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1. Household models
Many infectious disease studies incorporate 

households into the study design.
There are numerous reasons to do this, 

including 
n convenience of collecting data
n stability of target population
n get data on within-household spread



1. Household models
Models
There are various models for disease 

transmission which incorporate 
households. Our focus here is on models 
in which households are independent, i.e. 
the fates of different households are 
independent of each other.



1. Household models
Models
Henceforth we assume that a population of N 

individuals is partitioned into households, 
which need not all be the same size.



1. Household models
Models
We need two key ingredients:
n How the disease enters a household;
n What happens within a household.



1. Household models
Models
n How the disease enters a household
A typical assumption is that each individual 

in the population has, independently, a 
constant “risk” per unit time of becoming 
infected from the community.



1. Household models
Models
n How the disease enters a household
Formally: individual k becomes infected 

according to a Poisson process of rate bk, 
say. Thus, 

P(k avoids infection for T time units)
= exp(- T bk )



1. Household models
Models
n How the disease enters a household
The rate bk is typically either the same for 

every individual (bk = b for all k), or else it 
may depend on the type of individual k.

Here, “type” might mean adult / child / 
vaccinated / unvaccinated / etc...



1. Household models
Models
n What happens within a household
A standard assumption is that the disease 

spreads according to an SIR or SEIR 
model within a household.

Again types might feature: both the 
infectivity and susceptibility of an individual 
might be type-dependent.



1. Household models
Models
n What happens within a household
A common assumption for households is 

that the infection rate β is not scaled by 
the household size.

This means that we assume that each 
infective has contacts with each 
susceptible at rate β.
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2. Longitudinal data
Here we assume that we have data through 

time, e.g. daily observations.

We can approach the inference problem in a 
similar manner to that described 
previously for the SIR model.



2. Longitudinal data
Specifically, the likelihood can now be 

written as a product over all households, 
due to the assumption of independence.

However, parameter updates now typically 
require Metropolis-Hastings update steps 
within an MCMC algorithm.



2. Longitudinal data
Example Consider a single household of 

n=4 individuals in which we observe two 
removals (= symptom-appearance times, 
say).

We assume 
n a constant rate of outside infection λ
n a Markov SIR model for within-household 

transmission.



2. Longitudinal data
Example Let i1 and i2 denote the two 

infection times and r1 < r2 denote the two 
removal times. Data = {r1 , r2 }.

i1 i2 r1 i2 r2

i2 need not be before r1



2. Longitudinal data
Example
π (i2, r1, r2 | i1, β ,γ, λ) 
= (β I(i2-) + λ) exp ( - òi1

r2 (β S(t)I(t) + λ) dt ) 
´ γ 2 exp(- γ(r1 + r2 - i1 - i2 ) ) 

Note now that neither β nor λ has a Gamma-
distributed full conditional distribution, 
although γ still does.



2. Longitudinal data
As mentioned above,

likelihood = Pk likelihood in household k

Note that in constructing the posterior 
density, you only need to include the prior 
density for the model parameters once 
(i.e. not once per household).
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3. Final outcome data
Suppose now that the data consist only of 

the final number of cases in each 
household.

The first observation is that without temporal 
data we can no longer estimate all 
parameters with respect to “real time”.

We therefore assume that the infectious 
period distribution is known and E( TI ) = 1.



3. Final outcome data
Our objective is to estimate the remaining 

model parameters.

Since households are assumed 
independent, to evaluate the likelihood we 
need to find the likelihood for a given 
household.



3. Final outcome data
Specifically, consider a household with n 

individuals. Let T denote the number who 
ever become infected, 0 £ T £ n.

Assume a constant rate λ of infection from 
outside, and an SIR model for within-
household contact with infection rate β.

We wish to calculate P(T = k), k = 0,...,n.



3. Final outcome data
Removing “time”
We first consider how the final outcome of 

the epidemic can be constructed without 
explicitly considering event times. 

To begin with, focus on a single household, 
and ignore infections from outside the 
household.



3. Final outcome data
Removing “time”
Suppose that the household contains n 

individuals.

Consider a single individual A. If A ever 
became infected they remain so for a 
random time TI ; suppose TI = t, say.



3. Final outcome data
Removing “time”
If infected, then for a period of time t, 

individual A has contacts with each other 
individual in the household according to   
n-1 independent Poisson processes, each 
of rate β. 

It follows that we can construct a list of 
individuals that A would infect if A was 
infected, and the others susceptible.



3. Final outcome data
Removing “time”
Now suppose that each individual in the 

population had such a “list”. It follows that 
we can easily deduce who actually gets 
infected, once the initial infectives are 
chosen.



3. Final outcome data
Removing “time”: Example
Suppose n = 5 and the lists are
1 = { 4, 5 }
2 = { 4, 1, 5 }
3 = { 1 } 
4 = { 2 }
5 = {  }
and suppose 1 is initially infective.



3. Final outcome data
Removing “time”: Example
1 = {4, 5}, 2 = {4, 1, 5},  3 = {1}, 4={2}, 5={ } 

1 infects 4 and 5
4 infects 2
2 infects 4,1,5 (ignore all since already 

infected)
5 infects no-one



3. Final outcome data
Removing “time”: Example
1 = {4, 5}, 2 = {4, 1, 5},  3 = {1}, 4={2}, 5={ } 

1

2

4
3

5



3. Final outcome data
Removing “time”
It follows that the distribution of the final 

number infected in the epidemic is the 
same as the distribution of the number of 
individuals found on the final list in this 
construction.



