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1.Non-Markov epidemic model

Population of N individuals

At time t there are:

S(t) susceptibles

I(t) infectives

R(t) recovered / immune individuals

Thus S(t)+I(t)+R(t) = N    for all t.

Initially (S(0),I(0),R(0)) = (N-1,1,0).



1.Non-Markov epidemic model

 Each infectious individual remains so for a 

length of time TI drawn from f(x | θ). Note 

that θ might have several components.

 During this time, infectious contacts occur 

with each susceptible according to a 

Poisson process of rate β / N.

 Thus overall infection rate is βS(t)I(t) / N.

 Model parameters are β and θ .



1.Non-Markov epidemic model

 Popular choices for the infectious period 

distribution TI include the Gamma 

distribution and the Weibull distribution.

 If TI is the Exponential distribution then we 

have the general epidemic = Markov SIR 

epidemic.

 For non-Exponential TI then {(S(t),I(t)): t ≥ 0} 

is not a Markov process.



1. Non-Markov epidemic model

 Suppose we observe n removals at times 

r1 r2 r3  ...  rn.

 The inference problem is to estimate the 

model parameters β and θ.

 In a Bayesian setting, this means we need 

to find (or sample from) the posterior density

π(β, θ | r1, r2, ..., rn)



1. Non-Markov epidemic model

 As for the general epidemic, the likelihood

π(r1, r2, ..., rn | β, θ )

is very hard to compute.

 Again our solution is to introduce infection 

times as extra variables to give a tractable 

augmented likelihood.



1. Non-Markov epidemic model

Augmented Likelihood

 Let b be the label of the last removal time, 

i.e.  rb  rk for all k = 1, ..., n. 

 Given removal data, b is observed and fixed 

for any given labelling.

 Define a as the label of the first infection 

time, i.e.  ia < ik for all k ≠ a. 

 Given removal data, a is unknown.



1. Non-Markov epidemic model

 Define r = (r1, r2 , ... , rn) 

 Define i = (i1, i2 , ... , ia-1, ia+1, ... , in)  

 Let f(x | θ ) denote the probability density 

function of the infectious period distribution.



1. Non-Markov epidemic model

 The augmented likelihood is

π(i, r | β, θ, ia, a ) = 

∏j≠a βN-1 I(ij-) × exp(- βN-1  S(t)I(t) dt )

× ∏1≤ j ≤ n f(rj - ij | θ)

where as before I(t-) means I(t) just before 

time t



1. Non-Markov epidemic model

 The target posterior density is

π(β, θ, i, ia, a | r ) 

 π(i, r | β, θ, ia, a ) π(β, θ, ia, a ) 

 Set independent priors as

β ~ Gamma(mβ, λβ)

a ~ uniform on {1,…, n}

ia ~ uniform on (-∞, r1)

θ ~ ?? Depends what θ is!



1. Non-Markov epidemic model

 MCMC algorithm that targets the posterior 

density needs ways of updating the 

parameters β, θ, i, ia and a. 

 β, i, ia and a can all be updated as for the 

Markov model: β still has a Gamma-

distributed full conditional distribution, and 

we can update infection times as before.

 Updates for θ depend on what θ is.
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2. Debugging tips

1. Test each piece of code separately

Most MCMC algorithms in this field involve 

various components, e.g. 

 Gibbs updates

 Metropolis-Hastings updates

 Likelihood

It is good practice to check each component 

works before proceeding.



2. Debugging tips

2. Validate output using simulations

As discussed in Lecture 1, one way to test 

MCMC code (e.g. for SIR model) is

 Simulate SIR model M times (e.g. M=1000)

 Run MCMC on each output to infer 

parameters

 Average parameter estimates from MCMC 

should be close to the known true values



2. Debugging tips

2. Validate output using simulations

If the MCMC code is time-consuming to run 

then an alternative is use simulation output 

that gives a single large epidemic - idea 

being that this should give reasonable 

information about the model parameters.



2. Debugging tips

3. Beware Zeroes

Some languages allow operations such as 

“0/0” without reporting an error.



2. Debugging tips

4. Try a very small data set

Sometimes it is possible to test MCMC code 

by using a very small data set where one 

can work out the required inference by 

hand. This can then be checked against the 

MCMC output.



2. Debugging tips

5. Use log likelihood

Many likelihoods require calculation of  

products which can in turn lead to numerical 

instabilities and run-time errors.

One way to tackle this issue is to instead work 

with the log likelihood, since

log( A1 x A2 x ... x Am) = log(A1)+...+ log(Am)



2. Debugging tips

5. Use log likelihood (cont)

The likelihood may involve the calculation of 

Beta or Gamma functions. 

R has built-in functions to compute such 

functions, i.e. beta, gamma; but if we are 

working on the log scale, instead of doing 

something like log(gamma(k)) we could use 

another built in function lgamma(k) to ensure 

numerical stability, especially if k is large.
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3. What to do with MCMC output

In this section, for illustration it is assumed 

that we have MCMC output from the Markov 

SIR model removal-data-observed scenario:

(β1,γ1), (β2,γ2), …, (βM,γM)

where M is large (e.g. M=106 ).

