not known explicitly (i.e. we typically only know it up to proportionality), so we then use an MCMC algorithm to get samples from π (θ | y)

Typically, θ is multi-dimensional. If, say, $\theta = (\theta_1, \dots, \theta_n)$, then we usually need a way of updating each θ_k . If the full conditional density $\pi (\theta_k \mid \theta_1, \dots, \theta_{k-1}, \theta_{k+1}, \dots, \theta_n, y)$ is known explicitly* then we can use it to perform the update for θ_{k} ("Gibbs step")

* i.e. not just up to proportionality

 Conversely, if the full conditional density is not known explicitly then we can update θ_k using a Metropolis-Hastings step.

What if the likelihood π (y | θ) is unknown? (Meaning – hard/complicated to compute) Two possible solutions are

- Data augmentation: introduce extra quantities x such that π (x, y | θ) is tractable
- Give up on MCMC and do something else... (e.g. Approximate Bayesian Computation = ABC)

Contents

- 1. The modelling process
- 2. <u>Gamma distribution example</u>
- 3. General (Markov) SIR epidemic model

<u>Example</u>

Suppose we have data on incubation periods

$$\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$$

and we wish to fit a Gamma distribution to these data.

$$y_1 = 2, y_2 = 2, y_3 = 3, ..., y_{23} = 7$$

(Campylobacter data from Evans et al. 1996)

The gamma distribution has probability density function

f(x | α, β) =
$$\beta^{\alpha} x^{\alpha-1} \exp(-\beta x) / \Gamma(\alpha)$$

(where x > 0, $\alpha > 0$, $\beta > 0$).

Assuming the data are independent draws from this distribution, the likelihood is $\pi(y \mid \alpha, \beta)$

= f (y₁ | α , β) f (y₂ | α , β) ... f (y_n | α , β)

The likelihood simplifies to $\pi(y \mid \alpha, \beta)$ $= \beta^{n\alpha} \prod_k y_k^{\alpha-1} \exp(-\beta \sum y_k) / {\Gamma(\alpha)}^n$

We assign independent priors as

$$\alpha \sim \text{Gamma}(\lambda_{\alpha}, v_{\alpha})$$

$$\beta \sim \text{Gamma}(\lambda_{\beta}, v_{\beta})$$

So

 $\pi (\alpha) = f(\alpha \mid \lambda_{\alpha} , v_{\alpha}) \text{ and } \pi (\beta) = f(\beta \mid \lambda_{\beta} , v_{\beta})$

The posterior density of interest is $\pi (\alpha, \beta | y) \propto \pi (y | \alpha, \beta) \pi(\alpha) \pi(\beta)$

So to define an MCMC algorithm to sample from this target density we need a way to update α and β .

One option is to update them separately.

For separate updates:

Find the full conditional densities $\pi (\alpha | \beta, y)$ and $\pi (\beta | \alpha, y)$

- In this case (see lab exercise) we find that (i) $\pi(\alpha \mid \beta, y)$ is only known up to proportionality;
- (ii) $\pi(\beta \mid \alpha, y)$ is the density of a Gamma distribution

Therefore we

(i) update α using a Metropolis-Hastings step, i.e. we propose a new value α^* from a proposal density q($\alpha^* \mid \alpha$) and accept α^* with probability min(p,1) where

$$p = \frac{\pi(y \mid \alpha^*, \beta) \pi(\alpha^*) q (\alpha \mid \alpha^*)}{\pi(y \mid \alpha, \beta) \pi(\alpha) q (\alpha^* \mid \alpha)}$$

- The choice of $q(\alpha^* \mid \alpha)$ is fairly arbitrary; possible options include
- Propose α* ~ N(α, σ²)
 (Gaussian random walk)
- Propose α* ~ Gamma(a,b)

 (independence sampler needs a good choice of a and b to work well)

(ii) update β using a Gamma distribution (see lab exercise for details!)

Block updating

An alternative to separate updates for α and β is to update them simultaneously in a "block". In this case we could do this using M-H, e.g. propose (α^* , β^*) from q (α^* , β^* | α , β) and then accept/reject accordingly.

One reason to do this is if α and β are strongly correlated, i.e. it is hard to move one without the other.

Contents

- 1. The modelling process
- 2. Gamma distribution example
- 3. <u>General (Markov) SIR epidemic model</u>

- Population of N individuals
- At time t there are:
 - S(t) susceptibles
 - I(t) infectives
 - R(t) recovered / immune individuals
 - Thus S(t)+I(t)+R(t) = N for all t.
 - Initially (S(0),I(0),R(0)) = (N-1,1,0).

