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1. The modelling process

The general procedure we use is as follows.

 We have some observed data y

 We formulate a model with parameters θ

 In a Bayesian framework, we are interested 
in the posterior density π(θ | y )



1. The modelling process

 By Bayes’ Theorem, we have

π (θ | y )  π (y | θ) π(θ) 

posterior  likelihood × prior

 π(θ | y ) is usually not known explicitly (i.e. 

we typically only know it up to 

proportionality), so we then use an MCMC 
algorithm to get samples from π (θ | y )



1. The modelling process

 Typically, θ is multi-dimensional. If, say,

θ = (θ1 ,…, θn), then we usually need a way   

of updating each θk.

If the full conditional density

π (θk | θ1 ,…, θk-1 ,θk+1 ,…, θn , y ) 

is known explicitly* then we can use it to       

perform the update for θk (“Gibbs step”)

* i.e. not just up to proportionality



1. The modelling process

 Conversely, if the full conditional density

is not known explicitly then we can update

θk using a Metropolis-Hastings step.



1. The modelling process

What if the likelihood π (y | θ) is unknown?

(Meaning – hard/complicated to compute)

Two possible solutions are

 Data augmentation: introduce extra 
quantities x such that π (x, y | θ) is tractable

 Give up on MCMC and do something 

else… (e.g. Approximate Bayesian 

Computation = ABC) 
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2. Gamma distribution example

Example

Suppose we have data on incubation periods 

y = (y1,…, yn) 

and we wish to fit a Gamma distribution to 

these data. 

y1 = 2, y2 = 2, y3 = 3, …, y23 = 7 

(Campylobacter data from Evans et al. 1996)

Day 2 3 4 5 6 7

Freq 2 6 11 3 0 1



2. Gamma distribution example

The gamma distribution has probability 

density function 

f(x | α, β ) = βα xα-1 exp(-βx) / Γ(α)

(where x > 0, α > 0, β > 0).

Assuming the data are independent draws 

from this distribution, the likelihood is

π(y | α, β ) 

= f (y1 | α, β ) f (y2 | α, β ) … f (yn | α, β ) 



2. Gamma distribution example

The likelihood simplifies to

π(y | α, β ) 

=  βnα ∏k yk
α-1 exp(-β ∑ yk) / {Γ(α)}n

We assign independent priors as

α ~ Gamma(λα ,να)

β ~ Gamma(λβ ,νβ)

So 

π (α) = f(α | λα ,να)  and π (β) = f(β | λβ ,νβ) 



2. Gamma distribution example

The posterior density of interest is

π (α, β | y)  π (y | α, β ) π(α) π(β)

So to define an MCMC algorithm to sample 

from this target density we need a way to 

update α and β.

One option is to update them separately.



2. Gamma distribution example

For separate updates: 

Find the full conditional densities 

π (α | β, y)    and   π (β | α, y) 

In this case (see lab exercise) we find that

(i) π(α | β, y) is only known up to 

proportionality;

(ii) π(β | α, y) is the density of a Gamma 

distribution



2. Gamma distribution example

Therefore we 

(i) update α using a Metropolis-Hastings step, 

i.e. we propose a new value α* from a 

proposal density q(α* | α ) and accept α* with 

probability min(p,1) where

p =  π(y | α*, β ) π(α*) q (α | α*) 

π(y | α, β ) π(α) q (α* | α) 



2. Gamma distribution example

The choice of q(α* | α ) is fairly arbitrary; 

possible options include

 Propose α* ~ N(α, σ2) 

(Gaussian random walk)

 Propose α* ~ Gamma(a,b)

(independence sampler – needs a good 

choice of a and b to work well)



2. Gamma distribution example

(ii) update β using a Gamma distribution

(see lab exercise for details!)



2. Gamma distribution example

Block updating

An alternative to separate updates for α and β

is to update them simultaneously in a “block”.

In this case we could do this using M-H, e.g.

propose (α*, β*) from q (α*, β*| α, β) and then 

accept/reject accordingly.

One reason to do this is if α and β are strongly 

correlated, i.e. it is hard to move one without 

the other.
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3. General epidemic model

Population of N individuals

At time t there are:

S(t) susceptibles

I(t) infectives

R(t) recovered / immune individuals

Thus S(t)+I(t)+R(t) = N    for all t.

Initially (S(0),I(0),R(0)) = (N-1,1,0).



3. General epidemic model

 Each infectious individual remains so for a 

length of time TI ~ Exp(γ).

 During this time, infectious contacts occur 

with each susceptible according to a 

Poisson process of rate β / N.

 Thus overall infection rate is βS(t)I(t) / N.

 Two model parameters, β and γ.



3. General epidemic model

 We call this model the “Markov SIR model”.

 This is because the process 

{(S(t), I(t)): t ≥ 0 } 

is a bivariate Markov chain. This follows 

from the fact that the infectious periods are 

exponentially distributed.

 If infectious periods are not exponential we 

have a “non-Markov” SIR model.



3. General epidemic model

 Suppose we observe n removals at times 

r1 r2 r3  ...  rn.

 The inference problem is to estimate the 

model parameters β and γ.

 In a Bayesian setting, this means we need 

to find (or sample from) the posterior density

π(β, γ | r1, r2, ..., rn)



3. General epidemic model

 However, the likelihood

π(r1, r2, ..., rn | β, γ )

is very hard to compute.

 A solution (as discussed in MCMC I) is to 

introduce infection times as extra variables 

to give a tractable augmented likelihood.



3. General epidemic model

Augmented Likelihood

 Let b be the label of the last removal time, 

i.e.  rb  rk for all k = 1, ..., n. 

 Given removal data, b is observed and fixed 

for any given labelling.

 Let ik be infection time associated with rk .

