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Bootstrap & Jackknife 

Motivation 

In scientific research 

 

• Interest often focuses upon the estimation of some 

unknown parameter, q. The parameter q can represent 

for example, mean weight of a certain strain of mice, 

heritability index, a genetic component of variation, a 

mutation rate, etc.   

• Two key questions need to be addressed: 

 1. How do we estimate q ? 

 2. Given an estimator for q , how do we 

     estimate its precision/accuracy? 

• We assume Question 1 can be reasonably well 

specified by the researcher 

• Question 2, for our purposes, will be addressed via 

the estimation of the estimator’s standard error 
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Bootstrap Motivation 

Challenges 

 

• Answering Question 2, even for relatively simple 

estimators (e.g., ratios and other non-linear functions 

of estimators) can be quite challenging   

• Solutions to most estimators are mathematically 

  intractable or too complicated to develop 

  (with or without advanced training in statistical 

  inference) 

 

• However 

 

• Great strides in computing, particularly in the 

last 25 years, have made computational intensive 

calculations feasible. 

• We will investigate how the bootstrap allows us to 

obtain robust estimates of precision for our estimator, 

q, with a simple example… 
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Bootstrap Estimation 

Estimating the precision of the sample mean 

• A dataset of n observation provides more than an 

estimate of the population mean (denoted here as      ), 

where 

•   

 

• It gives an estimate of the precision of      , namely 

•                                   , 

 

 

where                                           , 

 

is an estimate of the population variance. 

 

• The problem with this standard error estimate is that 

it does not extend to estimators other than       in an 

obvious way. 
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Bootstrap Estimation 

Estimating the precision of the sample mean 

• From the formulas on the previous page, we can 

obtain an estimate of precision for        by estimating 

the population variance and “plugging” it into the 

formula for the standard error estimate. 

 

• Question: What IF you did not know the formula 

for the standard error of the sample mean, BUT you 

had access to modern PC. How might you obtain an 

estimate of precision? 

X

• Answer: The bootstrap! 
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Bootstrap Algorithm 

Bootstrapping 

• Assuming the sample accurately reflects the 

population from which it is drawn 

• Generate a large number of “bootstrap” samples by 

resampling (with replacement) from the dataset 

• Resample with the same structure (dependence, 

sample sizes) as used in the original sample 

• Compute your estimator,     , (here,                ), for 

each of the bootstrap samples 

• Compute the “standard deviation”  from the 

statistics calculated above. 

 

X

q Xq 
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Bootstrap Algorithm 

Bootstrap sample                Bootstrap estimates  

  1: 

  2: 

 

 

  B: 

 

 

Compute       , where                                            , and 

 

                                 . 

 

The bootstrap standard error is 

 

For other estimators, simply replace      with the     of 

your choice. 
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Bootstrap Estimation 

Examples 

Estimating the precision of the sample mean 

• Example: Generated a sample of size n=49 

observations with the following summary statistics:  

•  

 

•  

• We generated B=100,000 bootstrap samples of size 

n=49 to obtain 100,000 bootstrap estimates of the 

sample mean, i.e.,                                              . 

 

• The bootstrap standard error was 

•  

 

• A reasonably close estimate to the “true” 

standard error estimate of 1.001 
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Bootstrap Estimation 

Examples 

Confidence Intervals on the Sample Median 

 

• Approximate confidence intervals for the median can 

be obtained using asymptotic theory  

 

• The sample median is asymptotically normally 

distributed 

• The formula for the standard error is difficult to 

use 

 

𝑋𝑚~𝑁 𝑚𝑑𝑛 𝑋 ,
1

4𝑛 𝑓(𝑚𝑑𝑛 𝑋 ) 2
 

 

 

where f is the density function of the true median. 

 

•Approximate confidence intervals for the median can 

be obtained using asymptotic theory 

  

• Bootstrapping would be easier/easiest. 
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Bootstrap Estimation 

Examples 

Bootstrapped estimates of the standard error for 

sample median 

 

        Data         Median 

Original sample: {1, 5, 8, 3, 7} 5 

 

Bootstrap 1: {1, 7, 1, 3, 7} 3 

Bootstrap 2: {7, 3, 8, 8, 3} 7 

Bootstrap 3: {7, 3, 8, 8, 3} 7 

Bootstrap 4: {3, 5, 5, 1, 5} 5 

Bootstrap 5: {1, 1, 5, 1, 8} 1 

     etc. 

