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" J
1. The modelling process

The general procedure we use is as follows.

« We have some observed data y
« We formulate a model with parameters 0

In a Bayesian framework, we are interested
In the posterior density ©(6 |y )



" J
1. The modelling process

- By Bayes’ Theorem, we have
n@]y)ocm(y|B)n(®)
posterior oc likelihood x prior

« 1(0 |y ) Is usually not known explicitly (i.e.
we typically only know it up to

proportionality), so we then use an MCMC
algorithm to get samplesfromrx (0 |y )



" J
1. The modelling process

Typically, 6 Is multi-dimensional. If, say,
06=(,,..., 6,), then we usually need a way
of updating each 6,.
If the full conditional density

O ]0:,.,01.801,-,8,,Y)
IS known explicitly* then we can use it to
perform the update for 6, ("Gibbs step”)

*1.e. not just up to proportionality



" J
1. The modelling process

« Conversely, If the full conditional density
IS not known explicitly then we can update
0, using a Metropolis-Hastings step.



" J
1. The modelling process

What if the likelihood &t (y | ©) Is unknown?
(Meaning — hard/complicated to compute)

Two possible solutions are

Data augmentation: introduce extra
guantities x such that = (x, y | 0) Is tractable

Give up on MCMC and do something
else... (e.g. Approximate Bayesian
Computation = ABC)
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2. Gamma distribution example

Example
Suppose we have data on incubation periods
y - (yli""yn)
and we wish to fit a Gamma distribution to
these data.
Day 2 3 4 5 6 7
Freq 2 6 11 3 o)

Y1=2,¥,=2,Y3=3, ..., Yo3= 7
(Campylobacter data from Evans et al. 1996)



" J
2. Gamma distribution example

The gamma distribution has probability
density function

f(x | a, B) = B*x** exp(-Bx) / I'(a)
(where x>0,a>0, 3>0).

Assuming the data are independent draws
from this distribution, the likelihood is

n(y | o, B)
=f(ysla,B)f(y.la,B)...T(y,la B)



" J
2. Gamma distribution example

The likelihood simplifies to
n(y | a, B)
= B [ ' exp(-B 2 yo) /{I(a)}"

We assign independent priors as
a ~ Gamma(A, ,v,)
B~ Gamma(Ag ,vg)
SO
m(a) =f(a | Ay ,vy) and m(B) =1(B | Ag V)



" J
2. Gamma distribution example

The posterior density of interest Is

n(a, Bly)cn(y|a, B)n(a)n()

So to define an MCMC algorithm to sample
from this target density we need a way to

upc

ate a and 3.

Oneo

ntion Is to update them separately.



" J
2. Gamma distribution example

For separate updates:
Find the full conditional densities

nm(a[B,y) and m(B]a,y)
In this case (see lab exercise) we find that
() m(a | B, Yy) Is only known up to
proportionality;
() =(B | a, y) is the density of a Gamma
distribution




" J
2. Gamma distribution example

Therefore we

(1) update a using a Metropolis-Hastings step,
l.e. we propose a new value a* from a

proposal density g(a* | a ) and accept a* with
probability min(p,1) where

p= n(y|a* B)n(a*)q(a]a*)
n(y | a, B ) m(a) g (a* | a)




" J
2. Gamma distribution example

The choice of g(a* | a ) Is fairly arbitrary;
possible options include

Propose a* ~ N(a, 0?)
(Gaussian random walk)
Propose a* ~ Gamma(a,b)
(independence sampler — needs a good
choice of a and b to work well)



" J
2. Gamma distribution example

(1) update 3 using a Gamma distribution
(see lab exercise for detalls!)



" J
2. Gamma distribution example

Block updating

An alternative to separate updates for a and [3
is to update them simultaneously in a “block”.

In this case we could do this using M-H, e.q.
propose (a*, B*) from g (a*, B*| a, ) and then
accept/reject accordingly.

One reason to do this is if a and 3 are strongly
correlated, 1.e. it Is hard to move one without

the other.
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" J
3. General epidemic model

Population of N individuals
At time t there are:

S(t) susceptibles

I(t) Infectives

R(t) recovered / immune individuals
Thus S(t)+I(t)+R(t) = N for all t.
Initially (S(0),1(0),R(0)) = (N-1,1,0).



" J
3. General epidemic model

m Each infectious individual remains so for a
length of time T, ~ Exp(y).

m During this time, infectious contacts occur
with each susceptible according to a
Poisson process of rate 3 / N.

m Thus overall infection rate is 3S(t)I(t)/ N.
m Two model parameters, 3 and y.



" J
3. General epidemic model

m \We call this model the "Markov SIR model”.
m This Is because the process

{(S(1), I(t)):t=0}
IS a bivariate Markov chain. This follows

from the fact that the infectious periods are
exponentially distributed.

m |f Infectious periods are not exponential we
have a "non-Markov” SIR model.



" J
3. General epidemic model

m Suppose we observe n removals at times
<IL<r,<..<r,

m The inference problem is to estimate the
model parameters 3 and .

m [n a Bayesian setting, this means we need
to find (or sample from) the posterior density

(B, ¥ [ F1s Mo oves 1)



" J
3. General epidemic model

m However, the likelihood
Ty T e Ty [ By V)
IS very hard to compute.

m A solution (as discussed in MCMC 1) Is to
Introduce infection times as extra variables
to give a tractable augmented likelihood.



