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Probability Distributions 

II 
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Multinomial Distribution - Motivation 

Suppose we modified assumption (1) of the 

binomial distribution to allow for more than 

two outcomes. 

For example, suppose that for the family 

with parents that are heterozygote carriers 

of a recessive trait, we are interested in 

knowing the probability of 

 

Q1: One of their n=3 offspring will be 

unaffected (AA), 1 will be affected (aa) and 

one will be a carrier (Aa), 

 

Q2:All of their offspring will be carriers, 

 

Q3:Exactly two of their offspring will be 

affected (aa) and one will be a carrier. 
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Multinomial Distribution - Motivation 

For each child, we can represent these 

possibilities with three indicator variables 

for the i-th child as 

 

Yi1 = 1 if unaffected (AA),  & 0 otherwise 

Yi2 = 1 if carrier (Aa),         & 0 otherwise 

Yi3 = 1 if affected (aa),        & 0 otherwise 

Notice only one of the three Yi1, Yi2, Yi3 can 

be equal to 1, so Sj Yij = 1.  

For the binomial distribution with 2 

outcomes, there are 2n unique outcomes in 

n trials. In the family with n=3 children, 

there are 23 = 8 unique outcomes. 

For the multinomial distribution with n 

trials and only 3 outcomes, the number of  

unique outcomes is 3n. For our small 

family, that’s 33=27 outcomes. 
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Possible Outcomes 

Combinations: As with the binomial, there are 

different ways to arrange possible outcomes 

from a total of n objects (trials) if order doesn’t 

matter. For the multinomial distribution, the 

combinations are summarized as 
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E.g. (n=2 offspring) 
 
Child number 
1 2 Outcomes   
AA AA 2  unaffected, 0 carrier, 0 affected 
AA Aa 1  unaffected, 1 carrier, 0 affected 
Aa AA 1  unaffected, 1 carrier, 0 affected 
AA aa 1  unaffected, 0 carrier, 1 affected 
aa AA 1  unaffected, 0 carrier, 1affected 
Aa  Aa 0  unaffected, 2 carrier, 0 affected 
aa Aa 0  unaffected, 1 carrier, 1 affected 
Aa aa 0  unaffected, 1 carrier, 1 affected 
aa aa 0  unaffected, 0 carrier, 2 affected 
 

where the kj (j=1,2,…,J) correspond to the 

totals for the different outcomes. 
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For the case of n=2 offspring (i.e., trials), what are 

the probabilities of these outcomes? 

For each possible outcome, the probability 

Pr[Y1=k1, Y2=k2, Y3=k3] is 

  p1
k1p2

k2p3
k3 

 

There are            sequences for each  

probability, so in general… 

!
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E.g. (n=2, k1=unaffected, k2=carrier, k3=affected) 
 
Child number 
1 2 Outcomes     # ways 
p1 p1 k1=2,k2=0,k3=0       1 
p1 p2 k1=1,k2=1,k3=0        2 
p2 p1 k1=1,k2=1,k3=0 
p1 p3 k1=1,k2=0,k3=1       2 
p3 p1 k1=1,k2=0,k3=1 
p2  p2 k1=0,k2=2,k3=0        1 
p3 p2 k1=0,k2=1,k3=1       2 
p2 p3 k1=0,k2=1,k3=1 
p3 p3 k1=0,k2=0,k3=2        1 
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Multinomial Probabilities 

Assumptions: 

1) J possible outcomes – only one of which can be a 

success (1) a given trial. 

2) The probability of success for each possible 

outcome, pj, is the same from trial to trial. 

3) The outcome of one trial has no influence on other 

trials (independent trials). 

4) Interest is in the (sum) total number of “successes” 

over all the trials. 

k1     k2      k3    k4 kJ-1    kJ 

n = Sj kj is the total number of trials. 

1 2

1 1 2 2 1 2

1 2

!
P( , ,

! ! !
Jkk k

J J J

J

n
Y k Y k Y k ) p p p

k k k
   

What is the probability that a multinomial random 

variable with n trials and success probabilities p1, p2, 

…, pJ will yield exactly k1, k2,…kJ successes? 
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Multinomial Random Variable 

Example: family of 3 offspring. 

Q1:   child 1       child 2      child 3       Total 

 

 

Q2: 

 

Q3: 

 

A multinomial random variable is simply 

the total number of successes in n trials. 

