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Estimation 
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Estimation 

• All probability models depend on parameters.  

E.g.,  

Binomial depends on probability of success . 

Normal depends on mean , standard deviation . 

• Parameters are properties of the “population” and 

are typically unknown. 

• The process of taking a sample of data to make 

inferences about these parameters is referred to as 

“estimation”. 

• There are a number of different estimation 

methods … we will study two estimation 

methods:  

 

 Maximum likelihood (ML)  

 Bayes 
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Fisher (1922) invented this general method. 

Problem:  Unknown model parameters,  

Set-up:  Write the probability of the data, Y, in terms 

of the model parameter and the data,  

Solution:  Choose as your estimate the value of the 

unknown parameter that makes your data look as 

likely as possible.  Pick     that maximizes the 

probability of the observed data. 

 

The estimator      is called the maximum likelihood 

estimator (MLE). 

( , ).P Y 

.

̂

Maximum Likelihood 

̂

105 



Summer 2019 Summer Institutes 

Maximum Likelihood - Example 

Data: Yi = 0/1 for i = 1, 2,….n   (independent) 

Model:                   ~ Binomial(n,) 

Probability:  Let’s fix the number in the sample at   

n = 20. The resulting model for Z is  

Binomial with size 20 and success probability . 

The probability distribution function is: 

i

i

Z Y

20 (20 )( ; ) (1 ) ZZP Z
Z

  
 
 
 
 
 

 

where Z is the variable and π is fixed. 

 

The likelihood function is the same function: 

    ZZ

Z
ZL













20
1

20
; 

except now π is the variable and Z is fixed. 
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Two ways to look at this: 

•  Fix  and look at the probability of different 

values of Z:     

 

 

 

 

   

•  Fix Z and look at the probability under different 

values of  (this is called the likelihood 

function): 

                Z = 3 
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If you observe the data Z = 3 then the likelihood 

function is shown in the plots below: 

P(Z=3) as function of  

 

 

 

 

 

 

log P(Z=3) as function of  
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• We can use elementary calculus (an oxymoron?) 

to find the maximum of the (log) likelihood 

function: 

 

 

 

 

 

 

• Not surprisingly, the likelihood in this example is 

maximized at the observed proportion, 3/20. 

• Sometimes (e.g. this example) the MLE has a 

simple closed form. In more complex problems, 

numerical optimization is used. 

• Computers can find these maximum values! 

log 0

log (20 )log(1 ) 0

(20 ) 0
1

ˆ
20

d L
d

d Z Z
d

ZZ
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Maximum Likelihood - Example 
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Maximum Likelihood - Notation 

L() = Likelihood as a function of the 

           unknown parameter, . 

l() = log(L()), the log-likelihood. 

 

          Usually more convenient to work with 

          analytically and numerically. 

 

S() = dl()/d = the “score”.  

 

           Set dl()/d = 0 and solve for   

           to find the MLE. 

 

I() = -d2l()/d2 = the “information”. 

  

          If evaluated at the MLE, then  

          -d2l()/d2 is referred to as the  

          observed information;  

          E(-d2l()/d2) is referred to as the 

          expected or Fisher information. 

 

Var() = I-1() (in most cases) 
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Numerical Optimization 

• In complex problems it may not be possible 

to find the MLE analytically; in that case we 

use numerical optimization to search for the 

value of  that maximizes the likelihood 

• A common problem with maximum 

likelihood estimation is accidentally finding 

a local maximum instead of a global one; 

solution is to try multiple starting values 

L
ik

el
ih
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Comments: 

• Maximum likelihood estimates (MLEs) are 

always based on a probability model for the data. 

• Maximum likelihood is the “best” method of 

estimation for any situation that you are willing to 

write down a probability model (so generally does 

not apply to nonparametric problems). 

• Maximum likelihood can be used even when there 

are multiple unknown parameters, in which case   

has several components  

 

• The MLE is a “point estimate” (i.e. gives the 

single most likely value of ). In lecture 5 we will 

learn about interval estimates, which describe a 

range of values which are likely to include the true 

value of . We combine the MLE and  Var() to 

generate these intervals. 

• The likelihood function lets us compare different 

models (next). 

(ie. , , , ).
0 1 p  
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Model Comparisons 

Q: Suppose we have two alternative models for 

the data; in each case we use maximum 

likelihood to estimate the parameters. How do 

we decide which model fits the data “better”? 

A: First thought - compare the likelihoods.  

• Larger likelihood is better, but … 

• the tradeoff is larger likelihood  more 

complex model.  

• How to choose? 

