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1. The modelling process
The general procedure we use is as follows.

§ We have some observed data y
§ We formulate a model with parameters θ
§ In a Bayesian framework, we are interested 

in the posterior density π(θ | y )



1. The modelling process

§ By Bayes’ Theorem, we have
π (θ | y ) µ π (y | θ) π(θ) 
posterior µ likelihood × prior

§ π(θ | y ) is usually not known explicitly (i.e. 
we typically only know it up to 
proportionality), so we then use an MCMC 
algorithm to get samples from π (θ | y )



1. The modelling process
§ Typically, θ is multi-dimensional. If, say,

θ = (θ1 ,…, θn), then we usually need a way   
of updating each θk.
If the full conditional density

π (θk | θ1 ,…, θk-1 ,θk+1 ,…, θn , y ) 
is known explicitly* then we can use it to       
perform the update for θk (“Gibbs step”)

* i.e. not just up to proportionality



1. The modelling process

§ Conversely, if the full conditional density
is not known explicitly then we can update
θk using a Metropolis-Hastings step.



1. The modelling process
What if the likelihood π (y | θ) is unknown?
(Meaning – hard/complicated to compute)
Two possible solutions are
§ Data augmentation: introduce extra 

quantities x such that π (x, y | θ) is tractable
§ Give up on MCMC and do something 

else… (e.g. Approximate Bayesian 
Computation = ABC) 
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2. Gamma distribution example
Example
Suppose we have data on incubation periods 

y = (y1,…, yn) 
and we wish to fit a Gamma distribution to 
these data. 

y1 = 2, y2 = 2, y3 = 3, …, y23 = 7 
(Campylobacter data from Evans et al. 1996)

Day 2 3 4 5 6 7
Freq 2 6 11 3 0 1



2. Gamma distribution example
The gamma distribution has probability 

density function 
f(x | α, β ) = βα xα-1 exp(-βx) / Γ(α)

(where x > 0, α > 0, β > 0).
Assuming the data are independent draws 

from this distribution, the likelihood is
π(y | α, β ) 
= f (y1 | α, β ) f (y2 | α, β ) … f (yn | α, β ) 



2. Gamma distribution example
The likelihood simplifies to
π(y | α, β ) 
=  βnα ∏k yk

α-1 exp(-β ∑ yk) / {Γ(α)}n

We assign independent priors as
α ~ Gamma(λα ,να)
β ~ Gamma(λβ ,νβ)

So 
π (α) = f(α | λα ,να)  and π (β) = f(β | λβ ,νβ) 



2. Gamma distribution example
The posterior density of interest is

π (α, β | y) µ π (y | α, β ) π(α) π(β)

So to define an MCMC algorithm to sample 
from this target density we need a way to 
update α and β.

One option is to update them separately.



2. Gamma distribution example
For separate updates: 
Find the full conditional densities 

π (α | β, y)    and   π (β | α, y) 
In this case (see lab exercise) we find that
(i) π(α | β, y) is only known up to 
proportionality;
(ii) π(β | α, y) is the density of a Gamma 
distribution



2. Gamma distribution example
Therefore we 
(i) update α using a Metropolis-Hastings step, 
i.e. we propose a new value α* from a 
proposal density q(α* | α ) and accept α* with 
probability min(p,1) where

p =  π(y | α*, β ) π(α*) q (α | α*) 
π(y | α, β ) π(α) q (α* | α) 



2. Gamma distribution example
The choice of q(α* | α ) is fairly arbitrary; 

possible options include
§ Propose α* ~ N(α, σ2) 

(Gaussian random walk)
§ Propose α* ~ Gamma(a,b)

(independence sampler – needs a good 
choice of a and b to work well)



2. Gamma distribution example
(ii) update β using a Gamma distribution
(see lab exercise for details!)



2. Gamma distribution example
Block updating
An alternative to separate updates for α and β
is to update them simultaneously in a “block”.
In this case we could do this using M-H, e.g.
propose (α*, β*) from q (α*, β*| α, β) and then 
accept/reject accordingly.
One reason to do this is if α and β are strongly 
correlated, i.e. it is hard to move one without 
the other.