- Each infectious individual remains so for a length of time T_I ~ Exp(γ).
- During this time, infectious contacts occur with each susceptible according to a Poisson process of rate β / N.
- Thus overall infection rate is βS(t)I(t) / N.
- **Two model parameters**, β and γ .

- We call this model the "Markov SIR model".
- This is because the process

$\{(S(t), I(t)): t \ge 0\}$

is a bivariate Markov chain. This follows from the fact that the infectious periods are exponentially distributed.

If infectious periods are not exponential we have a "non-Markov" SIR model.

Suppose we observe n removals at times

 $\mathbf{r}_1 \leq \mathbf{r}_2 \leq \mathbf{r}_3 \leq \ldots \leq \mathbf{r}_n.$

The inference problem is to estimate the model parameters β and γ.

 In a Bayesian setting, this means we need to find (or sample from) the posterior density π(β, γ | r₁, r₂, ..., r_n)

However, the likelihood

$$\pi(r_1, r_2, ..., r_n | \beta, \gamma)$$

is very hard to compute.

A solution (as discussed in MCMC I) is to introduce infection times as extra variables to give a tractable augmented likelihood.

Augmented Likelihood

- Let b be the label of the last removal time, i.e. $r_b \ge r_k$ for all k = 1, ..., n.
- Given removal data, b is observed and fixed for any given labelling.
- Let i_k be infection time associated with r_k .
- Define a as the label of the first infection time, i.e. i_a < i_k for all k ≠ a.
- Given removal data, a is unknown.

- Define $\mathbf{r} = (r_1, r_2, ..., r_n)$
- Define i = (i₁, i₂, ..., i_{a-1}, i_{a+1}, ..., i_n)
 Let

$$f(x \mid \gamma) = \gamma \exp(-\gamma x) \qquad (x > 0)$$

denote the probability density function of the infectious period distribution $(Exp(\gamma))$.

■ The augmented likelihood is $\pi(\mathbf{i}, \mathbf{r} \mid \beta, \gamma, \mathbf{i}_a, \mathbf{a}) =$ $\prod_{j \neq a} \beta N^{-1} I(\mathbf{i}_j) \times \exp(-\beta N^{-1} \int S(t)I(t) dt)$ $\times \prod_{1 \leq j \leq n} f(\mathbf{r}_j - \mathbf{i}_j \mid \gamma)$

 $= \prod_{j \neq a} \beta N^{-1} I(i_j) \times \exp(-\beta N^{-1} \int S(t)I(t) dt) \\ \times \gamma^n \exp\{-\gamma \sum (r_j - i_j) \}$

where I(t-) means I(t) just before time t

The target posterior density is π(β, γ, i, i_a, a | r) ∞ π(i, r | β, γ, i_a, a) π(β, γ, i_a, a)

Set independent priors as

$$\beta \sim Gamma(m_{\beta}, \lambda_{\beta})$$

$$\gamma \sim Gamma(m_{\gamma}, \lambda_{\gamma})$$

- a ~ uniform on $\{1, ..., n\}$
- $i_a \sim uniform on (-\infty, r_1)$

- So an MCMC algorithm that targets the posterior density needs ways of updating the parameters β, γ, i, i_a and a.
- In each case, we can first find the full conditional distribution to see if we get a standard distribution. If so, we can update using that distribution. If not, we need a Metropolis-Hastings step.

- To update β: first find the full conditional density π(β / γ, i, i_a, a, r).
- We do this by finding all the terms involving
 β in the posterior (=likelihood × prior)
- We find:
 - $\beta^{n-1} \exp(-\beta N^{-1} \int S(t) I(t) dt) \beta^{m_{\beta}-1} \exp(-\beta \lambda_{\beta})$
 - $=\beta^{n+m_{\beta}-2}\exp\{-\beta (N^{-1}\int S(t)I(t) dt + \lambda_{\beta})\}$
- Thus β | ...
 - ~ Gamma (m_{β} + n -1, λ_{β} + N⁻¹ \int S(t)I(t) dt)

- So to update β we just need to sample from Gamma (m_{β} + n -1, λ_{β} + N⁻¹ \int S(t)I(t) dt)
- Only problem is: how to evaluate the integral? (We will address this shortly...)
- Sampling directly from the full conditional distribution is often called a "Gibbs step"

- Going through the same steps for γ we find the full conditional distribution
 - $\gamma \mid ... \sim Gamma (m_{\gamma} + n, \lambda_{\gamma} + \sum (r_j i_j))$ and so we can update γ using this distribution.