 A common approach is to “penalize” the 

likelihood for more complex models (i.e. more 

parameters).  

 The AIC and BIC are two examples of 

penalized likelihood measures. 

 The LOD (“log odds”) score can be thought of 

as a special case (1 parameter) of a penalized 

likelihood. 
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Example – LOD scores 

Suppose we have a sample of size N gametes in 

which the number of recombinants (R) and 

nonrecombinants (N-R) for two loci can be 

counted. Let  be the recombination fraction 

between the two loci. Then the probability of the 

data can be modeled using the binomial 

distribution: 

( ) (1 )R N R
N

P R
R

   
  
 

The situation of no linkage corresponds to  

 = 0.5, so we can express the models as  

Model 1:  = 0.5 

Model 2:  anywhere between 0 and 0.5 
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Model 2: The log-likelihood when  is 

unrestricted is 

10 2 10 10log log ( )log (1 )L R N R    

Taking the derivative and solving for  gives 

ˆ R

N
 

Example – LOD scores 

Model 1: The situation of no linkage 

corresponds to  = 0.5.  If we substitute this 

into the likelihood equation, we get 

10 1 10 10

10

log log 0.5 ( )log 0.5

log 0.5

L R N R

N

  



If we substitute this back into the log-likelihood, 

we get … 

10 2 10 10log log ( )log (1 )R RL R N R
N N

   

This model has 0 (free) parameters. 

This model has 1 parameter. 
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Example – LOD scores 

The LOD score is 

 LOD = (log10 L2 – log10 L1)  

       

          =  

 

Large values of the LOD score (> 3) are 

considered evidence of linkage  

(i.e. the penalty is 3).  

(As we will see, this is a pretty big hurdle to 

overcome.) 

10 10log log
0.5

R N R
R N

N R N

   
   

   

117 



Summer 2019 Summer Institutes 

Example – LOD scores 

E.g. N = 50 and R = 18 

      = 18/50 = 36% 

log10L1 = -15.0 

log10L2 = -14.2 

LOD = -14.2 – (-15.0) = 0.8 

 No evidence of linkage; conclude  = .5 

̂
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Model Comparisons – AIC, BIC 

AIC – Akaike’s Information Criterion 

BIC – Bayes Information Criterion 

• Use to compare a series of models. Pick the 

model with the largest AIC or BIC 

• Larger model  larger likelihood (typically) 

• Therefore, “penalize” the likelihood for each 

added parameter 

• AIC tries to find the model that would have the 

minimum prediction error on a new set of data. 

• BIC tries to find the model with the highest 

“posterior probability” given the data 

• Typically, BIC is more conservative (picks 

smaller models) 

 AIC = 2         - 2k 

 BIC = 2         - klog(n) 

 k = # parameters 

)(

)( (natural logs now) 
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Model Comparisons – AIC, BIC 

Example – Recombinants (N=50, R = 18) 

log(L1)= -34.66 

log(L2) = -32.67 

            = .5   arb 

AIC   -2*34.66 = -69.32 -2*32.67 - 2           = -67.34 

BIC   -2*34.66 = -69.32 -2*32.67 - log(50) = -69.25 

AIC  pick  = .36 

BIC  pick  = .36 ( but almost tied) 

(natural logs now) 
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Bayes Estimation 

Recall Bayes theorem (written in terms of data X 

and parameter ): 

 P(X|θ)P(θ)
P(θ|X)  

P(X|θ)P(θ)






Notice the change in perspective -  is now treated 

as a random variable instead of a fixed number.  

P(X|) is the likelihood function, as before. 

P() is called the prior distribution of . 

P( | X) is called the posterior distribution of . 

Based on P( | X) we can define a number of 

possible estimators of . A commonly used 

estimate is the maximum a posteriori (MAP) 

estimate: 

 
MAPθ̂ max P(θ|X)

We can also use P( | X) to define “credible” 

intervals for . 
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Bayes Estimation 

• The MAP estimator is a very simple Bayes 

estimator. More generally, Bayes estimators 

minimize a “loss function” – a penalty based on 

how far 𝜃  is from  (e.g. Loss =(𝜃  − 𝜃)2). 

• The Bayesian procedure provides a convenient 

way of combining external information or 

previous data (through the prior distribution) with 

the current data (through the likelihood) to create 

a new estimate. 

• As N increases, the data (through the likelihood) 

overwhelms the prior and Bayes estimator 

typically converges to the MLE 

• Controversy arises when P() is used to 

incorporate subjective beliefs or opinions.  

• If the prior distribution P() is simply that  is 

uniformly distributed over all possible values, 

this is called an “uninformative” prior, and the 

MAP is the same as the MLE. 