Contents
n 1. The modelling process
n 2. Gamma distribution example 
n 3. General (Markov) SIR epidemic model 



3. General epidemic model
Population of N individuals
At time t there are:

S(t) susceptibles
I(t) infectives
R(t) recovered / immune individuals

Thus S(t)+I(t)+R(t) = N    for all t.
Initially (S(0),I(0),R(0)) = (N-1,1,0).



3. General epidemic model
n Each infectious individual remains so for a 

length of time TI ~ Exp(γ).
n During this time, infectious contacts occur 

with each susceptible according to a 
Poisson process of rate β / N.

n Thus overall infection rate is βS(t)I(t) / N.
n Two model parameters, β and γ.



3. General epidemic model
n We call this model the “Markov SIR model”.
n This is because the process 
{(S(t), I(t)): t ≥ 0 } 

is a bivariate Markov chain. This follows 
from the fact that the infectious periods are 
exponentially distributed.
n If infectious periods are not exponential we 

have a “non-Markov” SIR model.



3. General epidemic model
n Suppose we observe n removals at times 

r1£ r2£ r3 £ ... £ rn.
n The inference problem is to estimate the 

model parameters β and γ.
n In a Bayesian setting, this means we need 

to find (or sample from) the posterior density
π(β, γ | r1, r2, ..., rn)



3. General epidemic model
n However, the likelihood

π(r1, r2, ..., rn | β, γ )
is very hard to compute.
n A solution (as discussed in MCMC I) is to 

introduce infection times as extra variables 
to give a tractable augmented likelihood.



3. General epidemic model

Augmented Likelihood
n Let b be the label of the last removal time, 

i.e.  rb ³ rk for all k = 1, ..., n. 
n Given removal data, b is observed and fixed 

for any given labelling.
n Define a as the label of the first infection 

time, i.e.  ia < ik for all k ≠ a. 
n Given removal data, a is unknown.



3. General epidemic model

n Define r = (r1, r2 , ... , rn) 
n Define i = (i1, i2 , ... , ia-1, ia+1, ... , in)  
n Let 

f(x | γ ) = γ exp (- γx)      (x > 0)
denote the probability density function of the 
infectious period distribution (Exp(γ)).



3. General epidemic model
n The augmented likelihood is
π(i, r | β, γ, ia, a ) = 
∏j≠a βN-1 I(ij-) × exp(- βN-1 ò S(t)I(t) dt )

× ∏1≤ j ≤ n f(rj - ij | γ)

= ∏j≠a βN-1 I(ij-) × exp(- βN-1 ò S(t)I(t) dt )
× γn exp{- γ ∑ (rj - ij) }

where I(t-) means I(t) just before time t



3. General epidemic model
n The target posterior density is

π(β, γ, i, ia, a | r ) 
µ π(i, r | β, γ, ia, a ) π(β, γ, ia, a ) 

n Set independent priors as
β ~ Gamma(mβ, λβ)
γ ~ Gamma(mγ, λγ)
a ~ uniform on {1,…, n}
ia ~ uniform on (-∞, r1)



3. General epidemic model
n So an MCMC algorithm that targets the 

posterior density needs ways of updating 
the parameters β, γ, i, ia and a. 

n In each case, we can first find the full 
conditional distribution to see if we get a 
standard distribution. If so, we can update 
using that distribution. If not, we need a 
Metropolis-Hastings step.