+ + = 1  0   0 0  0   1 0  1   0 1  1   1 

+ + = 0  1   0 0  1   0 0  1   0 0  3   0 

+ + = 0  0   1 0  1   0 0  0   1 0  1   2 
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Multinomial Probabilities - Examples 

Returning to the original questions: 

Solution: For a given child, the probabilities of the 

three outcomes are: 

 p1 = Pr[AA] = 1/4, 

 p2 = Pr[Aa] = 1/2, 

 p3 = Pr[aa]  = 1/4. 

We have 

1 1 1

1 2 3 1 2 3

3!
P( 1, 1, 1

1!1!1!
Y Y Y ) p p p   

1 1 1
(3)(2)(1) 1 1 1

(1)(1)(1) 4 2 4

     
      

     

3
0.1875.

16
 

Q1: One of n=3 offspring will be unaffected 

(AA), one will be affected (aa) and one will be 

a carrier (Aa) (recessive trait, carrier parents)? 
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Binomial Probabilities - Examples 

Q2: What is the probability that all three 

offspring will be carriers? 

0 3 0

1 2 3 1 2 3

3!
P( 0, 3, 0

0!3!0!
Y Y Y ) p p p   

0 3 0
(3)(2)(1) 1 1 1

(3)(2)(1) 4 2 4

     
      

     
1

0.125.
8

 

Q3: What is the probability that exactly two 

offspring will be affected and one a carrier? 

0 1 2

1 2 3 1 2 3

3!
P( 0, 1, 2

0!1!2!
Y Y Y ) p p p   

0 1 2
(3)(2)(1) 1 1 1

(2)(1) 4 2 4

     
      

     
3

0.09375.
32
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Example - Mean and Variance 

It turns out that the (marginal) outcomes of 

the multinomial distribution are binomial. We 

can immediately obtain the means for each 

outcome (i.e., the jth cell) 

 

MEAN: 

 

 

VARIANCE: 

 

 

 

 

COVARIANCE: 
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Multinomial Distribution Summary 

Multinomial 

1. Discrete, bounded 

2. Parameters  -  n, p1, p2,…,pJ 

3. Sum of n independent outcomes 

4. Extends binomial distribution 

5. Polytomous regression, contingency 

tables 
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Continuous Distributions 
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Continuous Distributions 

For measurements like height and weight 

which can be measured with arbitrary 

precision, it does not make sense to talk 

about the probability of any single value. 

Instead we talk about the probability for an 

interval. 

P[weight = 70.000kg]  0 

P[69.0kg < weight < 71.0kg] = 0.08 

For discrete random variables we had a 

probability mass function to give us the 

probability of each possible value. For 

continuous random variables we use a 

probability density function to tell us about 

the probability of obtaining a value within 

some interval. 
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E.g. Rosner - diastolic blood pressure in 35-

44 year-old men (figure 5.1) 

For any interval, the area under the curve 

represents the probability of obtaining a value 

in that interval. 
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Probability density function 

1. A function, typically denoted f(x), that 

gives probabilities based on the area 

under the curve. 

2. f(x) > 0 

3. Total area under the function f(x) is 1.0. 

  0.1)( dxxf

Cumulative distribution function 

The cumulative distribution function, F(t), 

tells us the total probability less than some 

value t. 

F(t) = P(X < t) 

This is analogous to the cumulative relative 

frequency. 
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Prob[wgt < 80] 
Area under the curve 

=    0.40 
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Normal Distribution 

• A common probability model for 

continuous data 

• Can be used to characterize the Binomial 

or Poisson under certain circumstances 

• Bell-shaped curve 

 takes values between - and +  

 symmetric about mean 

 mean=median=mode 

• Examples 

 birthweights 

 blood pressure 

 CD4 cell counts (perhaps transformed) 
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Normal Distribution 

Specifying the mean and variance of a normal 

distribution completely determines the 

probability distribution function and, therefore, 

all probabilities. 

The normal probability density function is: 

 

 

where 

    3.14 (a constant) 

Notice that the normal distribution has two 

parameters: 

  = the mean of X 

  = the standard deviation of X 

We write X~N( , 2).  The standard normal 

distribution is a special case where  = 0 and  

= 1. 
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Normal Distribution - 

Calculating Probabilities 

Example: Rosner 5.20 

Serum cholesterol is approximately normally 

distributed with mean 219 mg/mL and standard 

deviation 50 mg/mL. If the clinically desirable 

range is < 200 mg/mL, then what proportion of 

the population falls in this range? 