Comments: 
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Bayes Estimation 

Example 

Suppose a man is known to have transmitted 

allele A1 to his child at a locus that has only two 

alleles:  A1 and A2. What is his most likely 

genotype? 

Soln. Let X represent the paternal allele in the 

child and let  represent the man’s genotype: 

 X = A1 

   = {A1A1,  A1A2,  A2A2} 

We can write the likelihood function as: 

 P(X |  = A1A1) = 1 

 P(X |  = A1A2) = .5 

 P(X |  = A2A2) = 0 

Therefore, the MLE is  = A1A1. 
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Bayes Estimation 

Suppose, however, that we know that the frequency 

of the A1 allele in the general population is only 

1%.  Assuming HW equilibrium we have 

 P( = A1A1) = .0001 

 P( = A1A2) = .0198 

 P( = A2A2) = .9801 

This leads to the posterior distribution 

 P( = A1A1 | X)  

     = P(X |  = A1A1) P( = A1A1) / P(X) 

     = 1 * .0001 / .01 = .01 

 P( = A1A2 | X)  

     = P(X |  = A1A2) P( = A1A2) / P(X) 

     = .5 * .0198 / .01 = .99 

 P( = A2A2 | X) = 0 

So the Bayesian MAP estimator is  = A1A2. 

Exercise: redo assuming the man has 2 

children who both have the A1 paternal allele. 
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Summary 

 
• Maximum likelihood is a method of 

estimating parameters from data 

• ML requires you to write a probability 

model for the data 

• MLE’s may be found analytically or 

numerically 

• (Inverse of the negative of the) second 

derivative of the log-likelihood gives 

variance of estimates 

• Comparison of log-likelihoods allows us to 

choose between alternative models 

• Bayesian procedures allow us to 

incorporate additional information about 

the parameters in the form of prior data, 

external information or personal beliefs. 
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Problem 1 

Suppose we are interested in estimating the recombination fraction, 

, from the following experiment. We do a series of crosses: AB/ab x 

AB/ab and measure the frequency of the various phases in the 

gametes (assume we can do this). If the recombination fraction is  

then we expect the following probabilities (sorry, I can’t explain 

these…): 

 phase probability (*4) 

 AB 3 - 2 + 2 

 Ab 2 - 2 

 aB 2 - 2 

 ab 1 - 2 + 2 

Suppose we observe (AB,Ab,aB,aa) = (125,18,20,34). Use 

maximum likelihood to estimate . 
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Solution to problem 1 

Pr(data | )  (3-2+2)AB (2 - 2)Ab (2 - 2)aB (1-2+2)ab 

 

l() = AB log(3-2+2) + (Ab+aB) log (2 - 2) + ab log(1-2+2) 

 

 
2 2 2

( ) 2 ( 1) 2( )(1 ) 2 ( 1)
0

3 2 2 1 2

d AB Ab aB ab

d

   

      

   
   

    

Numerical solution gives  = .21 

2 2

2 2 2 2 2

( ) (1 2 ) ( )

[3 2 ] (1 )

d AB Ab aB ab

d

  

    

  
  

  

Var() = 1/213.6 = .00468 
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𝑑𝜃2
= −N ∗
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3 − 2𝜃 + 𝜃2
+

4(1 − 𝜃)

𝜃
+ 1  

        = N*16.6 
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Every human being can be classified into one of four blood groups: O, 

A, B, AB. Inheritance of these blood groups is controlled by 1 gene 

with 3 alleles: O, A and B where O is recessive to A and B. Suppose the 

frequency of these alleles is r,  p, and q, respectively (p+q+r=1). If we 

observe (O,A,B,AB) = (176,182,60,17) use maximum likelihood to 

estimate r, p and q.  

Problem 2 
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Solution to problem 2 

Pr(data | )  (r2)O (p2+2pr)A (q2+2qr)B (2pq)AB 

l(p,q,r) = 2Olog(r) + Alog(p2+2pr) + Blog(q2+2qr) + ABlog(p) + ABlog(q) 

To estimate p, q and r, we need to maximize l(p,q,r) subject to the constraint 

p+q+r=1. This constraint makes the problem a bit harder …. one approach is 

to just put r = 1-p-q in the likelihood so we have just 2 parameters … p and 

q. Then 

For (O,A,B,AB) = (176,182,60,17), this gives 

 p = .264 q = .093 r = .642 

Further analysis would take 2nd derivatives to find the information and, 

therefore, the variances of the estimates. 