- For the infection times, the full conditional distribution turns out to be non-standard.
- We therefore require a Metropolis-Hastings step. One option is to update infection times one-at-a-time, either in order or at random.
- For instance, we might update 10% of the infection times in between each update of β and γ.

- So for infection time i_k, we propose a new time using proposal density q(i_k* | i_k)
- Accept with probability min(p,1) where

$$p = \pi(\mathbf{i^*, r} \mid \beta, \gamma, \mathbf{i}_{a^*}, a^*) q(\mathbf{i}_k \mid \mathbf{i}_k^*)$$

$$\pi(\mathbf{i, r} \mid \beta, \gamma, \mathbf{i}_a, a) q(\mathbf{i}_k^* \mid \mathbf{i}_k)$$

- Note that if i_k* < i_a then a*=k, otherwise a is unchanged.
- Note also we need to be able to evaluate π(i, r | β, γ, i_a, a)

- Choices for q(i^{*}_k | i^k) could include
- (i) Propose $i_k^* = r_k Exp(\gamma)$ (ii) Propose $i_k^* = r_k - Exp(\mu)$, where μ is fixed throughout
- (iii) Propose $i_k^* \sim N(i_k, \sigma^2)$

Evaluating the likelihood

π(**i, r** | β*,* γ, i_a, a)

 $= \prod_{j \neq a} \beta N^{-1} I(i_j) \times \exp(-\beta N^{-1} \int S(t)I(t) dt) \\ \times \gamma^n \exp\{-\gamma \sum (r_j - i_j)\}$

The parts that are not straightforward to evaluate are the product term and the integral term.

Product term:

 $\prod_{j\neq a} \beta N^{-1} \mathbf{I}(\mathbf{i}_j -) = (\beta N^{-1})^{n-1} \prod_{j\neq a} \mathbf{I}(\mathbf{i}_j -)$

- No easy way to simplify further
- Need to write code to evaluate number of infectives at each infection event

Integral term

Here, "a \land b" denotes "minimum of a,b".

Also $i_j = \infty$ for j > n, i.e. for those individuals never infected.

Formula is easy to code.

Integral term

Explanation:

$$\begin{split} S(t) &= \Sigma_{1 \leq j \leq N} \ \mathbf{1}_{\{j \text{ is susceptible at time }t\}} \\ &= \Sigma_{1 \leq j \leq N} \ \mathbf{1}_{\{i_j < t\}} \end{split}$$

where $1_A = 1$ if event A occurs = 0 otherwise

Similarly,

$$I(t) = \Sigma_{1 \le k \le n} \mathbf{1}_{\{i_k < t < r_k\}}$$

$$\int \mathbf{S}(t)\mathbf{I}(t) \, dt = \int \Sigma_{1 \le j \le N} \Sigma_{1 \le k \le n} \mathbf{1}_{\{i_k < t < r_k\}} \, \mathbf{1}_{\{i_j < t\}} \, dt$$
$$= \Sigma_{1 \le j \le N} \Sigma_{1 \le k \le n} \int \mathbf{1}_{\{i_k < t < r_k \text{ and } i_j < t\}} \, dt$$

Total time that j susceptible, j infective

$$= (\mathbf{r}_{\mathsf{k}} \wedge \mathbf{i}_{\mathsf{j}}) - (\mathbf{i}_{\mathsf{k}} \wedge \mathbf{i}_{\mathsf{j}})$$

Summary: MCMC algorithm updates

- Update β and γ using their full conditional distributions (Gamma, in this case)
- Update infection times using a Metropolis-Hastings step. We might typically update 10% of the infection times in between each update of β and γ.

- Summary: MCMC algorithm
- Initialise β , γ , **i**, i_a , a

Loop:

Update β Update γ Update some of the infection times Record current values of β , γ

Summary: MCMC algorithm

The output is a sequence

 $(\beta_1, \gamma_1), (\beta_2, \gamma_2), ..., (\beta_M, \gamma_M)$

where M is number of iterations in loop.

Note that we don't usually record **i**, i_a and a since they are not our main focus, and also **i** is typically high-dimensional so costly to store.