Each pair (βk,γk) is (approx) a sample from the 
joint posterior density π (β,γ |r)



3. What to do with MCMC output

Marginal summaries

Quantities such as the marginal mean, 

median, variance etc of β and of γ can be 

readily obtained using the package R.

It is also useful to plot the marginal posterior 

density of each parameter and/or a 

histogram.



3. What to do with MCMC output

Joint summaries

It can be useful to assess the extent to which 

β and γ can be estimated separately. 

The posterior correlation and a scatterplot of 

the samples against axes β and γ provide 

such information.



3. What to do with MCMC output

Functions of model parameters

The quantity R0 is of enormous interest in 

mathematical epidemic theory. It is (roughly) 

defined as the average number of 

secondary cases caused by a typical 

infective in an infinitely large population of 

susceptibles.

If R0  1, epidemics are unlikely to take off.



3. What to do with MCMC output

Functions of model parameters

For the (general) SIR model, 

R0 = β E(TI),

where E(TI) is the mean infectious period. 

This follows from the fact that each infective 

causes new infections at (Poisson) rate β

during a period of time TI .



3. What to do with MCMC output

Functions of model parameters

For the Markov model we have

R0 = β E(TI) = β / γ ,

since TI  Exp(γ). 

Thus given the MCMC output we can create a 

new file containing

(β1/γ1), (β2/γ2), …, (βM/γM)

i.e. samples from the posterior density of R0.



3. What to do with MCMC output

Functions of model parameters

R0 can be summarised in the usual ways 

(mean, variance etc): also interesting to find 

the posterior probability that R0  1. 



3. What to do with MCMC output

Functions of model parameters

Can also be interesting to translate inference 

for rates into inference for probabilities.

e.g. 1 - exp(- β / N) is the probability that one 

infective individual infects a given 

susceptible in one time unit.
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4. What can be estimated?

As with any attempt to fit a model to data, it is 

always important to think about how 

informative the data are about the model 

parameters which one is trying to estimate.

In some settings it is obvious what can or 

cannot be estimated; in other settings it can 

be much less obvious.



4. What can be estimated?

Example: Latent periods

Consider the Markov SIR model with latent 

periods, say of fixed unknown length = c.

Thus when an individual is infected, they must 

wait c days until they become infectious.

Latent individuals are called “exposed”.



4. What can be estimated?

Example: Latent periods

Thus we have an SEIR model where  

Exposed period = c time units.

S E

Infected Removed

I R

c



4. What can be estimated?

Example: Latent periods

Introduce “exposure” times (= infection times)

e1, e2 , ... , en , where ek = ik - c

and define e = (e1, ea-1, ea+1,... , en).

As before,  r = (r1, r2 , ... , rn) is observed.

Define        i = (i1, i2 , ... , in). 



4. What can be estimated?

The augmented likelihood is

π(e, i, r | β, γ , ea, a ) = 

∏j≠a βN-1 I(ij-) × exp(- βN-1  S(t)I(t) dt )

× γn exp{- γ ∑ (rj - ij) }

× 1{ek - ik = c, k=1,…n}



4. What can be estimated?

Example: Latent periods

It is straightforward to adapt the standard 

MCMC algorithm to include c as an extra 

parameter - e.g. using M-H updates for c.

However such an algorithm would be 

uninformative about c given removal data 

alone.



4. What can be estimated?

Example: Latent periods

Roughly speaking, for any value of c, the 

infection rate β would be estimated 

accordingly - large c means large β and 

small c means small β .

So although the MCMC algorithm is correct, 

the output would need to be carefully 

interpreted. Here we would see high 

posterior correlation between c and β.



4. What can be estimated?

Example: Latent periods

In practice, a better strategy would be to fix c 

to certain (biologically reasonable) values 

and then perform estimation for β and γ.



4. What can be estimated?

Example: Gamma infectious periods

A common generalisation of the Markov SIR 

model is to have Gamma-distributed 

infectious periods.

Thus each infective remains so for a period of 

time TI, where

TI  (c,d), say (c = shape, d = rate).

Note E( TI ) = c / d.



4. What can be estimated?

Example: Gamma infectious periods

As seen earlier, the likelihood is
π(i, r | β, c, d, ia, a ) = 

∏j≠a βN-1 I(ij-) × exp(- βN-1  S(t)I(t) dt )

× ∏1≤ j ≤ n f(rj - ij | c,d)

where   f(x | c,d) = xc-1dc exp(-dx) / (c) 

is the p.d.f. of TI .



4. What can be estimated?

Example: Gamma infectious periods

The two parameters c,d can be updated in an 

MCMC algorithm. 

It is not immediately obvious if it is possible to 

estimate both parameters separately from 

removal data.

One might expect E(TI ) = c / d  to be 

estimated with reasonable precision.



4. What can be estimated?

Example: Gamma infectious periods

This suggests it might be better to use a 

different parameterisation of the Gamma 

distribution, with mean and variance rather 

than shape and rate.



4. What can be estimated?

Example: Data for Markov SIR model

Another important aspect of estimation is the 

detail of the data.

For example, suppose we have observations 

(= removal times) in a population of N=100 

susceptibles, of whom n become infected.

Clearly if n=0, no inference can be drawn. 

But what if n=1? n=10? n=100? 