First, we use basic genetics to find the probability of the observed 

phenotypes in terms of the unknown parameters. Assuming random 

mating, we have: 

 

Genotype prob. Phenotype prob. 

OO r2 O r2 

AA p2 

AO 2pr A p2 + 2pr 

BB q2 

BO 2qr B q2 + 2qr 

AB 2pq AB 2pq 
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𝑑𝑝
= −

2𝑂

𝑟
+

2𝐴𝑟

𝑝 2𝑟 + 𝑝
−

2𝐵𝑞

𝑞 2𝑟 + 𝑞
+

𝐴𝐵

𝑝
= 0 

 
𝑑𝑙

𝑑𝑞
= −

2𝑂

𝑟
−

2𝐴𝑝

𝑝 2𝑟 + 𝑝
+

2𝐵𝑟

𝑞 2𝑟 + 𝑞
+

𝐴𝐵

𝑞
= 0 
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2 

3 

Problem 3 

Suppose we have the following simple pedigree. 

1 

4 5 

6 

Define the phenotype of person i as Hi and the genotype as 

GiH How can we use maximum likelihood to estimate 

parameters of  the penetrance function, Pr(H | G; )? 
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Solution to problem 3 

• If we knew all the genotypes the problem would be “easy”. We would 

simply write down the log-likelihood and maximize it numerically or 

analytically: 

 ( ) log Pr( | )i i

i

l H G 

• If we don’t know the genotypes (only data are the  phenotypes), then 

we must maximize 

 

 

 where H represents the collection of all 6 phenotypes. The general 

idea is to use the total probability rule to write 

 

  

( ) logPr( )l H 

1 2 3 4 5 6

1 2 3 4 5 6

, , , , ,

Pr( ) Pr( | ) Pr( )

Pr( | ) Pr( , , , , , )

G

i i

G G G G G G i

H H G G

H G G G G G G G



 
  

 



 

Further simplification is achieved by writing 

 

 

Since  the genotype of each individual is determined only by his/her 

parents 

 

5 5 51 2 3 4 6 6 1 2 3 4 1 2 3 4 4 1 2 3 4

3 1 2 2 1 1

Pr( , , , , , ) Pr( | , , , , )Pr( | , , , )Pr( | , , , )

Pr( | , )Pr( | )Pr( )

G G G G G G G G G G G G G G G G G G G G G G

G G G G G G

 

5 51 2 3 4 6 6 3 4 1 2 4 1 2 3 2 1
Pr( , , , , , ) Pr( | , )Pr( | , )Pr( | , )Pr( )Pr( )Pr( )G G G G G G G G G G G G G G G G G G

Given the inheritance probabilities (Pr(Gi| Gj,Gk)) and population 

frequencies of the genotypes (Pr(Gi)), we have a fully specified model 

and can maximize the likelihood using a computer. 
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Suppose we wish to estimate the recombination fraction for a particular 

locus. We observe N = 50 and R = 18. Several previously published 

studies of the recombination fraction in nearby loci (that we believe 

should have similar recombination fractions) have shown 

recombination fractions between .22 and .44. We decide to model this 

prior information as a beta distribution (see 

http://en.wikipedia.org/wiki/Beta_distribution) with parameters a = 19 

and b = 40: 

 

Problem 4 

0.0 0.2 0.4 0.6 0.8 1.0

0
1
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ta
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9
,4

0
)

Find the MLE and Bayesian MAP estimators of the 

recombination fraction. Also find a 95% confidence interval 

(for the MLE) and a 95% credible interval (for the MAP) 

132 

http://en.wikipedia.org/wiki/Beta_distribution


Summer 2019 Summer Institutes 

1 1( )
( ) (1 )

( ) ( )

!
( | ) (1 )

!( )!

a b

R N R

a b
P

a b

N
P X

R N R

  

  

 



 
 
 

 


The data follow a binomial distribution with N = 50, R = 18 and the 

prior information is captured by a beta distribution with parameters 

a = 19, b = 40: 

Working through Bayes theorem, we find … 

1 1( )
( | ) (1 )

( ) ( )

a R N R bN a b
P X

a R N R b
        

 
    

which is another beta distribution with parameters (a+R) and (N-

R+b). The mode of the beta distribution with parameters  and  

is (-1)/(+-2) so 

1 36
θ̂ .336

2 107
MAP

a R

N a b

 
  

  

Solution to problem 4 

Also, we can find the 2.5th and 97.5th percentiles of the posterior 

distribution (95% credible interval): [.23 - .40] 

For comparison the MLE is 18/50 = 0.36 with a 95% confidence 

interval of [.23 - .49] 
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