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1. Household models

Many infectious disease studies incorporate 

households into the study design.

There are numerous reasons to do this, 

including 

 convenience of collecting data

 stability of target population

 get data on within-household spread



1. Household models

Models

There are various models for disease 

transmission which incorporate 

households. Our focus here is on models 

in which households are independent, i.e. 

the fates of different households are 

independent of each other.

Models which relax this assumption will be 

mentioned in the next session.



1. Household models

Models

Henceforth we assume that a population of N 

individuals is partitioned into households, 

which need not all be the same size.



1. Household models

Models

We need two key ingredients:

 How the disease enters a household;

 What happens within a household.



1. Household models

Models

 How the disease enters a household

A typical assumption is that each individual 

in the population has, independently, a 

constant “risk” per unit time of becoming 

infected from the community.



1. Household models

Models

 How the disease enters a household

Formally: individual k becomes infected 

according to a Poisson process of rate bk, 

say. Thus, 

P(k avoids infection for T time units)

= exp(- T bk )



1. Household models

Models

 How the disease enters a household

The rate bk is typically either the same for 

every individual (bk = b for all k), or else it 

may depend on the type of individual k.

Here, “type” might mean adult / child / 

vaccinated / unvaccinated / etc...



1. Household models

Models

 What happens within a household

A standard assumption is that the disease 

spreads according to an SIR or SEIR 

model within a household.

Again types might feature: both the 

infectivity and susceptibility of an individual 

might be type-dependent.



1. Household models

Models

 What happens within a household

A common assumption for households is 

that the infection rate β is not scaled by 

the household size.

This means that we assume that each 

infective has contacts with each 

susceptible at rate β.
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2. Longitudinal data

Here we assume that we have data through 

time, e.g. daily observations.

We can approach the inference problem in a 

similar manner to that described 

previously for the SIR model.



2. Longitudinal data

Specifically, the likelihood can now be 

written as a product over all households, 

due to the assumption of independence.

However, parameter updates now typically 

require Metropolis-Hastings update steps 

within an MCMC algorithm.



2. Longitudinal data

Example Consider a single household of 

n=4 individuals in which we observe two 

removals (= symptom-appearance times, 

say).

We assume 

 a constant rate of outside infection λ

 a Markov SIR model for within-household 

transmission.



2. Longitudinal data

Example Let i1 and i2 denote the two 

infection times and r1 < r2 denote the two 

removal times. Data = {r1 , r2 }.

i1 i2 r1 i2 r2

i2 need not be before r1



2. Longitudinal data

Example

π (i2, r1, r2 | i1, β ,γ, λ) 

= (β I(i2-) + λ) exp ( - i1
r2 (β S(t)I(t) + λ) dt ) 

 γ 2 exp(- γ(r1 + r2 - i1 - i2 ) ) 

Note now that neither β nor λ has a Gamma-

distributed full conditional distribution, 

although γ still does.



2. Longitudinal data

As mentioned above,

likelihood = k likelihood in household k

Note that in constructing the posterior 

density, you only need to include the prior 

density for the model parameters once 

(i.e. not once per household).
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3. Final outcome data

Suppose now that the data consist only of 

the final number of cases in each 

household.

The first observation is that without temporal 

data we can no longer estimate all 

parameters with respect to “real time”.

We therefore assume that the infectious 

period distribution is known and E( TI ) = 1.



3. Final outcome data

Our objective is to estimate the remaining 

model parameters.

Since households are assumed 

independent, to evaluate the likelihood we 

need to find the likelihood for a given 

household.



3. Final outcome data

Specifically, consider a household with n 

individuals. Let T denote the number who 

ever become infected, 0  T  n.

Assume a constant rate λ of infection from 

outside, and an SIR model for within-

household contact with infection rate β.

We wish to calculate P(T = k), k = 0,...,n.



3. Final outcome data

Removing “time”

We first consider how the final outcome of 

the epidemic can be constructed without 

explicitly considering event times. 

To begin with, focus on a single household, 

and ignore infections from outside the 

household.



3. Final outcome data

Removing “time”

Suppose that the household contains n 

individuals.

Consider a single individual A. If A ever 

became infected they remain so for a 

random time TI ; suppose TI = , say.



3. Final outcome data

Removing “time”

If infected, then for a period of time , 

individual A has contacts with each other 

individual in the household according to   

n-1 independent Poisson processes, each 

of rate β. 

It follows that we can construct a list of 

individuals that A would infect if A was 

infected, and the others susceptible.



3. Final outcome data

Removing “time”

Now suppose that each individual in the 

population had such a “list”. It follows that 

we can easily deduce who actually gets 

infected, once the initial infectives are 

chosen.



3. Final outcome data

Removing “time”: Example

Suppose n = 5 and the lists are

1 = { 4, 5 }

2 = { 4, 1, 5 }

3 = { 1 } 

4 = { 2 }

5 = {  }

and suppose 1 is initially infective.