 

X = serum cholesterol in an individual. 

 =  

 =  
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negative values for cholesterol - huh? 
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Standard Normal Distribution - 

Calculating Probabilities 

First, let’s consider the standard normal - 

N(0,1). We will usually use Z to denote a 

random variable with a standard normal 

distribution. The density of Z is 

 

 

and the cumulative distribution of Z is: 

 

 

Tables (Rosner table 3) and computer routines 

are available for calculating these probabilities. 
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Standard Normal Probabilities 

Using Rosner, table 3, find 

 

P[Z < 1.65] =  

 

P[Z > 0.5] = 

 

P[-1.96 < Z < 1.96] = 

 

P[-0.5 < Z < 2.0] = 
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Standard Normal Probabilities 

Using Rosner, table 3, find 

 

P[Z < 1.65] = 0.9505. 

 

P[Z > 0.5] = 

 

P[-1.96 < Z < 1.96] = 

 

P[-0.5 < Z < 2.0] = 

 



Summer 2019 Summer Institutes 91 



Summer 2019 Summer Institutes 92 

Standard Normal Probabilities 

Using Rosner, table 3, find 

 

P[Z < 1.65] = 0.9505. 

 

P[Z > 0.5] = 0.3085. 

 

P[-1.96 < Z < 1.96] = 

 

P[-0.5 < Z < 2.0] = 
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Standard Normal Probabilities 

Using Rosner, table 3, find 

 

P[Z < 1.65] = 0.9505. 

 

P[Z > 0.5] = 0.3085. 

 

P[-1.96 < Z < 1.96] = 0.9500 

 

P[-0.5 < Z < 2.0] = ? 

  = P[-0.5 < Z < 0] + P[0 < Z < 2.0] 

 = P[0 < Z < 0.5] + P[0 < Z < 2.0] 

      using column (c) from Table 3 

 = 0.1915 + 0.4772 = 0.6687. 
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Converting to Standard Normal 

This solves the problem for the N(0,1) case. 

Do we need a special table for every (,)?  

No! 

Define: X =  + Z where Z ~ N(0,1) 

1. E(X) =  + E(Z) =  

2. V(X) = 2V(Z) = 2. 

3. X is normally distributed! 

Linear functions of normal RV’s are also 

normal. 

If  X ~ N (,  2) and Y = aX + b 

then     

 Y ~ N(a + b, a 22) 
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Converting to Standard Normal 

How can we convert a N(,2) to a standard 

normal? 

 

Standardize: 

 

 

What is the mean and variance of Z? 






X
Z

1.  E(Z) = (1/ )E(X - ) = 0 

2.  V(Z) = (1/ 2)V(X) = 1 
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Normal Distribution - 

Calculating Probabilities 

Return to cholesterol example (Rosner 5.20) 

Serum cholesterol is approximately normally 

distributed with mean 219 mg/mL and standard 

deviation 50 mg/mL. If the clinically desirable 

range is < 200 mg/mL, then what proportion of 

the population falls in this range? 
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       P( Z > 0.38) from Table 3, column (b) 

=     0.3520. 
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Normal Approximation to 

Binomial 

Example 

Suppose the prevalence of HPV in women 18 -

22 years old is 0.30. What is the probability that 

in a sample of 60 women from this population 9 

or fewer would be infected? 

 

Random variable? 

 

Distribution? 

 

Parameter(s)? 

 

Question? 
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Binomial 

graph X [weight=PX] if (X<37), hist bin(37) normal gap(3) yscale(0,.12) 
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Normal Approximation to 

Binomial 

 Binomial 

• When np(1-p) is “large” the normal may 

be used to approximate the binomial. 

• X ~ bin(n,p) 

E(X) = np 

V(X) = np(1-p) 

• X is approximately N(np,np(1-p)) 
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Normal Approximation to 

Binomial 

Example 

Suppose the prevalence of HPV in women 18 -

22 years old is 0.30. What is the probability that 

in a sample of 60 women from this population 

that 9 or less would be infected? 

 

Random variable? 

 X = number infected out of 60 

Distribution? 

 Binomial 

Parameter(s)? 

 n = 60,  p = .30 

Question? 

 P(X < 9) = 

 normal approx. = 
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Binomial CDF and Normal Approximation 