" J
3. General epidemic model

Augmented Likelihood

m Let b be the label of the Iast removal time,
l.e. r,2r, forallk=1,

m Given removal data, b Is observed and fixed
for any given labelling.

m et |, be infection time associated with r, .

m Define a as the label of the first infection
time, 1.e. 1, <1, forall k # a.

m Given removal data, a Is unknown.




" J
3. General epidemic model

m Definer=(r,, 1,,...,1,)
O Deflne I — (Il’ |2 y san gy ia_]_l ia+11 " In)
m Let

fx[y)=yvexp(-yx) (x>0)
denote the probability density function of the
infectious period distribution (Exp(y)).



" J
3. General epidemic model

m The augmented likelihood Is
(i, r B,y 1, 8)=
[T BN (i) x exp(- BN/ S(b)I(t) dt )
X H1sj3nf(rj B ij | V)

= [T;a BN 1) x exp(- BN ] S(D)I(t) dt )
xyrexp{-y 2 (f-15)}

where I(t-) means I(t) just before time t
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3. General epidemic model

m The target posterior density Is
B, v, L, alr)
cn(l, I [ BV, 1 @) (B, Y, 1y @)
m Set independent priors as
B ~ Gamma(mg, Ag)
y ~ Gamma(m,, A)
a ~ uniform on {1,..., n}
I, ~ uniform on (-, r,)



" J
3. General epidemic model

m S0 an MCMC algorithm that targets the

posterior density needs ways of updating
the parameters @3, v, I, I, and a.

y Iy g

m [n each case, we can first find the full
conditional distribution to see if we get a
standard distribution. If so, we can update
using that distribution. If not, we need a
Metropolis-Hastings step.



" J
3. General epidemic model

m [o update (3: first find the full conditional
density n(3 |y, I, 15, &, ).

m We do this by finding all the terms involving
B in the posterior (=likelihood x prior)
m We find:
Bt exp(- BN1J S(D)I(t) dt ) BmeL exp(- B Ag)
= Brme2 expf- B (NL] S(H)I(t) dt + Ag)}
mThusB| ...
~ Gamma (mg + n -1, Ag+ N[ S(t)I(t) dt )



" J
3. General epidemic model

m S0 to update 3 we just need to sample from
Gamma (mg + n -1, A;+ N[ S(h)I(t) dt )

m Only problem is: how to evaluate the
integral? (We will address this shortly...)

m Sampling directly from the full conditional
distribution is often called a “Gibbs step”



" J
3. General epidemic model

m Going through the same steps for y we find
the full conditional distribution

Y[... ~Gamma(m,+n, A+ (r-1))
and so we can update y using this
distribution.



" J
3. General epidemic model

m For the infection times, the full conditional
distribution turns out to be non-standard.

m \We therefore require a Metropolis-Hastings
step. One option Is to update infection times
one-at-a-time, either in order or at random.

m For instance, we might update 10% of the
iInfection times In between each update of

B andy.




" J
3. General epidemic model

m So for infection time I, , we propose a new
time using proposal density q(i,* | I,.)
m Accept with probability min(p,1) where
p=n(*r[B, Y, s @) gy [ 1)
(i, 1By, 1 @) ali™ [ 1)

m Note that If I, * < I_ then a*=k, otherwise a Is
unchanged.

m Note also we need to be able to evaluate
(i, r|B,y, I, a)




" J
3. General epidemic model

m Choices for q(i.* | 1) could include
(1) Propose I,.* = r,— EXp(y)

(i) Propose I,.* = r,— Exp(u), where y is fixed
throughout

(iii) Propose i* ~ N(iy, , 0%)



3.

General epidemic model

Evaluating the likelihood

(i, r |

— Hj#a

5,V, 1, a)

BN (i) x exp(- BN S()I(t) dt )
xyrexp{-y 2 (-1}

m The parts that are not straightforward to
evaluate are the product term and the
Integral term.



" J
3. General epidemic model

m Product term:
[14a BN () = (BN)™ [ [ 1)
m No easy way to simplify further

m Need to write code to evaluate number of
Infectives at each infection event



" J
3. General epidemic model

Integral term
= j S(t) I(t) dt = 21gk£nzlsjs N LT A ij) - (Il A ij)]

Here, “a A b” denotes “minimum of a,b”.

Also I; = o for | > n, I.e. for those individuals
never infected.

Formula is easy to code.



" J
3. General epidemic model

Integral term
Explanation:

S(t) = Z1£j <N 1{j IS susceptible at time t}
= 21 j<N 1{ij<t}

where 1, =1 If event A occurs
= 0 otherwise



" J
3. General epidemic model

Similarly,

|(t) — Z1£ksn1{ik<t<rk}

J S(H)I(t) dt = J 21gjgN lekgnl{ik<t<rk} 1{ij<t} at

— ZlSjSN Zlgkgnjl{ik<t<rkandij<t} dt

1 J
I

—
v

Total time that | susceptiblg, ] Infective

= (he A ) - (i A 1)
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3. General epidemic model

Summary: MCMC algorithm updates

m Update 3 and y using their full conditional
distributions (Gamma, In this case)

m Update infection times using a Metropolis-
Hastings step. We might typically update
10% of the infection times in between each
update of 3 and .
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3. General epidemic model
Summary: MCMC algorithm

Initialise 3, y, 1, I, @
Loop:

Update 3

Update y

Update some of the infection times
Record current values of 3, y
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3. General epidemic model

Summary: MCMC algorithm
The output Is a sequence

(B1,Y1): (B2iY2), --vh (ByYm)

where M Is number of iterations in loop.

Note that we don't usually record I, I, and a
since they are not our main focus, and also |
IS typically high-dimensional so costly to store.