3. Final outcome data

Removing “time”: Example

1 = {4, 5}, 2 = {4, 1, 5},  3 = {1}, 4={2}, 5={ } 

1 infects 4 and 5

4 infects 2

2 infects 4,1,5 (ignore all since already 

infected)

5 infects no-one



3. Final outcome data

Removing “time”: Example

1 = {4, 5}, 2 = {4, 1, 5},  3 = {1}, 4={2}, 5={ } 

1

2

4

3

5



3. Final outcome data

Removing “time”

It follows that the distribution of the final 

number infected in the epidemic is the 

same as the distribution of the number of 

individuals found on the final list in this 

construction.



3. Final outcome data

Removing “time”

Similar reasoning can be applied to infection 

from outside the household: all that is 

required is knowledge of which individuals 

ever became infected from outside, rather 

than when they became infected.



3. Final outcome data

Removing “time”

We can therefore proceed by assuming any 

individuals infected from outside the 

household are infected first, and so we 

can treat them as the “initial infectives” in 

the household.



3. Final outcome data

Removing “time”

Recall that the probability that an individual 

avoids infection from outside the 

household for a period of time t is 

exp(- λ t)

Since we cannot estimate t from the data, 

instead we simply define

p = exp(- λ t) 



3. Final outcome data

Removing “time”

Now, since each individual in the household 

avoids infection from outside 

independently, it follows that the number 

infected from outside, Y say, has a 

Binomial distribution with parameters 

Y  Bin(n, 1-p).



3. Final outcome data

Back to P(T=k)

It follows that 

P(T = k) = 0 y  n P(T=k | Y=y) P(Y=y)

where P(Y=y) = (n! / y!(n-y)!) (1-p)y (p)n-y .

probability mass function of Binomial(n,1-p)



3. Final outcome data

Back to P(T=k)

Further, P(T=k | Y=y) is simply the 

probability that k-y susceptibles become 

infected in an SIR model with y initial 

infectives and n-y initial susceptibles.

Note that this probability is zero for k < y.



3. Final outcome data

Back to P(T=k)

To evaluate P(T=k | Y=y) we can use the 

“triangular equations” for an SIR model, 

defined as follows.

Consider an SIR model with m initial 

susceptibles, a initial infectives, and 

infection rate  (between two individuals).



3. Final outcome data

Back to P(T=k)

Define p(k) as the probability that k of the 

initial susceptibles ever become infected, 

k = 0, 1, ..., m.

Let f(x) = E [exp(- x TI)] be the moment 

generating function of the infectious period 

distribution.



3. Final outcome data

Back to P(T=k)

Then for 0  j  m,

From this formula we can recursively 

evaluate p(0), p(1), ..., p(m) by setting j=0, 

j=1, ..., j=m. 
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3. Final outcome data

Back to P(T=k)

Then for 0  j  m,

These equations are often called “the 

triangular equations for the final size 

distribution”.
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3. Final outcome data

Example: m=3, a=1, fixed infectious periods

Set TI = 1. Then f(x) = E [exp(- x TI)] 

= exp( - x).

Setting j=0 in formula gives 

p(0) = exp( - 3  ).

Setting j=1 gives

3p(0) exp(2 ) + p(1) exp(4 ) = 3,

so          p(1) = 3 exp(-4 ) (1 - exp(- )).



3. Final outcome data

Summary: P(T=k)

P(T = k) = 0 y  n P(T=k | Y=y) P(Y=y)

where P(Y=y) = (n! / y!(n-y)!) (1-p)y (p)n-y ,

and P(T=k | Y=y) can be evaluated using the 

triangular equations. Note that this 

requires a recursive function (in R, say).



3. Final outcome data

Data and likelihood

Suppose that the data consist of the set of 

numbers  n = { n(j,k) }, where

n(j,k) = number of households in which j 

out of k initial suseptibles become 

infected.



3. Final outcome data

Data and likelihood

The likelihood takes the form

π (n | p, β ) = j,k q(j,k)n(j,k)

where q(j,k) = P(T=j) for a household 

containing k susceptible individuals.



3. Final outcome data

Bayesian inference and MCMC

The target density is

π (p, β | n )  π (n | p, β) π ( p, β )  

p is a probability and could be updated by 

e.g. Gaussian random walk (p < 0 and p > 

1 must be rejected), or an independence 

sampler (e.g. U(0,1) proposal).



3. Final outcome data

Bayesian inference and MCMC

The parameter β could be updated by 

Gaussian random walk, for example.



3. Final outcome data

Fixed infectious periods

Special case: if the infectious period TI is 

constant, TI = 1, then the triangular 

equations yield expressions in terms of

f(x) = E [exp(- x TI)] = exp( - x).



3. Final outcome data

Fixed infectious periods

Specifically, we have 

[f((m-j))]k+a  = exp[ -(m-j)(k+a) ]

= q(m-j)(k+a),

where q = exp ( -  ).
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3. Final outcome data

Fixed infectious periods

It therefore makes sense to reparameterise 

the model by defining

q = exp ( - β ).

Note that 0  q  1.



3. Final outcome data

Fixed infectious periods

With this parameterisation (p,q) we have 

that, for a susceptible A say, 

p = P(A avoids outside infection)

q = P(A avoids infection from one infected        

household member)



3. Final outcome data

Fixed infectious periods

The within-household model has the same 

final outcome distribution as the so-called 

“Reed-Frost” epidemic model.

The whole model has the same final 

outcome distribution as the “Longini-

Koopman” model.
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