3. General epidemic model
n To update β: first find the full conditional 

density π(β | γ, i, ia, a, r ).
n We do this by finding all the terms involving 

β in the posterior (=likelihood × prior)
n We find:

βn exp(- βN-1 ò S(t)I(t) dt ) βmβ-1 exp(- β λβ )
= βn+mβ-1 exp{- β (N-1 ò S(t)I(t) dt + λβ )}

n Thus β | …  
~ Gamma (mβ + n -1, λβ + N-1 ò S(t)I(t) dt )



3. General epidemic model
n So to update β we just need to sample from
Gamma (mβ + n -1, λβ + N-1 ò S(t)I(t) dt )

n Only problem is: how to evaluate the 
integral? (We will address this shortly…)

n Sampling directly from the full conditional 
distribution is often called a “Gibbs step”



3. General epidemic model
n Going through the same steps for γ we find 

the full conditional distribution
γ | ...    ~ Gamma (mγ + n, λγ + ∑ (rj - ij) )
and so we can update γ using this
distribution.



3. General epidemic model
n For the infection times, the full conditional 

distribution turns out to be non-standard.
n We therefore require a Metropolis-Hastings 

step. One option is to update infection times 
one-at-a-time, either in order or at random.

n For instance, we might update 10% of the 
infection times in between each update of 
β and γ.



3. General epidemic model
n So for infection time ik , we propose a new 

time using proposal density q(ik* | ik )
n Accept with probability min(p,1) where 

p = π(i*, r | β, γ, ia*, a* ) q(ik | ik *)
π(i, r | β, γ, ia, a ) q(ik* | ik )

n Note that if ik* < ia then a*=k, otherwise a is 
unchanged.

n Note also we need to be able to evaluate 
π(i, r | β, γ, ia, a )



3. General epidemic model
n Choices for q(ik* | ik ) could include
(i) Propose ik* = rk – Exp(γ)
(ii) Propose ik* = rk – Exp(μ), where μ is fixed 
throughout
(iii) Propose ik* ~ N(ik , σ2 )



3. General epidemic model
Evaluating the likelihood
π(i, r | β, γ, ia, a ) 
= ∏j≠a βN-1 I(ij-) × exp(- βN-1 ò S(t)I(t) dt )

× γn exp{- γ ∑ (rj - ij) }
n The parts that are not straightforward to 

evaluate are the product term and the 
integral term.



3. General epidemic model
n Product term:

∏j≠a βN-1 I(ij-) = (βN-1)n-1 ∏j≠a I(ij-) 
n No easy way to simplify further
n Need to write code to evaluate number of 

infectives at each infection event



3. General epidemic model
Integral term
n ò S(t) I(t) dt = S1£ k £ n S1£ j £ N [(rk Ù ij) - (ik Ù ij)]

Here, “a Ù b” denotes “minimum of a,b”.

Also ij = ¥ for  j > n, i.e. for those individuals 
never infected.

Formula is easy to code.



3. General epidemic model
Integral term
Explanation:
S(t)  =  S1£ j £ N  1{j is susceptible at time t}

= S1£ j £ N  1{ij > t}

where 1A = 1  if event A occurs
= 0  otherwise



3. General epidemic model
Similarly,

I(t)  =  S1£ k £ n1{ik < t < rk }

ò S(t)I(t) dt = ò S1£ j £ N  S1£ k £ n1{ik < t < rk } 1{ij > t} dt 
= S1£ j £ N  S1£ k £ n ò 1{ik < t < rk and ij > t} dt

Total time that j susceptible, k infective
= (rk Ù ij) - (ik Ù ij)



3. General epidemic model
Summary: MCMC algorithm updates 
n Update β and γ using their full conditional 

distributions (Gamma, in this case)
n Update infection times using a Metropolis-

Hastings step. We might typically update 
10% of the infection times in between each 
update of β and γ.



3. General epidemic model
Summary: MCMC algorithm 
Initialise β, γ, i, ia, a 
Loop:

Update β
Update γ
Update some of the infection times
Record current values of β, γ



3. General epidemic model
Summary: MCMC algorithm 
The output is a sequence 

(β1,γ1), (β2,γ2), …, (βM,γM)
where M is number of iterations in loop.

Note that we don’t usually record i, ia and a 
since they are not our main focus, and also i 
is typically high-dimensional so costly to store.


