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"
1. The modelling process

The general procedure we use is as follows.

= We have some observed data y
« We formulate a model with parameters 0

In a Bayesian framework, we are interested
in the posterior density n(6 |y )



"
1. The modelling process

By Bayes' Theorem, we have
n(0]y)ocm(y|0)mn®)
posterior oc likelihood x prior

« 1(6 |y ) is usually not known explicitly (i.e.

we typically only know it up to
proportionality), so we then use an MCMC
algorithm to get samples fromrx (0 |y )



" S
1. The modelling process

Typically, 0 is multi-dimensional. If, say,

0=(0,,...,0,), then we usually need a way

of updating each 0,.

If the full conditional density
©(0,]0:,...,01,001,...,0,,V¥)

Is known explicitly* then we can use it to

perform the update for 6, ("Gibbs step”)

* I.e. not just up to proportionality



" S
1. The modelling process

= Conversely, if the full conditional density
Is not known explicitly then we can update
0, using a Metropolis-Hastings step.



" S
1. The modelling process

What if the likelihood 7t (y | ©) is unknown™?
(Meaning — hard/complicated to compute)

Two possible solutions are

Data augmentation: introduce extra
guantities x such that = (x, y | ©) is tractable

Give up on MCMC and do something
else... (e.g. Approximate Bayesian

Computation = ABC)
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" I
2. Gamma distribution example

Example
Suppose we have data on incubation periods
Y = (Y150-45 Yn)
and we wish to fit a Gamma distribution to
these data.
Day 2 3 4 5 6 7
Freq 2 6 11 3 0 1

Y1=2,¥,=2,Y3=3, ..., Y3= 1
(Campylobacter data from Evans et al. 1996)



" I
2. Gamma distribution example

The gamma distribution has probability
density function

f(x | o, B) =B x*" exp(-Bx) / ['(a)
(where x>0,a>0,3>0).

Assuming the data are independent draws
from this distribution, the likelihood is

n(y [a, B )
=f(y;|a,B)f(y2]a,B)...T(y,|a, B)



"
2. Gamma distribution example
The likelihood simplifies to

y|a, )
= B [Tk vk ®"' exp(-B Y i)/ {l (o)

We assign independent priors as
a ~ Gamma(A, ,v,)
B ~ Gamma(Ag ,vg)
SO
m(a) =f(a | Ay ,Ve) and m(B) =1(B | Ag,vg)



"
2. Gamma distribution example

The posterior density of interest is

n(a,Bly)cn(y|a,p)n(a)n(B)

So to define an MCMC algorithm to sample
from this target density we need a way to
update a and (3.

One option is to update them separately.



" I
2. Gamma distribution example

For separate updates:
Find the full conditional densities

nm(a|B,y) and wm(B|a,y)
In this case (see lab exercise) we find that
(i) m(a | B, y) is only known up to
proportionality;
(i) ©(B | a, y) is the density of a Gamma
distribution




"
2. Gamma distribution example

Therefore we

(i) update a using a Metropolis-Hastings step,
l.e. we propose a hew value a* from a

proposal density q(a* | a ) and accept a* with
probability min(p,1) where

p=n(y|a’, p)n(a”)q(a]a’)
n(y | a, B ) n(a)q (a” | a)




"
2. Gamma distribution example

The choice of g(a* | a ) is fairly arbitrary;
possible options include

Propose a* ~ N(a, 0?)
(Gaussian random walk)
Propose a* ~ Gamma(a,b)
(independence sampler — needs a good
choice of a and b to work well)



" I
2. Gamma distribution example

(i) update 3 using a Gamma distribution
(see lab exercise for details!)



" I
2. Gamma distribution example

Block updating

An alternative to separate updates for a and 3
is to update them simultaneously in a “block”.

In this case we could do this using M-H, e.g.
propose (a*, ) from q (a*, B*| a, B) and then
accept/reject accordingly.

One reason to do this is if a and 3 are strongly
correlated, i.e. it is hard to move one without

the other.
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" I
3. General epidemic model

Population of N individuals
At time t there are:

S(t) susceptibles

|(t) infectives

R(t) recovered / immune individuals
Thus S(t)+I(t)+R(t) =N for all t.
Initially (S(0),1(0),R(0)) = (N-1,1,0).



" I
3. General epidemic model

m Each infectious individual remains so for a
length of time T, ~ Exp(y).

m During this time, infectious contacts occur
with each susceptible according to a
Poisson process of rate 3/ N.

m Thus overall infection rate is 3S(t)I(t)/ N.
m Two model parameters, 3 and .



" I
3. General epidemic model

m \We call this model the "Markov SIR model”.
m This is because the process

{(S(1), I(t)):t=0}
IS a bivariate Markov chain. This follows

from the fact that the infectious periods are
exponentially distributed.

m |f infectious periods are not exponential we
have a “non-Markov” SIR model.



" I
3. General epidemic model

m Suppose we observe n removals at times
<SR <r,.
m The inference problem is to estimate the
model parameters 3 and .

m [n a Bayesian setting, this means we need
to find (or sample from) the posterior density

TC(B! Y | r'lv r25 "y r'n)



" I
3. General epidemic model

m However, the likelihood
TC(r1, r25 "y r.n | B! V)
IS very hard to compute.

m A solution (as discussed in MCMC |) is to
iIntroduce infection times as extra variables
to give a tractable augmented likelihood.