3. Final outcome data
Removing “time”
Similar reasoning can be applied to infection 

from outside the household: all that is 
required is knowledge of which individuals 
ever became infected from outside, rather 
than when they became infected.



3. Final outcome data
Removing “time”
We can therefore proceed by assuming any 

individuals infected from outside the 
household are infected first, and so we 
can treat them as the “initial infectives” in 
the household.



3. Final outcome data
Removing “time”
Recall that the probability that an individual 

avoids infection from outside the 
household for a period of time t is 

exp(- λ t)
Since we cannot estimate t from the data, 

instead we simply define
p = exp(- λ t) 



3. Final outcome data
Removing “time”
Now, since each individual in the household 

avoids infection from outside 
independently, it follows that the number 
infected from outside, Y say, has a 
Binomial distribution with parameters 

Y ~ Bin(n, 1-p).



3. Final outcome data
Back to P(T=k)
It follows that 

P(T = k) = S0£ y £ n P(T=k | Y=y) P(Y=y)

where P(Y=y) = (n! / y!(n-y)!) (1-p)y (p)n-y .

probability mass function of Binomial(n,1-p)



3. Final outcome data
Back to P(T=k)
Further, P(T=k | Y=y) is simply the 

probability that k-y susceptibles become 
infected in an SIR model with y initial 
infectives and n-y initial susceptibles.

Note that this probability is zero for k < y.



3. Final outcome data
Back to P(T=k)
To evaluate P(T=k | Y=y) we can use the 

“triangular equations” for an SIR model, 
defined as follows.

Consider an SIR model with m initial 
susceptibles, a initial infectives, and 
infection rate a (between two individuals).



3. Final outcome data
Back to P(T=k)
Define p(k) as the probability that k of the 

initial susceptibles ever become infected, 
k = 0, 1, ..., m.

Let f(x) = E [exp(- x TI)] be the moment 
generating function of the infectious period 
distribution.



3. Final outcome data
Back to P(T=k)
Then for 0 £ j £ m,

From this formula we can recursively 
evaluate p(0), p(1), ..., p(m) by setting j=0, 
j=1, ..., j=m. 
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3. Final outcome data
Back to P(T=k)
Then for 0 £ j £ m,

These equations are often called “the 
triangular equations for the final size 
distribution”.
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3. Final outcome data
Example: m=3, a=1, fixed infectious periods
Set TI = 1. Then f(x) = E [exp(- x TI)] 

= exp( - x).
Setting j=0 in formula gives 

p(0) = exp( - 3 a ).
Setting j=1 gives

3p(0) exp(2 a) + p(1) exp(4 a) = 3,
so          p(1) = 3 exp(-4 a) (1 - exp(- a)).



3. Final outcome data
Summary: P(T=k)

P(T = k) = S0£ y £ n P(T=k | Y=y) P(Y=y)

where P(Y=y) = (n! / y!(n-y)!) (1-p)y (p)n-y ,
and P(T=k | Y=y) can be evaluated using the 

triangular equations. Note that this 
requires a recursive function (in R, say).



3. Final outcome data
Data and likelihood
Suppose that the data consist of the set of 

numbers  n = { n(j,k) }, where
n(j,k) = number of households in which j 

out of k initial suseptibles become 
infected.



3. Final outcome data
Data and likelihood
The likelihood takes the form

π (n | p, β ) = Pj,k q(j,k)n(j,k)

where q(j,k) = P(T=j) for a household 
containing k susceptible individuals.



3. Final outcome data
Bayesian inference and MCMC
The target density is
π (p, β | n ) µ π (n | p, β) π ( p, β )  

p is a probability and could be updated by 
e.g. Gaussian random walk (p < 0 and p > 
1 must be rejected), or an independence 
sampler (e.g. U(0,1) proposal).



3. Final outcome data
Bayesian inference and MCMC

The parameter β could be updated by 
Gaussian random walk, for example.



3. Final outcome data
Fixed infectious periods

Special case: if the infectious period TI is 
constant, TI = 1, then the triangular 
equations yield expressions in terms of

f(x) = E [exp(- x TI)] = exp( - x).



3. Final outcome data
Fixed infectious periods

Specifically, we have 
[f(a(m-j))]k+a  = exp[ -a(m-j)(k+a) ]

= q(m-j)(k+a),
where q = exp ( - a ).
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3. Final outcome data
Fixed infectious periods

It therefore makes sense to reparameterise 
the model by defining

q = exp ( - β ).
Note that 0 £ q £ 1.



3. Final outcome data
Fixed infectious periods

With this parameterisation (p,q) we have 
that, for a susceptible A say, 

p = P(A avoids outside infection)
q = P(A avoids infection from one infected        

household member)



3. Final outcome data
Fixed infectious periods

The within-household model has the same 
final outcome distribution as the so-called 
“Reed-Frost” epidemic model.

The whole model has the same final 
outcome distribution as the “Longini-
Koopman” model.
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