 Define a as the label of the first infection 

time, i.e.  ia < ik for all k ≠ a. 

 Given removal data, a is unknown.



3. General epidemic model

 Define r = (r1, r2 , ... , rn) 

 Define i = (i1, i2 , ... , ia-1, ia+1, ... , in)  

 Let 

f(x | γ ) = γ exp (- γx)      (x > 0)

denote the probability density function of the 

infectious period distribution (Exp(γ)).



3. General epidemic model

 The augmented likelihood is

π(i, r | β, γ, ia, a ) = 

∏j≠a βN-1 I(ij-) × exp(- βN-1  S(t)I(t) dt )

× ∏1≤ j ≤ n f(rj - ij | γ)

= ∏j≠a βN-1 I(ij-) × exp(- βN-1  S(t)I(t) dt )

× γn exp{- γ ∑ (rj - ij) }

where I(t-) means I(t) just before time t



3. General epidemic model

 The target posterior density is

π(β, γ, i, ia, a | r ) 

 π(i, r | β, γ, ia, a ) π(β, γ, ia, a ) 

 Set independent priors as

β ~ Gamma(mβ, λβ)

γ ~ Gamma(mγ, λγ)

a ~ uniform on {1,…, n}

ia ~ uniform on (-∞, r1)



3. General epidemic model

 So an MCMC algorithm that targets the 

posterior density needs ways of updating 

the parameters β, γ, i, ia and a. 

 In each case, we can first find the full 

conditional distribution to see if we get a 

standard distribution. If so, we can update 

using that distribution. If not, we need a 

Metropolis-Hastings step.



3. General epidemic model

 To update β: first find the full conditional 
density π(β | γ, i, ia, a, r ).

 We do this by finding all the terms involving 

β in the posterior (=likelihood × prior)

 We find:

βn-1 exp(- βN-1  S(t)I(t) dt ) βmβ-1 exp(- β λβ )

= βn+mβ-2 exp{- β (N-1  S(t)I(t) dt + λβ )}

 Thus β | …  

~ Gamma (mβ + n -1, λβ + N-1  S(t)I(t) dt )



3. General epidemic model

 So to update β we just need to sample from

Gamma (mβ + n -1, λβ + N-1  S(t)I(t) dt )

 Only problem is: how to evaluate the 

integral? (We will address this shortly…)

 Sampling directly from the full conditional 

distribution is often called a “Gibbs step”



3. General epidemic model

 Going through the same steps for γ we find 

the full conditional distribution

γ | ...    ~ Gamma (mγ + n, λγ + ∑ (rj - ij) )

and so we can update γ using this

distribution.



3. General epidemic model

 For the infection times, the full conditional 

distribution turns out to be non-standard.

 We therefore require a Metropolis-Hastings 

step. One option is to update infection times 

one-at-a-time, either in order or at random.

 For instance, we might update 10% of the 

infection times in between each update of 

β and γ.



3. General epidemic model

 So for infection time ik , we propose a new 

time using proposal density q(ik* | ik )

 Accept with probability min(p,1) where 

p = π(i*, r | β, γ, ia*, a* ) q(ik | ik *)

π(i, r | β, γ, ia, a ) q(ik* | ik )

 Note that if ik* < ia then a*=k, otherwise a is 

unchanged.

 Note also we need to be able to evaluate 

π(i, r | β, γ, ia, a )



3. General epidemic model

 Choices for q(ik* | ik ) could include

(i) Propose ik* = rk – Exp(γ)

(ii) Propose ik* = rk – Exp(μ), where μ is fixed 

throughout

(iii) Propose ik* ~ N(ik , σ2 )



3. General epidemic model

Evaluating the likelihood

π(i, r | β, γ, ia, a ) 

= ∏j≠a βN-1 I(ij-) × exp(- βN-1  S(t)I(t) dt )

× γn exp{- γ ∑ (rj - ij) }

 The parts that are not straightforward to 

evaluate are the product term and the 

integral term.



3. General epidemic model

 Product term:

∏j≠a βN-1 I(ij-) = (βN-1)n-1 ∏j≠a I(ij-) 

 No easy way to simplify further

 Need to write code to evaluate number of 

infectives at each infection event



3. General epidemic model

Integral term

  S(t) I(t) dt = 1 k  n 1 j  N [(rk  ij) - (ik  ij)]

Here, “a  b” denotes “minimum of a,b”.

Also ij =  for  j > n, i.e. for those individuals 

never infected.

Formula is easy to code.



3. General epidemic model

Integral term

Explanation:

S(t)  =  1 j  N  1{j is susceptible at time t}

= 1 j  N  1{ij < t}

where 1A = 1  if event A occurs

= 0  otherwise



3. General epidemic model

Similarly,

I(t)  =  1 k  n1{ik < t < rk }

 S(t)I(t) dt =  1 j  N  1 k  n1{ik < t < rk } 1{ij < t} dt 

= 1 j  N  1 k  n  1{ik < t < rk and ij < t} dt

Total time that j susceptible, j infective

= (rk  ij) - (ik  ij)



3. General epidemic model

Summary: MCMC algorithm updates 

 Update β and γ using their full conditional 

distributions (Gamma, in this case)

 Update infection times using a Metropolis-

Hastings step. We might typically update 

10% of the infection times in between each 

update of β and γ.



3. General epidemic model

Summary: MCMC algorithm 

Initialise β, γ, i, ia, a 

Loop:

Update β

Update γ

Update some of the infection times

Record current values of β, γ



3. General epidemic model

Summary: MCMC algorithm 

The output is a sequence 

(β1,γ1), (β2,γ2), …, (βM,γM)

where M is number of iterations in loop.

Note that we don’t usually record i, ia and a 

since they are not our main focus, and also i 

is typically high-dimensional so costly to store.