" I
3. General epidemic model

Augmented Likelihood

m Let b be the label of the Iast removal time,
l.e. r,>r, forallk =1,

m Given removal data, b is observed and fixed
for any given labelling.

m Define a as the label of the first infection
time, i.e. i, <i, for all k # a.

m Given removal data, a is unknown.




" I
3. General epidemic model

m Definer=(r, r,, ..., 1)
mDefinel1=(iy, Iy, .oy g, lgsqy cony 1)
m |et

fix]y)=yexp(-yx) (x>0)
denote the probability density function of the
infectious period distribution (Exp(y)).



" I
3. General epidemic model

m The augmented likelihood is
n(i,r|B,y, iy, a)=
[Tiza BN 1(i-) x exp(- BN-1] S(b)I(t) dt )
X [T1<j<n T -0 | V)

= [1;2 BN I(i-) x exp(- BN-"] S(t)I(t) dt )
xyrexp{-vy 2 (ri-i)}

where I(t-) means [(t) just before time t




" I
3. General epidemic model

m The target posterior density is
By, L alr)

c (i, M| B, Y, 1a, @) (B, ¥, 1g, @)
m Set independent priors as

B ~ Gamma(myg, Ag)

Yy ~ Gamma(m,, A)

a ~ uniform on {1,..., n}

I, ~ uniform on (-, r,)



" I
3. General epidemic model

m S0 an MCMC algorithm that targets the

posterior density needs ways of updating
the parameters 3, v, I, i, and a.

m |[n each case, we can first find the full
conditional distribution to see if we get a
standard distribution. If so, we can update
using that distribution. If not, we need a
Metropolis-Hastings step.



" I
3. General epidemic model

m To update B: first find the full conditional
density n(B |y, 1, 1, &, ).

m \We do this by finding all the terms involving
B in the posterior (=likelihood x prior)
m We find:
B exp(- BN/ S()I(t) dt ) Bme ! exp(- B Ag)
= prmet exp{- B (N 1 I'S)I(t) dt + Ag))
mThusB| ...
~Gamma (mg +n -1, Ag + N[ S(t)I(t) dt )



" I
3. General epidemic model

m SO to update 3 we just need to sample from
Gamma (mg +n -1, Ag + N-'[ S(t)I(t) dt )

m Only problem is: how to evaluate the
integral? (We will address this shortly...)

m Sampling directly from the full conditional
distribution is often called a “Gibbs step”



" I
3. General epidemic model

m Going through the same steps for y we find
the full conditional distribution

Y|... ~Gamma(m,+n, A +> (ri-i))
and so we can update y using this
distribution.



" I
3. General epidemic model

m For the infection times, the full conditional
distribution turns out to be non-standard.

m \We therefore require a Metropolis-Hastings
step. One option is to update infection times
one-at-a-time, either in order or at random.

m For instance, we might update 10% of the
Infection times in between each update of

B andy.



" I
3. General epidemic model

m So for infection time i, , we propose a new
time using proposal density q(i,* | iy )
m Accept with probability min(p,1) where
p=mn(*r[B vy lasa ) qlix [k
(i, 1| B, Y, I @) qli” | )

m Note that if i,* < i, then a*=k, otherwise a is
unchanged.

m Note also we need to be able to evaluate
(i, r|B, v, iy a)




" I
3. General epidemic model

m Choices for q(i,.* | i, ) could include
(1) Propose I,.* = r, — Exp(y)

(i) Propose i,* = r,.— Exp(u), where p is fixed
throughout

(iii) Propose i.* ~ N(i, , 0%)



3.

General epidemic model

Evaluating the likelihood

(i, r |

= | iz

3,V,1,,a)

BN I(ii-) x exp(- BN-1[ S()I(t) dt )
x yrexp{-vy 2 (r-i)}

m The parts that are not straightforward to
evaluate are the product term and the
integral term.



" I
3. General epidemic model

m Product term:
| [ BN I(ii-) = (BN-1)-1 [ Ij2a l(i-)
m No easy way to simplify further

m Need to write code to evaluate number of
Infectives at each infection event



" I
3. General epidemic model

Integral term
O I S(t) I(t) dt =2« 2131'3 N (e A ij) - (I A ij)]

Here, “a A b” denotes "minimum of a,b”.

Also |; = oo for | >n, I.e. for those individuals
never infected.

Formula is easy to code.



"
3. General epidemic model

Integral term
Explanation:

S(t) = Z1§j <N 1{j IS susceptible at time t}

= 2Zi<j<N 1{ij>t}

where 1, =1 if event A occurs
= 0 otherwise



" I
3. General epidemic model

Similarly,

I(t) = Z1sksn1{ik<t<rk}

_[S(t)l( t) dt _IZ1<J<N Z:1<k<n1{| <t<r} 1{| > 1} dt

_Z1<j<N Z1<k<n-[1{| <t<rkand| > 1} dt

| J
|

—
v

Total time that | susceptiblg, K infective

= (e A T) = (e A )
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3. General epidemic model

summary: MCMC algorithm updates

m Update 3 and y using their full conditional
distributions (Gamma, in this case)

m Update infection times using a Metropolis-
Hastings step. We might typically update
10% of the infection times in between each
update of 3 and .
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3. General epidemic model
summary: MCMC algorithm

Initialise B, v, i, I,, a
Loop:

Update 3

Update y

Update some of the infection times
Record current values of 3, y
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3. General epidemic model

summary: MCMC algorithm
The output is a sequence

(BMY’I)! (BZaYZ)a "t (BM’VM)

where M is number of iterations in loop.

Note that we don't usually record i, i, and a
since they are not our main focus, and also i
IS typically high-dimensional so costly to store.