Bootstrap B (=1000) 



Summer 2019 Summer Institutes 259 

Bootstrap Estimation 

Examples 

Bootstrapped estimates of the standard error for 

sample median (cont.) 

 

• Descriptive statistics for the sample medians 

from 1000 bootstrap samples 

 

       B   1000 

       Mean   4.964 

       Standard Deviation 1.914 

       Median          5 

       Minimum, Maximum    1, 8 

       25th, 75th percentile    3, 7 

 

• We estimate the standard error for the sample 

median as 1.914 

 

• A 95% asymptotic (with n=5?) confidence 

interval (using the 0.975 quantile of the standard 

normal distribution) is 

5 +/- 1.96(1.914) = (1.25, 8.75) 
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Bootstrap Estimation 

Examples 

Confidence Intervals on the relative risk 

 

• Approximate confidence intervals for the estimated 

relative risk, r = P[D|Exposed]/P[D|Not exposed] can 

also be obtained using asymptotic theory  

 

• The log[r] is asymptotically normally distributed 

with mean equal to the log of the true relative risk 

and variance 

 

 

 

• 95% confidence intervals for the relative risk are 

therefore obtained by using the 0.975 quantile of 

the standard normal distribution (1.96) in the 

formula 

 

 

• We’ll compare this approximation to the bootstrap in 

our example below 
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Bootstrap Estimation 

Examples 

Bootstrapped estimates of the standard error for 

sample relative risk 

 

Cross-classification of Framingham Men by high 

systolic blood pressure and heart disease 

 

   Heart Disease 

High Systol BP  No Yes 

  No  915 48 

  Yes  322 44 

 

The sample estimate of the relative risk is 

 

 r = (44/366)/(48/963) = 2.412 

 

The asymptotic 95% confidence interval is 

 

     (2.412*0.756, 2.412*1.322) = (1.82, 3.19). 
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Bootstrap Estimation 

Examples 

Bootstrapped estimates of the standard error for 

the relative risk (cont.) 

 

• Descriptive statistics for the sample relative 

risks 

 

       B   100000 

       Bootstrap mean, r  2.464 

       Bootstrap Median  2.412 

       Standard Deviation 0.507 

 

• The bootstrap standard error for the estimated 

relative risk is 0.507 

 

• A 95% bootstrap confidence interval is 

 

 2.412 +/- 1.96(0.507) = (1.42, 3.41) 
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Bootstrap Summary 

Advantages 

 

• All purpose computer intensive method useful for 

statistical inference. 

• Bootstrap estimates of precision do not require 

knowledge of the theoretical form of an estimator’s 

standard error, no matter how complicated it is. 

 

Disadvantages 

 

• Typically not useful for correlated (dependent) data. 

• Missing data, censoring, data with outliers are also 

problematic. 
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Jackknife 

Jackknife Estimation 

• The jackknife (or leave one out) method, invented 

by Quenouille (1949), is an alternative resampling 

method to the bootstrap.  

• The method is based upon sequentially deleting one 

observation from the dataset, recomputing the 

estimator, here,       , n times. That is, there are exactly 

n jackknife estimates obtained in a sample of size n. 

• Like the bootstrap, the jackknife method provides a 

relatively easy way to estimate the precision of an 

estimator, q. 

• The jackknife is generally less computationally 

intensive than the bootstrap 

( )iq
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Jackknife Algorithm 

Jackknifing 

• For a dataset with n observations, compute n 

estimates by sequentally omitting each observation 

from the dataset and estimating     on the remaining 

n – 1 observations. 

• Using the n jackknife estimates,                              , 

 we estimate the standard error of the estimator as 

 

 

• Unlike the bootstrap, the jackknife standard error 

estimate will not change for a given sample 
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Jackknife Summary 

Advantages 

 

• Useful method for estimating and compensating for 

bias in an estimator. 

• Like the bootstrap, the methodology does not 

require knowledge of the theoretical form of an 

estimator’s standard error. 

• Is generally less computationally intensive 

compared to the bootstrap method. 

 

Disadvantages 

 

• The jackknife method is more conservative than the 

bootstrap method, that is, its estimated standard error 

tends to be slightly larger. 

• Performs poorly when the the estimator is not 

sufficiently smooth, i.e., a non-smooth statistics for 

which the jackknife performs poorly is the median. 

 


